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Abstract

We solve a challenging yet practically useful variant of 3D
Bin Packing Problem (3D-BPP). In our problem, the agent
has limited information about the items to be packed into
a single bin, and an item must be packed immediately after
its arrival without buffering or readjusting. The item’s place-
ment also subjects to the constraints of order dependence
and physical stability. We formulate this online 3D-BPP as
a constrained Markov decision process (CMDP). To solve
the problem, we propose an effective and easy-to-implement
constrained deep reinforcement learning (DRL) method un-
der the actor-critic framework. In particular, we introduce a
prediction-and-projection scheme: The agent first predicts a
feasibility mask for the placement actions as an auxiliary task
and then uses the mask to modulate the action probabilities
output by the actor during training. Such supervision and pro-
jection facilitate the agent to learn feasible policies very effi-
ciently. Our method can be easily extended to handle looka-
head items, multi-bin packing, and item re-orienting. We have
conducted extensive evaluation showing that the learned pol-
icy significantly outperforms the state-of-the-art methods. A
preliminary user study even suggests that our method might
attain a human-level performance.

Introduction
As a classic NP-hard problem, the bin packing problem (1D-
BPP) seeks for an assignment of a collection of items with
various weights to bins. The optimal assignment houses all
the items with the fewest bins such that the total weight of
items in a bin is below the bin’s capacity c (Korte and Vygen
2012). In its 3D version i.e., 3D-BPP (Martello, Pisinger,
and Vigo 2000), an item i has a 3D “weight” corresponding
to its length, li, width wi, and height hi. Similarly, c is also
in 3D including L ≥ li,W ≥ wi, andH ≥ hi. It is assumed
that li, wi, hi, L,W,H ∈ Z+ are positive integers. Given
the set of items I, we would like to pack all the items into
as few bins as possible. Clearly, 1D-BPP is a special case of
its three dimensional counter part – as long as we constrain
hi = H and wi = W for all i ∈ I , a 3D-BPP instance can
be relaxed to a 1D-BPP. Therefore, 3D-BPP is also highly
NP-hard (Man Jr, Garey, and Johnson 1996).

Regardless of its difficulty, the bin packing problem turns
out to be one of the most needed academic problems as

*Hang Zhao and Qijin She are co-first authors. Kai Xu is the
corresponding author (kevin.kai.xu@gmail.com).
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

RGB image Depth image

Figure 1: Online 3D-BPP, where the agent observes only a
limited numbers of lookahead items (shaded in green), is
widely useful in logistics, manufacture, warehousing etc.

many real-world challenges could be much more efficiently
handled if we have a good solution to it. A good exam-
ple is large-scale parcel packaging in modern logistics sys-
tems (Figure. 1), where parcels are mostly in regular cuboid
shapes, and we would like to collectively pack them into
rectangular bins of the standard dimension. Maximizing the
storage use of bins effectively reduces the cost of inventory-
ing, wrapping, transportation, and warehousing. While be-
ing strongly NP-hard, 1D-BPP has been extensively stud-
ied. With the state-of-the-art computing hardware, big 1D-
BPP instances (with about 1, 000 items) can be exactly
solved within tens of minutes (Delorme, Iori, and Martello
2016) using e.g., integer linear programming (ILP) (Schri-
jver 1998), and good approximations can be obtained within
milliseconds. On the other hand 3D-BPP, due to the ex-
tra complexity imposed, is relatively less explored. Solv-
ing a 3D-BPP of moderate size exactly (either using ILP or
branch-and-bound) is much more involved, and we still have
to resort to heuristic algorithms (Crainic, Perboli, and Tadei
2008; Karabulut and İnceoğlu 2004).

Most existing 3D-BPP literature assumes that the infor-
mation of all items is known while does not take physical
stability into consideration, and the packing strategies al-
low backtracking i.e., one can always repack an item from
the bin in order to improve the current solution (Martello,
Pisinger, and Vigo 2000). In practice however, we do not
know the information of all items. For instance see Figure 1,
where a robot works beside a bin, and a conveyor forwards
parcels sequentially. The robot may only have the vision
of several upcoming items (similar to Tetris), and an item
must be packed within a given time period after its arrival.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

741



It is costly and inefficient if the robot frequently unloads
and readjusts parcels in packed bins. Such constraints fur-
ther complicate 3D-BPP in its real-world applications.

As an echo to those challenges, we design a deep rein-
forcement learning algorithm for 3D-BPP. To maximize the
applicability, we carefully accommodate restrictions raised
in its actual usage. For instance, we require item placement
satisfying order dependence and not inducing instable stack-
ing. An item is immediately packed upon its arrival, and no
adjustment will be permitted after it is packed. To this end,
we opt to formulate our problem as a constrained Markov
decision process (CMDP) (Altman 1999) and propose a con-
strained DRL approach based on the on-policy actor-critic
framework (Mnih et al. 2016; Wu et al. 2017).

In particular, we introduce a prediction-and-projection
scheme for the training of constrained DRL. The agent first
predicts a feasibility mask for the placement actions as an
auxiliary task. It then uses the mask to modulate the action
probabilities output by the actor. These supervision and pro-
jection enable the agent to learn feasible policy very effi-
ciently. We also show that our method is general with the
ability to handle lookahead items, multi-bin packing, and
item re-orienting. With a thorough test and validation, we
demonstrate that our algorithm outperforms existing meth-
ods by a noticeable margin. It even demonstrates a human-
level performance in a preliminary user study.

Related Work
1D-BPP is one of the most famous problems in combina-
torial optimization, and related literature dates back to the
sixties (Kantorovich 1960). Many variants and generaliza-
tions of 1D-BPP arise in practical contexts such as the cut-
ting stock problem (CSP), in which we want to cut bins to
produce desired items of different weights, and minimize
the total number of bins used. A comprehensive list of bib-
liography on 1D-BPP and CSP can be found in (Sweeney
and Paternoster 1992). Knowing to be strongly NP-hard,
most existing literature focuses on designing good heuristic
and approximation algorithms and their worst-case perfor-
mance analysis (Coffman, Garey, and Johnson 1984). For
example, the well-known greedy algorithm, the next fit al-
gorithm (NF) has a linear time complexity of O(N) and
its worst-case performance ratio is 2 i.e. NF needs at most
twice as many bins as the optimal solution does (De La Vega
and Lueker 1981). The first fit algorithm (FF) allows an
item to be packed into previous bins that are not yet full,
and its time complexity increases to O(N logN). The best
fit algorithm (BF) aims to reduce the residual capacity of
all the non-full bins. Both FF and BF have a better worst-
case performance ratio of 17

10 than NF (Johnson et al. 1974).
Pre-sorting all the items yields the off-line version of those
greedy strategies sometimes also known as the decreasing
version (Martello 1990). While straightforward, NF, FF, and
BF form a foundation of more sophisticated approxima-
tions to 1D-BPP (e.g. see (Karmarkar and Karp 1982)) or
its exact solutions (Martello and Toth 1990; Scholl, Klein,
and Jürgens 1997; Labbé, Laporte, and Martello 1995; De-
lorme, Iori, and Martello 2016). We also refer the reader to
BPPLib library (Delorme, Iori, and Martello 2018), which

includes the implementation of most known algorithms for
the 1D-BPP problem.

2D- and 3D-BPP are natural generalization of the origi-
nal BPP. Here, an item does not only have a scalar-valued
weight but a high-dimension size of width, height, and/or
depth. The main difference between 1D- and 2D-/3D- pack-
ing problems is the verification of the feasibility of the
packing, i.e. determining whether an accommodation of the
items inside the bin exists such that items do not interpene-
trate and the packing is within the bin size. The complexity
and the difficulty significantly increase for high-dimension
BPP instances. In theory, it is possible to generalize ex-
act 1D solutions like MTP (Martello and Toth 1990) or
branch-and-bound (Delorme, Iori, and Martello 2016) al-
gorithms to 2D-BPP (Martello and Vigo 1998) and 3D-
BPP (Martello, Pisinger, and Vigo 2000). However accord-
ing to the timing statistic reported in (Martello, Pisinger,
and Vigo 2000), exactly solving 3D-BPP of a size match-
ing an actual parcel packing pipeline, which could deal with
tens of thousand parcels, remains infeasible. Resorting to
approximation algorithms is a more practical choice for us.
Hifi et al. (2010) proposed a mixed linear programming al-
gorithm for 3D-BPP by relaxing the integer constraints in
the problem. Crainic et al. (2008) refined the idea of corner
points (Martello, Pisinger, and Vigo 2000), where an upcom-
ing item is placed to the so-called extreme points to better ex-
plore the un-occupied space in a bin. Heuristic local search
iteratively improves an existing packing by searching within
a neighbourhood function over the set of solutions. There
have been several strategies in designing fast approximate
algorithms, e.g., guided local search (Faroe, Pisinger, and
Zachariasen 2003), greedy search (De Castro Silva, Soma,
and Maculan 2003), and tabu search (Lodi, Martello, and
Vigo 1999; Crainic, Perboli, and Tadei 2009). Similar strat-
egy has also been adapted to Online BPP (Ha et al. 2017;
Wang et al. 2016). In contrast, genetic algorithms leads to
better solutions as a global, randomized search (Li, Zhao,
and Zhang 2014; Takahara and Miyamoto 2005).

Deep reinforcement learning (DRL) has demonstrated
tremendous success in learning complex behaviour skills
and solving challenging control tasks with high-dimensional
raw sensory state-space (Lillicrap et al. 2015; Mnih et al.
2015, 2016). The existing research can largely be divided
into two lines: on-policy methods (Schulman et al. 2017;
Wu et al. 2017) and off-policy ones (Mnih et al. 2015; Wang
et al. 2015; Barth-Maron et al. 2018). On-policy algorithms
optimize the policy with agent-environment interaction data
sampled from the current policy. While lacking the ability
of reusing old data makes them less data efficient, updates
calculated by on-policy data lead to stable optimization. In
contrast, off-policy methods are more data-efficient but less
stable. In our problem, agent-environment interaction data is
easy to obtain (in 2000FPS), thus data efficiency is not our
main concern. We base our method on the on-policy actor-
critic framework. In addition, we formulate online 3D-BPP
as constrained DRL and solve it by projecting the trajecto-
ries sampled from the actor to the constrained state-action
space, instead of resorting to more involved constrained pol-
icy optimization (Achiam et al. 2017).
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Figure 2: Left: The environment state of the agent includes the configuration of the bin (the grey boxes) and the size of the next
item to be packed (green box). The bin configuration is parameterized as a height map H over a L ×W grid. The feasibility
mask M is a binary matrix of size L ×W indicating the placement feasibility at each grid cell. The three dimensions of the
next item are stored into a L×W × 3 tensor D. Right: The network architecture (the three losses other than the standard actor
and critic losses are shown in red color).

RL for combinatorial optimization has a distinguished
history (Gambardella and Dorigo 1995; Zhang and Diet-
terich 2000) and is still an active direction with especially
intensive focus on TSP (Bello et al. 2016). Early attempts
strive for heuristics selection using RL (Nareyek 2003).
Bello et al. (2016) combined RL pretraining and active
search and demonstrated that RL-based optimization out-
performs supervised learning framework when tackling NP-
hard combinatorial problems. Recently, Hu et al. (2017) pro-
posed a DRL solution to 3D-BPP. Laterre et al. (2018) in-
troduced a rewarding strategy based on self-play. Different
from ours, these works deal with an offline setting where the
main goal is to find an optimal sequence of items inspired by
the Pointer Network (Vinyals, Fortunato, and Jaitly 2015).

Method
In online 3D-BPP, the agent is agnostic on li, wi or hi of all
the items in I – only immediately incoming ones Io ⊂ I
are observable. As soon as an item arrives, we pack it into
the bin, and no further adjustment will be applied. As the
complexity of BPP decreases drastically for bigger items,
we further constrain the sizes of all items to be li ≤ L/2,
wi ≤W/2, and hi ≤ H/2. We start with our problem state-
ment under the context of DRL and the formulation based on
constrained DRL. We show how we solve the problem via
predicting action feasibility in the actor-critic framework.

Problem Statement and Formulation
The 3D-BPP can be formulated as a Markov decision pro-
cess, which is a tuple of (S,A, P,R). S is the set of en-
vironment states; A is the action set; R : S × A → R is
the reward function; P : S × A × S → [0, 1] is the tran-
sition probability function. P (s′|s, a) gives the probability
of transiting from s to s′ for given action a. Our method
is model-free since we do not learn P (s′|s, a). The policy
π : S → A is a map from states to probability distribu-
tions over actions, with π(a|s) denoting the probability of
selecting action a under state s. For DRL, we seek for a
policy π to maximize the accumulated discounted reward,
J(π) = Eτ∼π[

∑∞
t=0 γ

tR(st, at)]. Here, γ ∈ [0, 1] is the

discount factor, and τ = (s0, a0, s1, . . .) is a trajectory sam-
pled based on the policy π.

The environment state of 3D-BPP is comprised of two
parts: the current configuration of the bin and the coming
items to be placed. For the first part, we parameterize the
bin through discretizing its bottom area as a L×W regular
grid along length (X) and width (Y ) directions, respectively.
We record at each grid cell the current height of stacked
items, leading to a height map Hn (see Figure 2). Here, the
subscript n implies n is the next item to be packed. Since
all the dimensions are integers, Hn ∈ ZL×W can be ex-
pressed as a 2D integer array. The dimensionality of item
n is given as dn = [ln, wn, hn]

> ∈ Z3. Working with in-
teger dimensions helps to reduce the state/action space and
accelerate the policy learning significantly. A spatial reso-
lution of up to 30 × 30 is sufficient in the real scenarios.
Putting together, the current environment state can be writ-
ten as sn = {Hn,dn,dn+1, ...,dn+k−1}. We first consider
the case where k = |Io| = 1, and name this special instance
as BPP-1. In other words, BPP-1 only considers the imme-
diately coming item n i.e., Io = {n}. We then generalize it
to BPP-k with k > 1 afterwards.

In BPP-1, the agent places n’s front-left-bottom (FLB)
corner (Figure 2 (left)) at a certain grid point or the load-
ing position (LP) in the bin. For instance, if the agent
chooses to put n at the LP of (xn, yn). This action is rep-
resented as an = xn + L · yn ∈ A, where the action
set A = {0, 1, . . . , L ·W − 1}. After an is executed, Hn

is updated by adding hn to the maximum height over all
the cells covered by n: H′n(x, y) = hmax(x, y) + hn for
x ∈ [xn, xn + ln], y ∈ [yn, yn + wn], with hmax(x, y) be-
ing the maximum height among those cells. The state tran-
sition is deterministic: P (H|Hn, an) = 1 for H = H′n and
P (H|Hn, an) = 0 otherwise.

During packing, the agent needs to secure enough space in
the bin to host item n. Meanwhile, it is equally important to
have n statically equilibrated by the underneath at the LP so
that all the stacking items are physically stable. Evaluating
the physical stability at a LP is involved, taking into account
of n’s center of mass, moment of inertia, and rotational sta-
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bility (Goldstein, Poole, and Safko 2002). All of them are
normally unknown as the mass distribution differs among
items. To this end, we employ a conservative and simplified
criterion. Specifically, a LP is considered feasible if it not
only provides sufficient room for n but also satisfies any of
following conditions with n placed: 1) over 60% of n’s bot-
tom area and all of its four bottom corners are supported by
existing items; or 2) over 80% of n’s bottom area and three
out of four bottom corners are supported; or 3) over 95% of
n’s bottom area is supported. We store the feasibility of all
the LPs for item n with a feasibility mask Mn, an L ×W
binary matrix (also see Figure 2).

Since not all actions are allowed, our problem becomes
a constrained Markov decision processes (CMDP) (Altman
1999). Typically, one augments the MDP with an auxil-
iary cost function C : S × A → R mapping state-
action tuples to costs, and require that the expectation of
the accumulated cost should be bounded by cm: JC(π) =
Eτ∼π[

∑∞
t=0 γ

t
CC(st, at)] ≤ cm.

Several methods have been proposed to solve CMDP
based on e.g., algorithmic heuristics (Uchibe and Doya
2007), primal-dual methods (Chow et al. 2017), or con-
strained policy optimization (Achiam et al. 2017). While
these methods are proven effective, it is unclear how they
could fit for 3D-BPP instances, where the constraint is ren-
dered as a discrete mask. In this work, we propose to ex-
ploit the mask M to guide the DRL training to enforce the
feasibility constraint without introducing excessive training
complexity.

Network Architecture
We adopt the actor-critic framework with Kronecker-
Factored Trust Region (ACKTR) (Wu et al. 2017). It iter-
atively updates an actor and a critic module jointly. In each
iteration, the actor learns a policy network that outputs the
probability of each action (i.e., placing n at the each LP).
The critic trains a state-value network producing the value
function. We find through experiments that on-policy meth-
ods (such as ACKTR) lead to better performance than off-
policy ones like SAC (Haarnoja et al. 2018); see a compari-
son in the supplemental material.

In the original ACKTR framework, both actor and critic
networks take the raw state directly as input. In our imple-
mentation however, we devise a CNN, named state CNN, to
encode the raw state vector into features. To facilitate this,
we “stretch” dn into a three-channel tensor Dn ∈ ZL×W×3
so that each channel of dn spans a L ×W matrix with all
of its elements being ln, wn or hn, respectively (also see
Figure 2). Consequently, state sn = (Hn,Dn) becomes a
L×W × 4 array (Figure 2 (right)).

We define a simplistic step-wise reward as the volumetric
occupancy introduced by the current item: rn = 10×ln ·wn ·
hn/(L·W ·H) for item n. When the current item is not place-
able, its reward is zero and the episode ends. While the feasi-
bility mask saves the efforts of exploring invalid actions, this
step-wise reward directs the agent to place as many items as
possible. We find through comparison that this step-wise re-
ward is superior than a termination one (e.g. the final space
utilization); see supplemental material.
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Figure 3: Left: Softening the mask-based modulation im-
proves the training convergence. Right: A toy example of
2D cutting stock.

We devise a prediction-and-projection mechanism to en-
force feasibility constraints. First, we introduce an indepen-
dent multilayer perceptron module, namely the mask predic-
tor (Figure 2 (right)), to predict the feasibility mask Mn for
the item n. The predictor takes the state CNN features of the
current state as the input and is trained with the ground-truth
mask as the supervision. Next, we use the predicted mask to
modulate the output, i.e., the probability distribution of the
actions. In theory, if the LP at (x, y) is infeasible for n, the
corresponding probability P (an = x + L · y|sn) should be
set to 0. However, we find that setting P to a small positive
quantity like ε = 10−3 works better in practice – it pro-
vides a strong penalty to an invalid action but a smoother
transformation beneficial to the network training (Figure 3
(left)). To further discourage infeasible actions, we explic-
itly minimize the summed probability at all infeasible LPs:
Einf =

∑
P (an = x + L · y|sn), ∀(x, y)|Mn(x, y) = ε,

which is plugged into the final loss function for training.
Our loss function is defined as:

L = α·Lactor+β·Lcritic+λ·Lmask+ω·Einf−ψ·Eentropy.
(1)

Here, Lactor and Lcritic are the loss functions used for
training the actor and the critic, respectively. Lmask is the
MSE loss for mask prediction. To push the agent to explore
more LPs, we also utilize an action entropy loss Eentroy =∑

Mn(x,y)=1−P (an|sn) · log
(
P (an|sn)

)
. Note that the

entropy is computed only over the set of all feasible ac-
tions whose LP satisfies Mn(x, y) = 1. In this way, we
stipulate the agent to explore only feasible actions. We find
through experiments that the following weights lead to con-
sistently good performance throughout our tests: α = 1,
β = λ = 0.5, and ω = ψ = 0.01.

BPP-k with k = |Io| > 1

In a more general case, the agent receives the information
of k > 1 lookahead items (i.e., from n to n + k − 1).
Obviously, the additional items inject more information to
the environment state, which should be exploited in learn-
ing the policy π(an|Hn,dn, ...,dn+k−1). One possible so-
lution is to employ sequential modeling of the state sequence
(dn, ...,dn+k−1) using, e.g., recurrent neural networks. We
found that, however, such state encoding cannot well inform
the agent about the lookahead items during DRL training
and yields limited improvement. Alternatively, we propose
a search-based solution leveraging the height map H update
and feasibility mask prediction.
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Figure 4: The permutation tree for Io = {1, 2, 3}. To find the
best packing for item 1, our method explores different virtual
placing orders satisfying the order dependence constraint,
e.g., 1 cannot be placed on top of virtually placed 2 or 3.

The core idea is to condition the placement of the current
item n on the next k − 1 ones. Note that the actual place-
ment of the k items still follows the order of arrival. To make
the current placement account for the future ones, we opt to
“hallucinate” the placement of future items through updat-
ing the height map accordingly. Conditioned on the virtually
placed future items, the decision for the current item could
be globally more optimal. However, such virtual placement
must satisfy the order dependence constraint which stipu-
lates that the earlier items should never be packed on top
of the later ones. In particular, given two items p and q,
p < q in Io, if q is (virtually) placed before p, we require
that the placement of p should be spatially independent to
the placement of q. It means p can never be packed at any
LPs that overlap with q. This constraint is enforced by set-
ting the height values in H at the corresponding LPs to H ,
the maximum height value allowed: Hp(x, y) ← H , for all
x ∈ [xq, xq + lq] and y ∈ [yq, yq + wq]. Combining ex-
plicit height map updating with feasibility mask prediction,
the agent utilizes the trained policy with the order depen-
dence constraint satisfied implicitly.

We opt to search for a better an through exploring the per-
mutations of the sequence (dn, ...,dn+k−1). This amounts
to a permutation tree search during which only the actor net-
work test is conducted – no training is needed. Figure 4
shows a k-level permutation tree: A path (r, v1, v2, ..., vk)
from the root to a leaf forms a possible permutation of the
placement of the k items in Io, where r is the (empty) root
node and let item(vi) represent the i-th item being placed
in the permutation. Given two items item(vi) < item(vj)
meaning item(vi) arrives before item(vj) in the actual
order. If i > j along a permutation path, meaning that
item(vj) is virtually placed before item(vi), we block the
LPs corresponding to item(vj)’s occupancy to avoid plac-
ing item(vi) on top of item(vj).

Clearly, enumerating all the permutations for k items
quickly becomes prohibitive with an O(k!) complexity. To
make the search scalable, we adapt the Monte Carlo tree
search (MCTS) (Silver et al. 2017) to our problem. With
MCTS, the permutation tree is expanded in a priority-based
fashion through evaluating how promising a node would
lead to the optimal solution. The latter is evaluated by sam-
pling a fixed number of paths starting from that node and
computing for each path a value summing up the accumu-
lated reward and the critic value (“reward to go”) at the leaf

MP MC FE Space uti. # items
7 7 7 7.82% 2.0
3 7 3 27.9% 7.5
3 3 7 63.7% 16.9
7 3 3 63.0% 16.7
3 3 3 66.9% 17.5

Table 1: This ablation study compares the space utilization
and the total number of packed items with different combi-
nations of MP, MC and FE, on the CUT-2 dataset.

(k-th level) node. After search, we choose the action an cor-
responding to the permutation with the highest path value.
Please refer to the supplemental material for more details
on our adaptions of the standard MCTS. MCTS allows a
scalable lookahead for BPP-k with a complexity of O(km)
where m is the number of paths sampled.

Experiments
We implement our framework on a desktop computer
(ubuntu 16.04), which equips with an Intel Xeon
Gold 5115 CPU @ 2.40 GHz, 64G memory, and a
Nvidia Titan V GPU with 12G memory. The DRL and
all other networks are implemented with PyTorch (Paszke
et al. 2019). The model training takes about 16 hours on a
spatial resolution of 10× 10. The test time of BPP-1 model
(no lookahead) is less than 10 ms.

Training and Test Set
We set L = W = H = 10 in our experiments with 64 pre-
defined item dimensions (|I| = 64). We also set li ≤ L/2,
wi ≤ W/2 and hi ≤ H/2 to avoid over-simplified scenar-
ios. The training and test sequence is synthesized by gener-
ating items out of I, and the total volume of items should
be equal to or bigger than bin’s volume. We first create a
benchmark called RS where the sequences are generated
by sampling items out of I randomly. A disadvantage of
the random sampling is that the optimality of a sequence
is unknown (unless performing a brute-force search). With-
out knowing whether the sequence would lead to a success-
ful packing, it is difficult to gauge the packing performance
with this benchmark.

Therefore, we also generate training sequences via cut-
ting stock (Gilmore and Gomory 1961). Specifically, items
in a sequence are created by sequentially “cutting” the bin
into items of the pre-defined 64 types so that we understand
the sequence may be perfectly packed and restored back to
the bin. There are two variations of this strategy. CUT-1:
After the cutting, we sort resulting items into the sequence
based on Z coordinates of their FLBs, from bottom to top.
If FLBs of two items have the same Z coordinate, their or-
der in the sequence is randomly determined. CUT-2: The cut
items are sorted based on their stacking dependency: an item
can be added to the sequence only after all of its supporting
items are there. A 2D toy example is given in the Figure 3
(right) with FLB of each item highlighted. Under CUT-1,
both {1, 2, 3, 4} and {2, 1, 3, 4} are valid item sequences. If
we use CUT-2 on the other hand, {1, 3, 2, 4} and {2, 4, 1, 3}

745



Seq 1 (CUT-1) Seq 2 (CUT-2) Seq 3 (RS)

O
u

rs (M
P

 + M
C

 + FE)
w

/o
 M

P, M
C

, FE
w

/o
 M

C

0.417
12 items

0.524
22 items

0.674
18 items

0.228
6 items

0.24
10 items 

0.297
8 items

0.728
19 items

1.0
33 items

0.874
30 items

Figure 5: Packing results in the ablation study. The numbers
beside each bin are space uti. and # items.

would also be valid sequences as the placement of 3 or 4 de-
pends on 1 or 2. For the testing purpose, we generate 2,000
sequences using RS, CUT-1, and CUT-2 respectively. The
performance of the packing algorithm is quantitated with
space utilization (space uti.) and the total number of items
packed in the bin (# items).

Ablation Study and Evaluation
Table 1 reports an ablation study, we found that the pack-
ing performance drops significantly if we do not incorporate
the feasibility mask prediction (MP) during the training. The
performance is impaired if the mask constraint (MC) is not
enforced with our projection scheme. The feasibility-based
entropy (FE) is also beneficial for both the training and fi-
nal performance. Figure 5 demonstrates the packing results
visually for different method settings.

Next, we show that the environment parameterization us-
ing the proposed 2D height map (HM) (i.e., the H matrix) is
necessary and effective. To this end, we compare our method
using HM against that employing two straightforward 1D
alternatives. The first competitor is the height vector (HV),
which is an L ·W -dimensional vector stacking columns of
H. The second competitor is referred to as the item sequence
vector (ISV). The ISV lists all the information of items cur-
rently packed in the bin. Each packed item has 6 parameters
corresponding toX , Y , and Z coordinates of its FLB as well
as the item’s dimension. From our test on CUT-1, HM leads
to 16.0% and 19.1% higher space utilization and 4.3 and 5.0
more items packed than HV and ISV, respectively. The plots
in Figure 6 compare the average reward received using dif-
ferent parameterizations, which shows that 2D height map
(HM) is an effective way to describe the state-action space.

In DRL training, one usually discourages low-profile
moves by tuning the reward function. We found this strategy
is less effective than our constraint-based method. In Fig-
ure 7, we compare to an alternative method which uses a
negative reward to penalize unsafe placements. Constraint-
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Figure 6: HM shows a clear advantage over vector-based
height parameterizations (HV and ISV).
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Figure 7: Comparison to DRL with reward tuning. Our
method obtains much better space utilization.

based DRL seldom predicts invalid moves (predicted place-
ment are 99.5% legit).

Scalability and Versatility
With the capability of lookahead, it is expected that the
agent better exploits the remaining space in the bin and
delivers a more compact packing. On the other hand, due
to the NP-hard nature, big k values increase the environ-
ment space exponentially. Therefore, it is important to un-
derstand if MCTS is able to effectively navigate us in the
space at the scale of O(k!) for a good packing strategy. In
Figure 8(a,b), we compare our method with a brute-force
permutation search, which traverses all k! permutations of
k coming items and chooses the best packing strategy (i.e.,
the global optimal). We also compare to MCTS-based ac-
tion search with k lookahead items in which no item per-
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Figure 8: (a): Our permutation based MCTS maintains good
time efficiency as the number of lookahead items increases.
(b): The performance of our MCTS based BPP-k model
achieves similar performance (avg. space utility) as the
brute-force search over permutation tree. (c): The distribu-
tion of space utilization using boundary rule (Heu.), human
intelligence (Hum.), and our BPP-1 method (Ours).
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# bins Space uti. # items per bin # total items Decision time
1 67.4% 17.6 17.6 2.2× 10−3 s
4 69.4% 18.8 75.2 6.3× 10−3 s
9 72.1% 19.1 171.9 1.8× 10−2 s

16 75.3% 19.6 313.6 2.8× 10−2 s
25 77.8% 20.2 505.0 4.5× 10−2 s

Table 2: Multi-bin packing tested with the CUT-2 dataset.

mutation is involved. We find that our MCTS-based permu-
tation tree search yields the best results – although having
slightly lower space utilization rate (∼ 3%), it is far more ef-
ficient. The search time of brute-force permutation quickly
surpasses 100s when k = 8. Our method takes only 3.6s
even for k = 20, when permutation needs hours. A larger k
makes the brute-force search computationally intractable.

Our method is versatile and can be easily generalized to
handle different 3D-BPP variants such as admitting multi-
ple bins or allowing item re-orientation. To realize multi-
bin 3D-BPP, we initialize multiple BPP-1 instances match-
ing the total bin number. When an item arrives, we pack it
into the bin in which the item introduces the least drop of
the critic value given by the corresponding BPP-1 network.
More details can be found in the supplemental material. Ta-
ble 2 shows our results for varying number of bins. More
bins provide more place options which leads to better perfor-
mance. Both time (decision time per item) and space com-
plexities grow linearly with the number of bins.

We consider only horizontal, axis-align orientations of an
item, which means that each item has two possible orien-
tations. We therefore create two feasibility masks for each
item, one for each orientation. The action space is also dou-
bled. The network is then trained to output actions in the
doubled action space. In our test on the RS dataset, we
find allowing re-orientation increases the space utilization
by 11.6% and the average items packed by 3, showing that
our network handles well item re-orientation.

Comparison with Non-Learning Methods and
Human Intelligence
Existing works mostly study offline BPP and usually adopt
non-learning methods. We compare to two representatives
with source code available. The first is a heuristic-based on-
line approach, BPH (Ha et al. 2017) which allows the agent
to select the next best item from k lookahead ones (i.e., BPP-
k with re-ordering). In Table 3, we compare to its BPP-1 ver-
sion to be fair. In Figure 9, we compare online BPH and our
method under the setting of BPP-k. The second method is
the offline LBP method (Martello, Pisinger, and Vigo 2000)
which is again heuristic based. In addition, we also design
a heuristic baseline which we call boundary rule method. It
replicates human’s behavior by trying to place a new item
side-by-side with the existing packed items and keep the
packing volume as regular as possible.

From the comparison in Table 3, our method outper-
forms all alternative online methods on all three bench-
marks and even beats the offline approach on CUT-1 and
CUT-2. Through examining the packing results visually, we

Method # items / % Space uti.
RS CUT-1 CUT-2

Boundary rule (Online) 8.7 / 34.9% 10.8 / 41.2% 11.1 / 40.8%
BPH (Online) 8.7 / 35.4% 13.5 / 51.9% 13.1 / 49.2%
LBP (Offline) 12.9 / 54.7% 14.9 / 59.1% 15.2 / 59.5%

Our BPP-1 (Online) 12.2 / 50.5% 19.1 / 73.4% 17.5 / 66.9%

Table 3: Comparison with three baselines including both on-
line and offline approaches.
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Figure 9: Comparison with the online BPH method (Ha et al.
2017) on BPP-k. Note that BPH allows lookahead item re-
ordering while ours does not.

find that our method automatically learns the above “bound-
ary rule” even without imposing such constraints explicitly.
From Figure 9, our method performs better than online BPH
consistently with varying number of lookahead items even
though BPH allows re-ordering of the lookahead items. We
also conducted a preliminary comparison on a real robot
test of BPP-1. Over 50 random item sequences, our method
achieves averagely 66.3% space utilization, much higher
than boundary rule (39.2%) and online BPH (43.2%).

The strongest competitor to all heuristic algorithms may
be human intuition. To this end, we created a simple
Sokoban-like app (see the supplemental material) and asked
50 human users to pack items manually vs. AI (our method).
The winner is the one with a higher space utilization rate.
15 of the users are palletizing workers and the rest are CS-
majored undergraduate/graduate students. We do not impose
any time limits to the user. The statistics are plotted in Fig-
ure 8(c). To our surprise, our method outperforms human
players in general (1, 339 AI wins vs. 406 human wins and
98 evens): it achieves 68.9% average space utilization over
1, 851 games, while human players only have 52.1%.

Conclusion
We have tackled a challenging online 3D-BPP via formulat-
ing it as a constrained Markov decision process and solv-
ing it with constrained DRL. The constraints include order
dependence and physical stability. Within the actor-critic
framework, we achieve policy optimization subject to the
complicated constraints based on a height-map bin repre-
sentation and action feasibility prediction. In realizing BPP
with multiple lookahead items, we adopt MCTS to search
the best action over different permutations of the lookahead
items. In the future, we would like to investigate more relax-
ations of the problem. For example, one could lift the order
dependence constraint by adding a buffer zone smaller than
|Io|. Another more challenging relaxation is to learn to pack
items with irregular shape.
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Labbé, M.; Laporte, G.; and Martello, S. 1995. An exact
algorithm for the dual bin packing problem. Operations Re-
search Letters 17(1): 9–18.

Laterre, A.; Fu, Y.; Jabri, M. K.; Cohen, A.-S.; Kas,
D.; Hajjar, K.; Dahl, T. S.; Kerkeni, A.; and Beguir, K.
2018. Ranked reward: Enabling self-play reinforcement
learning for combinatorial optimization. arXiv preprint
arXiv:1807.01672 .

748



Li, X.; Zhao, Z.; and Zhang, K. 2014. A genetic algorithm
for the three-dimensional bin packing problem with hetero-
geneous bins. In IIE Annual Conference. Proceedings, 2039.
Institute of Industrial and Systems Engineers (IISE).

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 .

Lodi, A.; Martello, S.; and Vigo, D. 1999. Approximation al-
gorithms for the oriented two-dimensional bin packing prob-
lem. European Journal of Operational Research 112(1):
158–166.

Man Jr, E. C.; Garey, M.; and Johnson, D. 1996. Approxi-
mation algorithms for bin packing: A survey. Approximation
algorithms for NP-hard problems 46–93.

Martello, S. 1990. Knapsack problems: algorithms and com-
puter implementations. Wiley-Interscience series in discrete
mathematics and optimiza tion .

Martello, S.; Pisinger, D.; and Vigo, D. 2000. The three-
dimensional bin packing problem. Operations research
48(2): 256–267.

Martello, S.; and Toth, P. 1990. Lower bounds and reduction
procedures for the bin packing problem. Discrete applied
mathematics 28(1): 59–70.

Martello, S.; and Vigo, D. 1998. Exact solution of the two-
dimensional finite bin packing problem. Management sci-
ence 44(3): 388–399.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. Nature 518(7540):
529.

Nareyek, A. 2003. Choosing search heuristics by non-
stationary reinforcement learning. In Metaheuristics: Com-
puter decision-making, 523–544. Springer.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, 8024–8035.

Scholl, A.; Klein, R.; and Jürgens, C. 1997. Bison: A fast hy-
brid procedure for exactly solving the one-dimensional bin
packing problem. Computers & Operations Research 24(7):
627–645.

Schrijver, A. 1998. Theory of linear and integer program-
ming. John Wiley & Sons.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 .

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354–359.
Sweeney, P. E.; and Paternoster, E. R. 1992. Cutting and
packing problems: a categorized, application-orientated re-
search bibliography. Journal of the Operational Research
Society 43(7): 691–706.
Takahara, S.; and Miyamoto, S. 2005. An evolutionary
approach for the multiple container loading problem. In
Fifth International Conference on Hybrid Intelligent Sys-
tems (HIS’05), 6–pp. IEEE.
Uchibe, E.; and Doya, K. 2007. Constrained reinforcement
learning from intrinsic and extrinsic rewards. In 2007 IEEE
6th International Conference on Development and Learn-
ing, 163–168. IEEE.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer net-
works. In Advances in Neural Information Processing Sys-
tems, 2692–2700.
Wang, R.; Nguyen, T. T.; Kavakeb, S.; Yang, Z.; and Li, C.
2016. Benchmarking dynamic three-dimensional bin pack-
ing problems using discrete-event simulation. In European
Conference on the Applications of Evolutionary Computa-
tion, 266–279. Springer.
Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanc-
tot, M.; and De Freitas, N. 2015. Dueling network archi-
tectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581 .
Wu, Y.; Mansimov, E.; Grosse, R. B.; Liao, S.; and Ba,
J. 2017. Scalable trust-region method for deep reinforce-
ment learning using kronecker-factored approximation. In
Advances in neural information processing systems, 5279–
5288.
Zhang, W.; and Dietterich, T. G. 2000. Solving combina-
torial optimization tasks by reinforcement learning: A gen-
eral methodology applied to resource-constrained schedul-
ing. Journal of Artificial Intelligence Reseach 1: 1–38.

749


