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Abstract

Nucleus instance segmentation and classification in
histopathological images is an essential prerequisite in
pathology diagnosis/prognosis. However, nucleus annota-
tions (e.g., segmentation and labeling) require domain ex-
perts, and annotating nuclei at pixel-level is time-consuming
and labor-intensive. Moreover, nuclei from different cancer
types vary in shapes and appearances. These inter-cancer
variations require careful annotations for specific cancer
types. Therefore, to minimize the labeling cost, we propose
a novel application that considers each cancer type as an
individual domain and apply domain adaptation techniques
to improve the segmentation/classification performance
among different cancer types. Unlike the previous studies
that focus on unsupervised or weakly-supervised domain
adaptation independently, we would like to discover what
kinds of labeling can achieve the most cost-effective domain
adaptation performance in nucleus instance segmentation
and classification. Specifically, we propose a unified frame-
work that is applicable to different level annotations: no
annotations, image-level, and point-level annotations. Cyclic
adaptation with pseudo labels and adversarial discriminator
are utilized for unsupervised domain alignment. Image-level
or point-level annotations are additionally adopted to super-
vise the nucleus classification and refine the pseudo labels.
Experiments demonstrate the effectiveness and efficacy of
the proposed framework (jointly using unsupervised and
weakly supervised learning) on adapting the segmentation
and classification model from one cancer type to 18 other
cancer types.

1 Introduction

Segmenting nuclei and classifying each nucleus into a spe-
cific category (e.g., neoplastic, epithelial, or inflammatory)
are of importance and could assist the diagnose in digital
pathology, such as survival prediction (Lu et al. 2018) and
cancer recurrence prediction (Corredor et al. 2019). How-
ever, it often tasks hours to annotate an pathology 512 x 512
image patch (cropped from 40x magnification whole-slide
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image) with full nucleus masks in a pixel-level. Currently,
only a few datasets (e.g., CoNSep (Graham et al. 2019) and
PanNuke (Gamper et al. 2019)) for nucleus instance seg-
mentation and classification are publicly available. To min-
imize the labeling cost, previous works in medical image
analysis resort to the techniques of unsupervised domain
adaptation or weakly supervised learning, but these tech-
niques are utilized independently.

Unsupervised domain adaptation (UDA) methods mini-
mize labeling costs by utilizing the cross-domain data and
aligning the distribution shift between the labeled source
domain data and unlabeled target domain data. In the area
of medical image analysis, several studies have been pro-
posed to tackle the UDA for image classification (Ren et al.
2018; Huang et al. 2017), semantic segmentation (Zhang
et al. 2018a; Chen et al. 2019) and instance segmentation
with binary classification (Liu et al. 2020).

Recent UDA methods for object detection and semantic
segmentation have used two main mechanisms: adversarial
training to align domain distribution and pseudo-label self-
training. Adversarial alignment does not guarantee the align-
ment of class conditional distributions and thus some meth-
ods propose to select source-like images (Saito et al. 2019)
or instances (Zhu et al. 2019a). Pseudo labels are the con-
fident predictions by the source-trained model and thus are
source-like samples. These two mechanisms mainly focus
on aligning source-like samples on the target domain, and
we denote them as easy-transfer samples. On the contrary,
the hard-transfer samples, predictions with low probability,
are ignored, and the target-specific characteristics on hard-
transfer samples are not investigated.

On the other hand, as annotating the centers of nuclei only
or annotating image-level labels require much fewer efforts,
weakly supervised learning has been studied for nucleus in-
stance segmentation (Tian et al. 2020; Qu et al. 2019; Yoo,
Yoo, and Paeng 2019). However, these weakly supervised
methods do not consider domain distribution alignment and
thus could not make full use of the labeled data from differ-
ent domains.

Both annotating weak labels and utilizing labeled cross-
domain images are the effective efforts to minimize the la-
beling cost, but no work integrates them for nucleus in-
stance segmentation and classification. As such, we propose



to utilize weak labels to help unsupervised domain adap-
tation, i.e., weakly supervised domain adaptation (WDA),
to achieve the trade-off between accuracy and labeling ex-
penses. Moreover, we propose a unified framework that is
applicable to both unsupervised and weakly-supervised do-
main adaptation. In this way, different levels of annotations,
including no annotations, image-level, and point-level an-
notations, can be flexibly applied according to user require-
ments. With the help of weak labels, hard-transfer samples
in UDA could be properly processed.

In our framework, for the unsupervised domain adapta-
tion, an adversarial domain discriminator is used to align lo-
cal features, e.g., texture and color. To achieve the semantic-
aware adaptation, we adopt the cyclic adaptation with
pseudo labels (Yang et al. 2020). Besides the unsuper-
vised learning, we introduce weak labels to assist the do-
main adaptation in two aspects. First, we utilize weak la-
bels to improve the accuracy of nucleus classification. We
add point-level supervision or image-level supervision dur-
ing the model training. Additionally, we use the weak labels
to refine the pseudo labels, as the pseudo labels might be
noisy and class-imbalanced. Second, we propose to utilize
the weak labels to align the easy-transfer and hard-transfer
samples. To harvest the hard-transfer samples, we propose to
classify the easy/hard-transfer samples by weak labels and
minimize the distribution gap via adversarial alignment. For
the easy-transfer samples, we use the pseudo labels to train
the segmentation and classification. In contrast, for the hard-
transfer samples, we only use the point-level/image-level la-
bels to supervise the classification.

Our major contributions are summarized as follows:

e To the best of our knowledge, we are the first to jointly
investigate the UDA and WDA for nucleus instance seg-
mentation and classification.

e We propose a unified framework that is applicable to
both UDA and WDA with different forms of annotations,
i.e., pixel-level and image-level annotations. Our frame-
work can be easily tailored to a semi-supervised task.

e To harvest the hard-transfer samples ignored by the
pseudo-label self-training, we propose using weak labels
to determine and align the hard-transfer examples.

2 Related Work

Unsupervised Domain Adaptation. Towards the UDA
for image classification, a vast number of methods have been
proposed to minimize the domain discrepancy by aligning
the feature distributions from source and target domains. For
example, maximum mean discrepancy (Long et al. 2015,
2016), correlation alignment (Sun and Saenko 2016), joint
distribution discrepancy loss (Long et al. 2017) and adver-
sarial training (Ganin and Lempitsky 2015; Tzeng et al.
2014, 2017; Zhu et al. 2017).

UDA has also been explored for semantic segmentation
and two adaptation techniques are widely-used: adversar-
ial domain alignment (Hoffman et al. 2018; Chang et al.
2019; Wu et al. 2018; Zhang et al. 2018b) and pseudo-label
self-training (Zou et al. 2018; Saleh et al. 2018; Lian et al.
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2019; Vu et al. 2019; Du et al. 2019). The pseudo-label
self-training based methods generate pixel-level pseudo la-
bels and then use them to fine-tune the segmentation model.
In addition to minimizing the inter-domain gap, Pan et
al. (Pan et al. 2020) proposed to minimize the domain gap
within the samples of the target domain. They determined
the easy/hard-transfer samples by the entropy of predictions
and used an adversarial domain discriminator to align them.
However, their hard-transfer samples do not obtain enough
supervision, and the hard-to-transfer information in those
samples is still ignored. To overcome this issue, we pro-
pose to utilize weak labels to determine and learn the hard-
transfer samples. In medical image analysis, UDA is also
studied for the segmentation in CT images (Dou et al. 2018;
Chen et al. 2019; Ouyang et al. 2019), X-ray images (Zhang
et al. 2018a).

UDA for object detection has received much attention in
the past two years (Chen et al. 2018; Zhu et al. 2019b; Saito
et al. 2019; He and Zhang 2019; Kim et al. 2019; Xie et al.
2019; Hsu et al. 2020; Zhuang et al. 2020; Yang et al. 2020).
Most methods conduct domain adaptation at both image-
level and instance-level. Some methods (Saito et al. 2019;
Zhu et al. 2019b) select source-like target images/instances
for training via adversarial loss and some methods (Hsu et al.
2020; Yang et al. 2020) generate pseudo labels.

There is only one recent work (Liu et al. 2020) has tackled
the UDA for instance segmentation. They first utilized Cy-
cleGAN (Zhu et al. 2017) to synthesize target-like images
and then used an inpainting mechanism to remove the arti-
facts produced by CycleGAN. After that, adversarial domain
discriminators are employed for image-level and instance-
level adaptation. However, they only performed binary clas-
sification for instance classification, i.e., nuclei/non-nuclei,
while we aim to categorize the nuclei into four types. Also,
our proposed framework does not rely on pixel-level transla-
tion like CycleGAN and could be complementary to it. None
of the above methods tackle the instance segmentation and
classification like ours.

Weakly Supervised Segmentation. Different types of
weak labels has been used for semantic segmentation, in-
cluding image-level (Pinheiro and Collobert 2015; Bearman
et al. 2016; Chang et al. 2020), point-level (Bearman et al.
2016; Tian et al. 2020; Yoo, Yoo, and Paeng 2019), video-
level (Tsai, Zhong, and Yang 2016; Chen et al. 2020), scrib-
ble (Lin et al. 2016; Vernaza and Chandraker 2017) and
bounding box (Papandreou et al. 2015; Dai, He, and Sun
2015; Khoreva et al. 2017). In these works’ settings, the
training and test data are from the same domain, and only
the weak labels are provided for the training data. However,
the training does not consider domain alignment and there-
fore, could not make use of the fully-annotated data from the
other domains.

Weakly-supervised Domain Adaptation. Several works
proposed to use weak labels to help the domain adaptation
for detection and segmentation (Paul et al. 2020; Dong et al.
2019; Paul et al. 2020). Inoue et al. (Inoue et al. 2018) pro-
posed to use image-level annotations to select the instance-
level pseudo labels that belong to the existing categories for
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Figure 1: The proposed framework is applicable to unsupervised domain adaptation (UDA) and weakly-supervised domain
adaptation (WDA). In UDA, two steps of forward adaptation and backward adaptation are computed iteratively with pseudo la-
bels updated. For WDA, weak labels YV are utilized for minimizing weakly supervision loss L" and pseudo label refinement.
In forward adaptation for WDA, weak labels are used to determine and align easy/hard-transfer samples. For nucleus instance
segmentation and classification, the decoder consists of three branches for nuclear pixel segmentation, prediction of horizontal
and vertical distances to nuclear centroids, and nucleus classification.

self-training. Dong et al. (Dong et al. 2019) proposed that
pseudo labeling tends to ignore hard-transfer classes, and
therefore they normalized the class-wise probability accord-
ing to the proportion of each class. However, the proportions
of classes are still determined by pseudo labels. The most
relevant work to us is (Paul et al. 2020). They designed a do-
main discriminator for each category and used the pseudo
or weak labels to select the category-specific discrimina-
tor for semantic-aware feature alignment. Both their method
and ours try to propose a unified framework for UDA and
WDA. Different from their semantic segmentation task, the
instance segmentation and classification task we tackled is
more challenging. It is because in addition to classifying
each pixel, instances need to be separated correctly. Our pro-
posed pseudo-label self-training and hard-transfer samples
alignment demonstrate better performance on this task.

3 A Unified Framework for UDA and WDA

As shown in Fig. 1, we integrate the UDA and WDA into a
unified framework based on the pseudo-label self-learning.
In this section, we first describe the problem we aim to solve
and provide an overview of the proposed framework. We
then introduce the details of UDA and WDA.

3.1 Problem Definition

In this work, we tackle both the unsupervised domain adap-
tation (UDA) and weakly-supervised domain adaptation
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(WDA) for nucleus instance segmentation and classification.
In domain adaptation, the source domain data and target do-
main data are the related data but from different distribu-
tions. In the settings of UDA, we have N labeled images
{X,, Y} = {X%, Y7} in source domain and N; non-
labeled images X; = {X] ’} . Note that in nucleus in-
stance segmentation and clas51ﬁcat10n, each pixel k is an-
notated with its instance id z;, € {1,...,M} and nuclear
type ¢, € {1,...,C}, where M is the number of nucleus
instances and C' is the number of nuclear types. In WDA,
we have weak labels for the target images, including point-
level annotations X7’ and image-level annotations X,/ . For
each image, the point-level annotations are a set of centroids
to the nuclei with their spatial locations and corresponding
nuclear types. Image-level annotation for each image is a
multi-hot vector that represents the available categories in
the image.

3.2 Overview

In our framework, we employ the Hover-Net (Graham et al.
2019) as the base model for nucleus instance segmentation
and classification . In Hover-Net, nucleus instance segmen-
tation and classification are learnt simultaneously. The net-
work consists of a shared encoder and three decoders for
different tasks: 1) nuclear pixel segmentation, 2) prediction
of horizontal and vertical distances to the nuclear centroids,
and 3) nuclear type classification. The overview of network



architecture is shown in Fig 1.

Unsupervised Domain Adaptation. For the unsupervised
domain adaptation, we extend the state-of-the-art UDA
method (Yang et al. 2020) for object detection to our tasks of
instance segmentation and classification. The training pro-
cedure is composed of multiple cycles. In each cycle, the
training comprises two steps, and the network parameters
are shared between these two steps.

Step 1: Backward Adaptation. Motivated by the theo-
rems proposed by Ben-David er al. (Ben-David et al. 2010,
2007), this step performs domain adaptation by jointly min-
imizing the error on the source domain and the domain dis-
crepancy across domains. In Hover-Net, the full supervi-
sion loss on the source domain includes the losses of nu-
clear pixel segmentation, distance prediction, and nuclear
type classification. We denote it as £ for simplicity. De-
tails of the loss are shown in the supplementary materials.

To minimize the domain discrepancy, the gradient rever-
sal layer (GRL) proposed by Ganin and Lempitsky (Ganin
and Lempitsky 2015) is adopted, where the gradients of the
domain classifier are reversed for domain confusion. The ad-
versarial training loss is as follows:

1
adv (h,w)
£ X ) = QNHW””U Dy
b5 S0 (= DylaP )t )
2 NHW 2=

where g represents the features output from a specific layer
of the encoder, H and W are height and width of the output
feature map of the domain discriminator D. Then the train-
ing objective of this step is to minimize the following loss:

LY = £F(x,, V) + Ao Ledv(x,, &) . )

Step 2: Forward Adaptation. In this step, in order to
learn the target-specific information, pseudo labels Y, are
used to refine the model obtained from the previous step.
The predictions with high confidence generated from the
model in the previous step are used as pseudo labels. The
network is then optimized by the full supervision loss £I".
Then the loss of this step for UDA is defined as

LY = Lf (2, ). 3)

Weakly Supervised Domain Adaptation. Since no an-
notations are available on the target domain, the problem
of unsupervised domain adaptation is challenging and there
is still performance gap compared with the fully supervised
method. With a small increase of labeling cost, we propose
to use the weak labels to aid the UDA. First, we utilize the
weak labels to supervise the classification of target samples.
We introduce the supervision loss of the weak labels £;”
into the training of Backward Adaptation. With the aid of
weak labels, the training objective of Backward Adaptation
in Eq. 2 can be re-written as

EZV = Ef(Xw yS) + Agdvﬂgdu(‘x& Xt) +
4

VLW, V).

Second, we use the weak labels to refine the class predic-
tions in the pseudo labels as the pseudo labels might be noisy
and class-imbalanced. Third, we propose to utilize the weak
labels to determine and align the easy-transfer samples X}
and hard-transfer samples X;;,. More details of the WDA are
present in the following sections.

3.3 Weak Labels for Supervising Nucleus
Classification

Although the UDA method could achieve performance gain
on both segmentation and classification tasks, the noisy and
class-imbalanced pseudo labels may lead to the ignorance of
infrequent classes without supervision. In order to guide the
nucleus classification, we introduce weak supervision loss
to supervise the training of classification networks. Different
forms of annotations require different loss functions, and we
illustrate them respectively in this section.

Point-level Supervision Loss. For an image X, the
point-level annotation Y* is a set of centroids of nu-
clei With their corresponding locations and types: Y =

{[Z(m) y ]}]\/[
troid point, y} ™) is an one-hot vector of its type, and M is the
number of centroid points. Let us denote the probability vec-
tor at pixel z(™ as p("™). We can compute the cross-entropy
loss over the centroid points for an image as follows:

LP(X,YP) = Zy log(p™).  (5)

m

. Here, (™) is the location of the z;j, cen-

Image-level Supervision Loss. The image-level annota-
tion for each image Y/ is a multi-hot vector that repre-

sents the available categories in the image: Y/ = {ygc) le =
1,...,C}. To obtain the image-level prediction, we compute
the global average pooling across the spatial locations on the
probability map of each class c. It represents the probability
that category c exists in the image and we denote it as a(®).
To obtain accurate predictions of the existing categories, we
compute binary cross-entropy loss for each category and the
image-level supervision loss is:

Z?JI log(a ) (1-

clx, vyl = (C))log(l —al9).

(6)

Pseudo Label Refinement. Since the pseudo labels might
be noisy and class-imbalanced, we propose to utilize the
weak labels to refine them. In this work, we specifically use
the location and type information provided by the point-level
annotations. Given a predicted instance, we measure the dis-
tance between its centroid and the ground truth centroids.
If the distance is smaller than 6 pixels at 20x or 12 pixels
at 40x, then we consider this instance as a true positive and
otherwise false positive in detection. We discard the false
positives and correct the predicted type of the true positives
if the types are wrong. In this way, the performance of nu-
cleus classification can be improved.



3.4 Weak Labels for Learning Hard-transfer

Samples

Within the target domain, there also exist variations among
samples. However, the pseudo labeling focuses on align-
ing source-like samples on target domain, and we denote
them as easy-transfer samples. It is because the iterative self
training with pseudo labels is equivalent to the EM algo-
rithm (Sener et al. 2016). The hard-transfer samples, predic-
tions with low probability, are ignored and the target-specific
characteristics on hard-transfer samples are not investigated.
To obtain good adaptation result, we propose that it is nec-
essary to make use of the hard-transfer samples. To this end,
several questions have been raised: 1) how to determine the
hard samples; 2) how to train the hard samples.

A recent work (Pan et al. 2020) have proposed to use the
entropy of predictions to determine the easy/hard samples
and then align the entropy maps of them via a domain dis-
criminator. However, aligning the entropy maps is agnostic
to categories. Also, relying on the pseudo labels on easy-
transfer samples still has the class-imbalanced problem. To
overcome these problems, we propose to utilize the weak
labels to further investigate the hard-transfer samples.

We use the point-level annotations to determine the
easy/hard-transfer samples. More specifically, we calculate
the recall of the predictions. If the recall of an image is larger
than a certain threshold, we consider it as an easy-transfer
sample, x;.; otherwise, a hard-transfer sample, x. For the
easy-transfer samples, we use the pixel-wise pseudo labels
to guide the training of segmentation with the full supervi-
sion loss, £ . For the hard-transfer samples, there might be
no predictions or the pseudo labels are not reliable. We use
the point-level annotations with the point-level supervision
loss £}¥ to supervise the training instead.

In addition, to minimize the feature distributions between
easy-transfer and hard-transfer samples, we propose to use
an adversarial discriminator. The loss of adversarial training
is as follows:

adv ]- 1 . w
ﬁtd (Xte;Xth) = iNtTW (Df(gﬁé))(h’ ))2
¢ i,h,w
! 1 )
- 1-D I (h,w)\2 7
+2NthHWj;U( sl N2,

where H and W are heiéﬁt and width of the output feature
map of the domain discriminator, and g represents the fea-
tures output from a specific layer in the encoder.

Then the objective of Forward Adaptation in WDA is :

E]W = LtFe(Xtea j)te) + E%('Xhaa y}‘f({) + )‘?dvﬁgdv('Xtaa Xth) .

®)

4 Experiments

In this section, we evaluate our proposed domain adaptation
framework for the nucleus instance segmentation and clas-
sification. We demonstrate the results of UDA and WDA re-
spectively, and provide ablation studies to show the effects
of using weak labels.

Datasets. To the best of our knowledge, there are only two
public datasets that provide annotations for both instance
segmentation and classification: CoNSep (Graham et al.

701

2019) and PanNuke (Gamper et al. 2019). The domain adap-
tation scenario in this work is to adapt the segmentation and
classification model from one cancer type (source domain)
to the other 18 cancer types (target domain). We use CoNSep
as source domain and PanNuke as target domain. Details of
these datasets are shown below:

CoNSep (Graham et al. 2019). The colorectal nuclear
segmentation and phenotype (CoNSep) dataset contains
H&E stained image tiles of a single cancer type, i.e., col-
orectal adenocarcinoma (CRA). It is made of 41 image tiles
at 40x objective magnification with 24, 319 nuclei annotated
by pathologists. The size of images is 1000 x 1000 pix-
els. The images were from 16 patients and were scanned at
University Hospitals Coventry and Warwickshire, UK. This
dataset categorizes the nuclei into 4 types: epithelial, inflam-
matory, spindle-shaped and miscellaneous. We use its train-
ing set with labels as our source domain.

PanNuke (Gamper et al. 2019). PanNuke contains anno-
tated images for 19 cancer types, which were sampled from
TCGA and a hospital in UK. All images were resized at 40x
objective magnification and cropped into 256 x 256 pixels.
It has over 200k nuclei annotated for both segmentation and
classification. The annotations were first generated semi-
automatically by a model trained with limited label data and
then corrected by clinical experts. The nuclei are grouped
into 5 categories: neoplastic, non-neoplastic epithelial, in-
flammatory, connective and dead. PanNuke divides the data
into three splits. We use the first, second and third split as
training, evaluation and test set of target domain.

We note that there is a mismatch of categories between
these two datasets. For the normal epithelial and neoplastic
epithelial, CoNSep groups them into a single class, while
PanNuke categorizes them into two classes. Moreover, be-
sides the neoplastic epithelial, the neoplastic class in Pan-
Nuke also includes tumors from other cell types, including
sarcomas from soft tissue; melanomas from melanocytes;
lymphomas from lymphoid cells. In order to map the cat-
egories from CoNSep to PanNuke, we group the neoplastic
class and non-neoplastic epithelial class into one class: neo-
plastic and epithelial.

Metrics. For instance segmentation, we evaluate the seg-
mentation performance in terms of Dice, Aggregated Jac-
card Index (AJI), Detection Quality (DQ), Segmentation
Quality (SQ), and Panoptic Quality (PQ), respectively.

The nucleus detection is evaluate with F1-score. The de-
tected nuclei with more than 50% overlap with ground-truth
nuclei are regarded as the true positive detections; and false
positive detections, otherwise.

For instance classification, we use the same F1-score as
HoverNet (Graham et al. 2019) to evaluate the classification
performance for each nuclear type.

Methods in Comparison. We list the details of the methods

in comparison as follows:

e Source Only: The model is the Hover-Net trained on the
source data without adaptation.

e GRL (Ganin and Lempitsky 2015): The local features out-
put the encoder of Hover-Net are fed into a domain dis-
criminator, and a gradient reversal layer is used to flip the



. Classification

Method Detection Neo and Epithelial | Inflammatory | Connective | Dead Cells

Source Only 0.630 0.259 0.232 0.273 0.018

GRL (Ganin and Lempitsky 2015) 0.692 0.330 0.247 0.224 0.017

Paul et al. (UDA) (Paul et al. 2020) 0.700 0.372 0.267 0.245 0.016

Ours (UDA) 0.700 0.381 0.277 0.233 0.019

Paul er al. (WDA: image) (Paul et al. 2020) 0.688 0.400 0.262 0.217 0.015

Paul et al. (WDA: point) (Paul et al. 2020) 0.705 0.416 0.285 0.257 0.024

Ours (WDA: image) 0.702 0.392 0.279 0.255 0.016

Ours (WDA: point) 0.735 0.462 0.290 0.300 0.023

Full Supervision 0.792 0.623 0.431 0.445 0.094

Table 1: Fl1-score for detection and classification.

Method Dice | AJl DQ SQ PQ Method D P W H|Dice| AJl | DQ | SQ | PQ
Source Only 0.576 | 0.387 | 0.461 | 0.657 | 0.342 Source Only 0.630]0.2590.23210.2730.018
GRL 0.723 1 0.509 | 0.587 | 0.756 | 0.450 UDA (ours) v 0.729]0.509 {0.587{0.756 | 0.450
Paul et al. (UDA) 0.731 | 0.501 | 0.600 | 0.751 | 0.446 v v 0.74010.516{0.602|0.753 | 0.460
Ours (UDA) 0.740 | 0.516 | 0.602 | 0.753 | 0.460 WDA:image v v 0.73510.514{0.591|0.7400.449
Paul et al. (WDA: image) | 0.723 | 0.504 | 0.578 | 0.748 | 0.440 (ours) v v 0.73810.511{0.592|0.748 |0.449
Paul er al. (WDA: point) | 0.742 | 0.520 | 0.610 | 0.748 | 0.464 WDA:point v v 0.731]0.508|0.588|0.7490.447
Ours (WDA: image) 0.738 | 0.511 | 0.592 | 0.748 | 0.449 (ours)' v vV 0.74110.523|0.612|0.748 | 0.464
Ours (WDA: point) 0.743 | 0.534 | 0.628 | 0.741 | 0.471 v v v v]0.743|0.534|0.628 | 0.741 | 0.471
Full Supervision 0824065210756 | 0813 ] 0622 Table 3: Ablation studies for instance segmentation. D: the

Table 2: Results of instance segmentation on the adaptation
from CoNSep to PanNuke.

gradients of the discriminator. It is considered as a module
of our framework, and we denote it as Domain Discrimi-
nator (DD) in the following sections.

e Paul et al. (Paul et al. 2020): This method is the stat-of-
the-art UDA and WDA method for semantic segmenta-
tion, where the image/point-level labels are used to se-
lect the corresponding category-specific domain discrim-
inator. In their UDA settings, image-level predictions are
served as pseudo weak labels. To make a fair comparison,
we adapt their category-specific domain discriminators to
the Hover-Net.

e Ours: The UDA of our method is a cyclic adaptation with
pseudo labels and a domain discriminator for local fea-
tures (DD). The WDA model with image-level labels is
the UDA with weak supervision loss. The WDA with
point-level labels is the UDA with weak supervision loss
and hard-transfer sample alignment.

Training Details. The nucleus instance segmentation and
classification model is designed based on the Hover-
Net (Graham et al. 2019). We initialize the model with the
weights of ResNet50 (He et al. 2016) pre-trained on Ima-
geNet. The framework is implemented with TensorFlow. We
use Adam optimizer with a learning-rate of 10~ to train the
decoder for the first 50 epochs and all layers for another 50
epochs with a batch size of 16. More implementation details
are shown in supplementary materials.

4.1 Evaluation on Nucleus Instance Detection

As shown in Table 1, our method with point supervision
(WDA:point) achieves the best detection performance com-
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domain discriminator for low-level feature alignment, P:
pseudo labeling, W: weak supervision loss and H: hard-
transfer samples alignment.

pared with all other methods based on UDA and WDA. Par-
ticularly, our method consistently outperforms the state-of-
the-art method of Paul et al. (Paul et al. 2020) in both UDA
and WDA. Compared with the best performance of Paul et
al. (Paul et al. 2020) using WDA: point, Our WDA: point
achieves 3% improvement in terms of F1-score of detection.

Different from the point-level supervision, methods based
on WDA with image-level supervision do not achieve any
significant improvements (even worse) compared with the
UDA based methods. The reason should be that the proposed
image-level label (i.e., multi-hot vector that indicates avail-
able categories) is not related to nucleus detection task.

4.2 Evaluation on Nucleus Instance Classification

The classification results of all methods are summarized in
Table 1. Similar to the detection performance, our method
achieves superior classification performance compared with
the state-of-the-art methods (i.e., Paul et al.). Our F1 for the
neoplastic-and-epithelial class and the connective class are
4.6% and 4.3% higher than those of Paul et al..

Notably, with the help of image-level supervision, both
our method and Paul et al. can improve the classification
performance in most classification categories, in comparison
with using UDA strategy only.

4.3 Evaluation on Nucleus Instance Segmentation

Table 2 illustrates the segmentation results of all methods.
Except for the evaluation metric of SQ, our method based
on WDA with point-level supervision achieves the best seg-
mentation performance compared with all the other meth-



. Classification

Method b P W H Detection Neo and Epithelial | Inflammatory | Connective | Dead Cells
Source Only 0.630 0.259 0.232 0.273 0.018
UDA (ours) v 0.692 0.330 0.247 0.224 0.017

v v 0.700 0.380 0.277 0.233 0.019
WDA: image (ours) v v 0.708 0.367 0.247 0.245 0.017

v v Y 0.702 0.392 0.279 0.255 0.016

v v 0.689 0.412 0.301 0.265 0.021
WDA: point (ours) v v oV 0.710 0.432 0.299 0.269 0.024

v v v v 0.735 0.462 0.290 0.300 0.023

Table 4: Ablation studies for nucleus detection and classification. F1-scores are shown for evaluation. D: the domain discrimi-
nator for low-level feature alignment, P:pseudo labeling, W: weak supervision loss and H: hard-transfer samples alignment.

Ground Source Ours Paul et al. Ours

N (WDA: poigt) (WDA: poipt)
BRI SBmBe

Prostate

Stomach

Figure 2: Examples of the nucleus segmentation and classi-
fication. Red: neoplastic and epithelial, green: inflammatory,
blue: connective and purple: dead.

ods. Compared with the model training with source only, do-
main adaptation based methods improved the segmentation
by around 15% in terms of Dice. Substantial improvement
can also be observed in other evaluation metrics (e.g., AJl,
DQ, SQ, and PQ). Compared with the UDA based meth-
ods, the WDA based methods achieved comparable segmen-
tation performance in terms of Dice. However, around 2%
improvements could be observed on the other segmentation
evaluation metrics, such as AJI, DQ, and PQ.

4.4 Ablation Studies

Effects of Weak Supervision Loss To evaluate the effects
of the weak supervision loss, we only use a single adver-
sarial domain discriminator as a baseline domain adaption
method. Table 3 and 4 shows the segmentation, detection,
and classification performance of all ablation methods. From
the results, we have the following observations: 1) By adding
the weak supervision of image-level loss, the classification
is improved compared with the methods using UDA only.
2) By adding the weak supervision of point-level loss, al-
most all tasks have substantial performance improvement
compared with the methods using UDA only. It demon-
strates that our proposed framework of jointly using UDA
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and WDA can help increase the performance with relatively
low cost of annotation.

In our experiments, we have also trained the model with
both image-level and point-level supervision. However, the
results are close to the result of using point-level supervision
only. It probably because the point-level annotation is more
specific and has contained the image-level information.

Effects of Pseudo Labels As discussed above, simply
combing the weak supervision loss with a domain discrim-
inator could increase the performance of nucleus classifica-
tion. However, the improvement in segmentation is limited.

In UDA, with the pseudo labels, the Dice for evaluating
instance segmentation is increased from 0.729 to 0.740. The
other evaluation metrics in segmentation also indicate the
improvement of using pseudo labels. Similar results are also
obtained in the task of instance detection and classification.

With the combination of the pseudo labels and weak la-
bels, both the segmentation and classification can be im-
proved. It has better segmentation performance when com-
pared with the model with weak supervision loss only, and
higher classification accuracy when compared with pseudo
labels only.

Effects of Aligning Hard-Transfer Samples In Table 3
and 4, we show the segmentation and classification per-
formance with/without aligning hard-transfer samples. With
the alignment of hard-transfer samples, the AJI is increased
by 1%. For nucleus classification, the effects of aligning
hard-transfer samples are more significant. The F1 of de-
tection is increased by 2.5%. And the F1 for the neoplastic
and epithelial class is increased by 3%.

5 Conclusions

In this paper, we perform a competitive study to investigate
the importance of using UDA and WDA for nucleus instance
segmentation and classification. We propose a unified frame-
work that is applicable to both UDA and WDA with dif-
ferent forms of annotations, i.e., no annotation, image-level
annotation, and pixel-level annotation in the target domain
data. Moreover, we propose to use weak labels to help align
the hard-transfer examples. The experimental results suggest
our proposed framework can achieve state-of-the-art perfor-
mance in nucleus instance detection, classification, and seg-
mentation performance, respectively.
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