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Abstract

Cervical dysplasia diagnosis via visual investigation is a chal-
lenging problem. Recent approaches use deep learning tech-
niques to extract features and require the downsampling of
high-resolution cervical screening images to smaller sizes for
training. Such a reduction may result in the loss of visual de-
tails that appear weakly and locally within a cervical image.
To overcome this challenge, our work divides an image into
patches and then represents it from patch features. We aggre-
gate patch patterns into an image feature in a weighted man-
ner by considering the patch–image relationship. The weights
are visualized as a heatmap to explain where the diagnosis
results come from. We further introduce a spatial regulator
to guide the classifier to focus on the cervix region and to
adjust the weight distribution, without requiring any manual
annotations of the cervix region. A novel iterative algorithm
is designed to refine the regulator, which is able to capture
the variations in cervix center locations and shapes. Experi-
ments on an 18-year real-world dataset indicate a minimal of
3.47%, 4.59%, 8.54% improvements over the state-of-the-art
in accuracy, F1, and recall measures, respectively.

Introduction
Cervical cancer ranks fourth among the most frequent can-
cers in women and WHO reports approximately 90% of its
deaths occur in less developed countries. However, statistics
show that cervical cancer is more than 90% treatable if it is
detected at an early stage (Gotlieb et al. 2017). An abnor-
mality might be identified by cervical intraepithelial neopla-
sia (CIN) which is the precancerous change and abnormal
growth of squamous cells on the surface of the cervix (Ku-
mar V 2007). There exist a few screening methods to diag-
nose cervical dysplasia including but not limited to, a Pap
smear test, an HPV test, and visual examinations. The first
two are conducted in a laboratory setting and require pro-
fessional medical devices as well as highly trained experts.
Thus, they might not be easily deployed in less developed
regions or countries where deaths from cervical cancer oc-
cur more often. Consequently, performing cost-effective and
non-invasive visual screening shows great potential in the
medical field (Do et al. 2018; Feng and Zhou 2016). In a
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visual inspection, a non-physician takes colposcopic pho-
tographs of the cervix after the application of 5% acetic acid
(VIA) to the cervix epithelium and submits them to a physi-
cian for further interpretation if certain visual characteristics
appear. In this paper, the cervical images refer to the colpo-
scopic photographs taken by the VIA approach.

Naturally, visual inspection lends itself to a conversion of
the cervical dysplasia diagnosis problem into a binary im-
age classification, solvable by computer. The CIN grades
0 and 1 are labeled as normal while CIN 2+ identifies ab-
normal cases. The cervical images have a few challenging
characteristics. (1) They are usually of high resolution. (2)
In a majority of cases the images contains a large amount
of irrelevant background as the non-cervix tissues or medi-
cal instruments (Gordon et al. 2006). (3) The transformation
zone, the most common area on the cervix for abnormal cells
to develop, takes up a relatively small fraction of the full
image. (4) The correlation between the visual clues of ab-
normal tissues and CIN grades is relatively weak (Xu et al.
2017). Thus, it is not very effective to directly import the
full images into modern classification models as the heavy
compression might lead to a loss of the weak visual details
of the abnormal tissue (Zhou, Zhang, and Wu 2018) and the
small part of cervical lesion results in information bias (Xue,
Ng, and Qiao 2020). To alleviate some of these challenges,
nearly all conventional approaches manually label a tight
bounding box of the cervical region or even the transfor-
mation zone and crop it for further examination (Xu et al.
2017; Hu et al. 2019; Liu et al. 2013). However, such manual
labeling is not always available and its quality strongly de-
pends on the subjective experience of annotators (Xue, Ng,
and Qiao 2020). Different from such approaches, this paper
proposes a method that does not require such manual annota-
tions but instead automatically focuses on the proper region
of interest (ROI) for detection.

The proposed framework is illustrated in Fig. 1. Each
image is divided into sub-regions (patches), from which
the image-level features will eventually be reassembled and
trained together with the labels in a supervised manner. The
model leverages three sets of information during the train-
ing: (1) The patch visual contents, which is used to learn the
distinguishable local patterns of abnormal tissues. (2) The
patch–image relationship, which encapsulates that patches
should contribute to various image features differently. This
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Figure 1: The workflow of our proposed explainable cervical dysplasia diagnosis model. We divide a cervical image into non-
overlapping patches and jointly leverage the patch visual contents, image-patch relationship and basic domain knowledge to
eventually output an image-level binary label as well as an interpretation map. Patch features are individually extracted and
are aggregated to an image-level feature via patch-weights learning by considering the image-patch relationship. Basic domain
knowledge is incorporated to further adjust the weights spatial distribution via an temporal iterative algorithm.

is inspired by the fact that patches in the normal cases should
be cancer-free and thus their patterns should trigger the de-
tection weakly. (3) Basic domain knowledge, the fact that
cervical colposcopic images are always taken from the same
viewing direction indicates a correlation between certain vi-
sual contents and their spatial location. Hence we bring in
an additional spatial regulation to guide the weights-learning
so that the model can focus more on the foreground regions
through a novel iterative algorithm. Finally, all information
sets are integrated in the training to output not only a binary
label but also an interpretation map. In summary, our main
contributions include:

• A patch-wise solution for cervical dysplasia diagnosis
is proposed. Patch features capture local visual details
and are essential for medical applications where lesions
generally cover only a small percentage of the high-
resolution screening images. Patch patterns are aggre-
gated into image-features in a weighted manner. Such
weights can be visualized as a heatmap to make the di-
agnosis more explainable.

• A novel spatial regulator is introduced to guide the clas-
sifier focus on the cervix region. The training requires no
manual ROI annotations. Such a hassle free solution is
valuable for professional fields with a limited number of
experts. The regulator is refined by a novel image-specific
iterative algorithm to capture the data variations.

• We evaluate the approach on an 18-year real-world dataset
including 490 non-redundant sessions and observe at least
3.47%, 4.59%, 8.54% improvements over existing ap-
proaches in accuracy, F1, and recall scores, respectively.

Related Work
We focus on the existing literature that uses the visual in-
formation for detection since other modalities are not al-
ways available. The early approaches focus on feature en-

gineering and various color or texture based features are
proposed (Li et al. 2007; Kim and Huang 2013; Song et al.
2014). A more recent work (Xu et al. 2017) proposes a com-
bination of the pyramid histogram in LAB color space, HOG
and LBP (PLAP-PLAB-PHOG) to further surpass the pre-
vious studies. With the quick development of deep learning,
the latest studies explore end-to-end feature-learning and ob-
serve a better performance. For example, Xu et al. (Xu et al.
2017) use the CaffeNet to outperform existing hand-crafted-
features. Other convolutional neural networks have been em-
ployed such as the AlexNet (Xu et al. 2016), LeNet (Va-
sudha and Juneja 2018) and Faster RCNN (Hu et al. 2019).
Sato et al. (Sato et al. 2018) designed their own network
structure and obtain a validation accuracy of around 50% on
an in-house dataset. All the above solutions require a pre-
processing stage to manually annotate the small cervix re-
gion in the raw screening images and the cropped region is
used for analysis. However such manual labeling requires
expert knowledge and is very time-consuming so that many
solutions cannot be applied to the general un-annotated cer-
vical screening images. On the other hand, most of these
techniques (Xu et al. 2017, 2016; Vasudha and Juneja 2018;
Sato et al. 2018) output a classification label without ex-
plaining how the decisions come from, which restrict them
to be applied in hospitals due to trust problem (Gu et al.
2020). In contrast, our approach generates not only a binary
label but also an interpretation map and the whole process
requires no manual annotation for the cervix-region.

Methodology
In the proposed approach we divide each high-resolution im-
age into same-sized patches which capture more local infor-
mation, and aim to predict the image-level label (abnormal
or normal) from such patch-collections. Mathematically, we
denote a set of n images as {I1, I2, . . . , In} and their bi-
nary labels as {Y1, Y2, . . . , Yn}. For each label, Yi ∈ {0, 1}
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where 1 indicates an abnormal (pre-cancer stage) case and
0 otherwise. For an image Ii containing k patches, we use
Xi = {xji}, j = 1 ∼ k to denote its patch-collection. Each
patch occupies a set of non-overlapping image pixels and Li
denotes all patch-locations for the image Ii.

Baseline Patch Feature Learning & Aggregation An in-
tuitive approach for the patch-wise learning is to extract the
individual patch patterns, aggregate them as an image-level
features, and pair with an image-level label for binary clas-
sification. Patch pattern could be an hand-crafted feature or
learned through an end-to-end feature representation model.
We adopt the latter one to minimize the manual efforts by
using a CNN-based network. Concretely, each image patch
goes through a stacked of convolutional layers, followed by
non-linear activation functions such as ReLu. Denote the pa-
rameters in the non-linear transformation as (w, θ) and the
patch features as g(x|w, θ), then the image feature f(Ii) is
created by aggregating all its patch features as in Eqn. 1.

f(Ii|w, θ,Xi) =
⊕
xj
i∈Xi

g(xji |w, θ) (1)

where
⊕

represents an aggregation operation such as con-
catenation or average. The network architectures could be
adjusted for differently sized patches with details in the ex-
periment section. The image-level features are imported to
a classifier to output an image-level prediction probability
and the binary label is threshold-determined easily. We use
a multilayer perceptron network with two hidden layers and
the training objective is to minimize the binary cross-entropy
loss across n training examples as in Eqn. 2.

Lc =
n∑
i=1

−(log(Pi) · Yi + (1− log(Pi)) · (1− Yi)) (2)

where Pi is the predicted probability that an image Ii is
likely to be cervical cancerous.

Patch Weights Learning The above formulation ignores
the relationship between image label and patch labels. Actu-
ally, for a given cervical screening image, it will be a normal
case if and only if all its composed patches are free from
abnormal tissue. Assume that we have the ground-truth bi-
nary label yji ∈ {0, 1} for each individual patch xji , then the
label-relationship between the patches and their correspond-
ing image is represented by the following equation:

Yi =

{
0, iff

∑
yji = 0,

1, otherwise.
(3)

Practically, we do not have the ground truth binary labels for
patches so that a patch-level classification is impossible. But
such a relationship is still of value to improve the classifica-
tion as the patch patterns found in the normal (negative) case
images should not (or not that much) trigger abnormal (pos-
itive) labels whereas the opposite is not true. So we relax the
patch labels from a hard binary value (0 or 1) to a soft con-
tinuous value (between 0 and 1) and convert the patch-image
relationship from the label-level in Eqn. 3 to the feature-level

as in Eqn. 4. Specifically, we assume that patches contribute
to its corresponding image feature with different weights.

f(Ii|w, θ,Xi) =
⊕
xj
i∈Xi

aji · g(x
j
i |w, θ) (4)

where aji denotes the weight for patch xji . This new image-
level feature is used to achieve the objective in Eqn. 2.

Figure 2: After an initial feature represetntation extraction,
we add a weight-learning module so that weighted patch fea-
tures are aggregated as an image-feature for image-label pre-
diction. The weights naturally form a spatial interpretation
map indicating the possible lesion location.

To learn the patch weight, we flatten the initial extracted
patch feature and pass it to multiple dense layers. The last
single-node layer is activated by Sigmoid function and the
activation value is used as the patch weight. Fig. 2 shows
this idea. The learnt weights are tied to the patch locations so
they naturally composite a heatmap to explain which image
subregions are more likely to trigger the final predictions.

Domain-Knowledge Driven Spatial Regulation So far
the patch-weights are learnt solely from the patch visual con-
tents but actually some basic domain knowledge could fur-
ther facilitate a more reasonable patch-weight distribution.
In real-world situations, all cervical colposcopic screen-
ing images are photographed from an vagina (bottom)-
uterus(up) direction. As observed from Fig. 3, when viewed
in such an upwards way, the cervix region looks quite like a
circular blob-alike region and its center is near the cervix-os,
which is the opening in the lower part of the cervix between
the uterus and the vagina. Such a blob-alike region covers
the transformation zone where cluster most of the abnormal
cervical cancer tissues if exist.

This indicates a correlation between some visual contents
and their spatial locations in an image. We use such corre-
lation to further regulate the weight distribution so that the
training can focus more on the patches within this blob-alike
region. Specifically, we introduce a 2D spatial regulator, de-
noted by S, to indicate the location of the cervical region
and propose to learn the key patches in a manner such that
they have a good spatial match with the cervix region. As
such, another spatial loss is further introduced as below:

Lspatial(S) =
n∑
i=1

∑
m∈Li

D(am, sm) (5)
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Figure 3: The 2nd row is the upwards view of the cervi-
cal region (copyright from Mount Elizabeth Hospital) along
different CIN stages. The cervical screening images are all
taken from this view. The cervix covers a circular region
within the image, and the abnormal tissue, if exists, is mostly
spread over this region from cervix-os outwards.
where Li records all patch locations in an image and D(, )
calculates the dis-similarity between the weight and the spa-
tial regulator by subtracting their dot-product sum by Eqn. 6.

D(a, s) = 1− a− amin
amax − amin

· s− smin
smax − smin

(6)

The overall loss is finalized as a combination of the classifi-
cation error and the spatial regulation loss as in Eqn. 7.

L = λ · Lspatial + Lc (7)

where λ is an adjustable weight. In this work, we test our hy-
pothesis by formulating the spatial regulator as a 2D Gaus-
sian distribution with parameters (µ, σ). Here, µ defines the
offset along the horizontal (h) and vertical (v) dimensions
and σ is the covariance matrix to define the Gaussian shape.

µ =

[
µh
µv

]
(8)

σ =

[
σhh σvh
σvh σvv

]
(9)

Based on these two parameters, we can calculate the den-
sity value sm for any location m ∈ Li by Eqn. 10:

sm(µ, σ) =
1

2π|σ|1/2
exp(−

1
2 (m−µ)

Tσ−1(m−µ)) (10)

However, such density parameters (µ, θ) are unknown and
we will explain in next section how to estimate them accu-
rately for each cervical image.

Image-Specific Iterative Spatial Regulator Estimation
To estimate the spatial regulator’s parameter, a naı̈ve ap-
proach is to choose a pre-defined value according to the prior
knowledge and fix it the same for all images. However, such
an one-off setting lacks compatibility with various aspects
of different cervical images. For example, the cervical re-
gion might not always be placed at the image center, or the
cervix shape might not be a perfect circle. Thus, instead of
using a single and fixed regulator, we design an iterative es-
timation for each individual image. In particular, for a given
epoch at time t and for each individual image, we estimate

the image-specific Gaussian parameters from its own patch-
weights collections {am},m ∈ Li via Maximun Likehi-
hood. Subsequently the image-specific spatial regulator Ŝt
is updated based on the estimated Gaussian parameters and
will be used to calculate the spatial loss in the next round at
time t + 1. The overall training spatial loss is refined to the
following form:

Lt+1 = λ · Lspatial(Ŝt) + Lc (11)

where Ŝt = {Ŝt(I1), Ŝt(I2), ..., Ŝt(In)} contains a collec-
tion of refined image-specific spatial regulators.

Algorithm 1: Iterative spatial regulator update.
Result: Regulators S
Initialization: S0

i = G0;
for each training epoch t do

for each training image Ii do
{f(xji )} ←Patch feature extraction;

{aji} ←Patch weight learning;
(µ, σ)← Parameters estimation from patch
weights;
if (µ, σ) is valid then

Ŝt(Ii)←Update the regulator;
end

end
end

Alg.1 summarizes the major steps for the iterative pro-
cedure. We initialize each training image’s regulator G0 =
{µ, σ} to the same values by setting µh = w0, µv =
h0, σhh = w0, σvv = h0, σhv = 0, and σvh = 0, where w0

and h0 are half of the image width and height, respectively.
For each image, after patch feature extraction, we learn the
patch weights, based on which the parameters of its regula-
tor are estimated. The regulator will be updated if the esti-
mated parameters pass validation by checking if the center
location is within the image size. Via such training, the al-
gorithm focuses on the region-of-interests on-the-fly without
increasing additional computation complexity.

Experiments
Dataset We evaluate the approach on a real-world
database from the U.S. National Cancer Institute (NCI). The
dataset is accessible based on request and under constrained
agreement. This dataset is from a longitudinal study in Costa
Rica: Proyecto Epidemiologico Guanacaste, which is col-
lected over an 18-year period. During this project, each pa-
tient may have participated in multiple screening sessions
along the whole project timeline. We filter the records that
are labeled with ground-truth CIN grades (CIN 0,1,2,3,4)
within 1 year of the screening date and in total 978 records
are usable for binary classification (non-cancer includes CIN
0,1 and cancer includes CIN 2,3,4). 80% randomly selected
data is for training while the remaining 20% is for testing.
We keep the ratio between normal/abnormal classes roughly
the same between the two parts. Each session may consist of
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Model Annotation Accuracy F1 Precision Recall AUC ROC 1-EER
Vasudha’18 No 0.7415 0.6923 0.7297 0.6585 0.8143 0.7895
Xu’17 No 0.7657 0.7326 0.7 0.7683 0.8049 0.7632
VGG16,FZ1* No 0.7267 0.6752 0.7067 0.6463 0.775 0.6491
VGG16,FZ2 No 0.7145 0.6581 0.6986 0.622 0.7926 0.7193
VGG16,FZ3 No 0.7082 0.6627 0.6548 0.6707 0.7939 0.7368
VGG16,FZ4 No 0.7318 0.6871 0.6914 0.6829 0.7822 0.7018
InceptionNet No 0.6049 0.448 0.6512 0.3415 0.6825 0.6491

Hu’19 + AN1500** Yes 0.5764 0.3455 0.6786 0.2317 0.8145 0.7807
Vasuda’18 + Crop1500ˆ Yes 0.7737 0.7362 0.7407 0.7317 0.8214 0.7807
Xu’17 + Crop1500 Yes 0.7581 0.7134 0.7467 0.6829 0.8194 0.7895
VGG16,FZ2 + Crop1500 Yes 0.7518 0.7143 0.6977 0.7317 0.8299 0.7456

Proposed No 0.8084 0.7821 0.7216 0.8537 0.8354 0.7719

*FZn: freeze the lower n blocks of the VGG16. **ANn: annotate center n×n pixels as cervix bounding box.
ˆCropn: crop the center n×n pixels as the model inputs.

Table 1: Performance Comparison across Different Approaches.

more than one images which share similar visual contents,
so the train/test split is based on sessions for fairness. All
images have resolutions around 2400 x 1600. Evaluations
includes balanced-accuracy, F1, precision, recall and AUC
scores of ROC curve and equal error rate (EER).

Parameters By default, all images are resized to same of
42x42 patches with patch size 28. The feature representa-
tion CNN has three convolutional layers with 12, 24, 48 fil-
ters and the size of filter is 3×3, followed by ReLu activa-
tion and max-pooing. The weights-learning module contains
three dense layers of 800, 512, 128 nodes. The aggregated
feature is passed to a dense layer activated by Sigmoid. The
default parameters are Xavier initialized for all layers. By
default, the learning rate is 10−5 and λ is 0.1 over a 150-
epoch training with early-stop mechanism.

Baselines We compare our model with the following state-
of-the arts: 1) Xu’17 (Xu et al. 2017): it is one of the most
active groups working in this field and they use a CaffeNet
based transfer learning model to solve the problem which
surpassed the best reported hand-crafted feature (around 1%
improvement) on the same dataset. We follow their param-
eter settings and achieve similar results as reported in this
paper. 2) Vasuda’18 (Vasudha and Juneja 2018): it uses
the LeNet-based transfer learning but its training and test-
ing data contain the same-session’s images so their reported
results contains some bias. 3) VGG16, InceptionNet. Both
above methods are based on transfer-learning so we further
test some more recent backbone networks including VGG16
and InceptionNet. VGG16 is much larger than InceptionNet
so we freeze different blocks of VGG16 and report the re-
sults accordingly. 4) Hu’19+AN1500 (Hu et al. 2019): We
compare a simplified version of this paper that uses RCNN
to crop cervix region (ROI) before classification. This model
requires additionally experts-labeled ROI ground truth (not
available for public) so we cannot fully reproduce it. But as
our images are captured in a very controlled environment
and the image centers mostly correspond to the ROI, we an-

notate the center kxk pixels as ROI labels instead. To choose
a proper k, we test the traditional transfer-learning models
by using the center kxk as input for k = 900, 1200, 1500
and observe the size 1500 give the best results. So we choose
k = 1500 as the annotations to train the RCNN accordingly.
Note that this paper (Hu et al. 2019) uses an in-house train-
ing dataset 2.4 times patient numbers as ours.

Quantitative Results Table 1 reports the performance on
multiple metrics where a few observations are made:

• The proposed method surpasses existing solutions in most
scenarios where recall has the largest minimal-increment
of 8.54%, followed by F1 of 4.59% and accuracy of
3.47%. In rare-cancer detection, the recall is a very impor-
tant measurement to avoid missing of a cancerous case.
We visualize the approaches’ ranking in Fig. 4a.

• The improvement is more obvious comparing to the ap-
proaches requiring no cervical region bounding box an-
notations. This is as expected as cropping out the equip-
ment/environmental content will reduce the background
noise. However, a key question is how to select the crop
size as a heavy crop may take away useful information
while a light crop may be insufficient. This problem is
more serious when the data variation is large

• Shallow models (Xu et al. 2017; Vasudha and Juneja
2018) perform better than deep models as VGG16 or In-
ceptionNet. The shallow models focus more on the low-
level local clues while the deep models address the high-
level global clues. So the performance gap indicates that
the local features should be more discriminative than
global-features in our problem and this explains the ef-
fectiveness of our patch-wise solutions.

ROC Curve Fig. 4b compares the ROC curves among all
annotation-free approaches. The closer the curve is to the
upper-left corner, the better that approach works. Our model
works the best but there is still room for improvements.
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Normalized performance comparison under multiple indicators. (b) ROC curve comparison among approaches
require no manual annotations. (c) The predicted probabilities for normal/abnormal data distribute densely at two different ends
and this indicates a good binary classification. (d) T-SNE 2D plot of the image-level feature after the proposed patch-feature
aggregation and we can see the two classes are clearly separated. (e) Predicted probability statistics for each CIN-grade. (f)
Average probability against temporal-stages.

Score Distribution & Feature Visualization Fig. 4c
shows the predicted score distribution where the normal
(blue) cases are skewed-left while the abnormal (green) ones
are skewed right. Such a two-end skewed-distribution sug-
gests an effective classification, which is further validated
by the 2D T-SNE plot in Fig. 4d. Points from each category
are clustered together while the two clusters are separated.

CIN Grades & Temporal Factor The binary classes
(cancer and non-cancer) come from five CIN grades labeled
from 0 (normal) to 4 (cancerous), we also analyze the predic-
tion statistics for each category in Fig. 4e. The medium val-
ues (the red line in each box), generally go higher along the
grade level, indicating a potential possibility for fine-level
categorization. Lastly, we discuss the temporal factor influ-
ence. Each image is labeled within 1-year from its image-
taken date so we divide this 1-year window into four quar-
ters and visualize the average probability in each quarter in
Fig. 4f. We have not observed obvious trending and this
matches the fact that abnormal cells have the potential to
progress to cancer, but may also regress to normal or remain
unchanged (Wang et al. 2013).

Interpretability Other than the improvements under stan-
dard metrics, our approach has a better interpretability by
outputing an additional heatmap from the patch-weights.
The first two columns Fig. 5 illustrates a few examples. Col-
umn (a) is the screening images and column (b) is the in-
terpretation maps where the bright color indicates the areas
where features are mainly learnt from. We can see that they
mostly cover the transformation zone within the cervix re-
gion. This is an area of changing cells, and it is the most
common place on the cervix for abnormal cells to develop.

Impact of Spatial Regulator We remove the spatial reg-
ulation module and show the interpretation maps in the col-
umn (c) in Fig. 5. The maps are significantly varied from the
original maps in column (b) by highlighting mostly the outer
background parts which are incorrect. Thus, we surmise that
an explainable result might be very important when using
computational solutions for cervical dysplasia diagnosis as
the doctor can validate the predictions more easily.

Impact of Iterative Algorithm To illustrate the effective-
ness of our iterative regulator refinement, we visualize the
estimated Gaussian over the temporal dimension in the last
four columns of Fig. 5. The yellow color corresponds to the
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(a) Input (b) Results (c) without the spa-
tial regulation

(d) t = 1 (e) t = 32 (f) t = 48 (g) Final

Figure 5: (a) Input cervical images and each row is an example. (b) The final maps where the bright color indicates the features
from those regions are more likely to trigger the prediction labels. Our highlights well correspond to the cervix transformation
zones. (c) The maps using our model but without spatial regulation and the highlight regions focus more on the background
regions. (d-g) These four columns show the refined spatial regulator learnt at epochs 1, 32, 48 and the final one. Via the proposed
iterative algorithm, we can see that the regulator gradually changes in locations, sizes and shapes until a good fit to the cervix.

Gaussian center. The updates are reflected in e.g., the cervix
shape, the center location, the width-height-ratio and the ro-
tation perspectives. 1) Location-wise, the highlighted areas
are gradually shifted to the cervical central area for each in-
dividual image through the training. 2) Size-wise, the spread
of the Gaussian is gradually converged to a small region. At
the very beginning, the Gaussian occupies almost the whole
image and it is similar for all examples. After a few steps,
the Gaussian focus only on the potential ROI which takes
a small ratio over the image. 3) shape-wise, the Gaussian
rotates differently for different cases.

Accuracy F1 Precision Recall ROC

0.5xDefault 0.734 0.687 0.705 0.670 0.789
Default 0.808 0.782 0.721 0.853 0.835

2xDefault 0.791 0.764 0.708 0.829 0.821
4xDefault 0.736 0.701 0.663 0.743 0.765

Table 2: Performance vs. Patch Size.

Impact of Patch Size. Results using different patch sizes
(n x Default size) are reported in Table 2. A larger patch
size focuses more on the global clues and results a relatively
lower performance. This matches the second observations in
our quantitative results discussion where a shallow network
works better. Another plausible reason might be that a larger
patch size will reduce the total number of training patches
and this further affect the accuracy eventually.

Conclusion and Future Work
This work proposes a patch-wise solution for cervical can-
cer image classification. Compared to the majority of solu-
tions in this field which use high-resolution images directly,
it has the advantage of retaining local visual details and this
is important for medical applications. During the patch fea-
ture aggregation, the approach also learns the patch contri-
bution weights, from which an interpretation map is created
to indicate which regions mostly trigger the prediction. The
framework further integrates basic domain knowledge and
introduces an adjustable spatial regulator to control where
the classifier should focus on. We have designed a novel iter-
ative training to capture the cervix-image data diversity on-
the-fly, so that the variations in terms of center location, size,
and rotation are automatically refined for individual images,
making the approach more flexible and dynamic. Extensive
experiments have been performed to evaluate the approach
with significant improvements observed.

In future, we will explore to incorporate some stopping
criteria, so that the approach may finalize at a stage to cover
a more complete view of the transformation zone. Another
direction is to study the effect of various kernels so that the
approach can cater to the cervix shape more accurately.
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