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Abstract

Deep reinforcement learning (RL) has been applied to traf-
fic signal control recently and demonstrated superior perfor-
mance to conventional control methods. However, there are
still several challenges we have to address before fully apply-
ing deep RL to traffic signal control. Firstly, the objective of
traffic signal control is to optimize average travel time, which
is a delayed reward in a long time horizon in the context
of RL. However, existing work simplifies the optimization
by using queue length, waiting time, delay, etc., as immedi-
ate reward and presumes these short-term targets are always
aligned with the objective. Nevertheless, these targets may
deviate from the objective in different road networks with
various traffic patterns. Secondly, it remains unsolved how to
cooperatively control traffic signals to directly optimize av-
erage travel time. To address these challenges, we propose a
hierarchical and cooperative reinforcement learning method–
HiLight. HiLight enables each agent to learn a high-level pol-
icy that optimizes the objective locally by selecting among
the sub-policies that respectively optimize short-term targets.
Moreover, the high-level policy additionally considers the ob-
jective in the neighborhood with adaptive weighting to en-
courage agents to cooperate on the objective in the road net-
work. Empirically, we demonstrate that HiLight outperforms
state-of-the-art RL methods for traffic signal control in real
road networks with real traffic.

Introduction
Traffic signals coordinating traffic movements are the key
for transportation efficiency. However, conventional traffic
signal control that heavily relies on pre-defined rules and
assumptions on traffic conditions is far from intelligence.
Recently, researchers have started to apply deep reinforce-
ment learning (RL) to traffic signal control and some stud-
ies (Wei et al. 2018; Zheng et al. 2019; Wei et al. 2019b,a)
have obtained superior performance to conventional con-
trol methods (Mirchandani and Head 2001; Roess, Prassas,
and McShane 2004; Varaiya 2013; Cools, Gershenson, and
D’Hooghe 2013). The main advantage of RL is directly in-
teracting with highly dynamic environment to learn to reach
a long-term goal for traffic signal control.
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However, there are still several challenges we have to ad-
dress before we can successfully apply deep RL to traffic
signal control. One major challenge is the discrepancy be-
tween the target of RL method and the objective of traffic
signal control. Basically, the objective of traffic signal con-
trol is to optimize average travel time of all vehicles in a
road network, which is a delayed reward in a long time hori-
zon in the context of RL. However, existing work simpli-
fies the problem and tailors its own target by using queue
length, waiting time, delay, etc., as the reward. For example,
IntelliLight (Wei et al. 2018) uses a combination of these
as the reward. Nevertheless, optimizing the cumulative re-
wards of such is not equivalent to minimizing average travel
time. These targets can be aligned with the objective, but
they can also substantially deviate from it in different road
networks with various traffic patterns, which leads to the
sub-optimality of existing RL methods.

Another major challenge is how to cooperatively control
traffic signals to optimize average travel time. Many existing
RL methods independently control traffic signals, such as In-
telliLight (Wei et al. 2018) and MetaLight (Zang et al. 2020).
Some cooperatively control traffic signals, such as CoLight
(Wei et al. 2019b), PressLight (Wei et al. 2019a), and MP-
Light (Chen et al. 2020). At each intersection, CoLight uses
additional information from neighboring intersections to op-
timize the queue length, while PressLight and MPLight im-
plicitly consider the cooperation between neighboring inter-
sections by minimizing the pressure which is loosely de-
fined as the number of vehicles in incoming lanes minus
the number of vehicles on outgoing lanes at an intersection.
However, how to cooperatively and directly optimize aver-
age travel time in a road network is unclear.

To address these challenges, we propose a hierarchical
and cooperative reinforcement learning method, HiLight, for
traffic signal control. To ease the difficulty of directly opti-
mizing average travel time, HiLight enables each agent to
learn a high-level policy that minimizes average travel time
locally by selecting between the learned sub-policies that
respectively optimize different short-term targets, such as
queue length, waiting time, and delay. By such a hierarchy,
the high-level policy can easily learn to align the target of
each sub-policy with its own objective while avoiding the
difficulty of directly optimizing average travel time. To en-
able agents to cooperate on optimizing average travel time
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in a road network, the high-level policy additionally opti-
mizes average travel time in the neighborhood. Multi-critic
is introduced to unify these two objectives with adaptive
weighting and thus learn the cooperative policy in a natural
way. We conduct extensive experiments in four real road net-
works with real traffic and empirically demonstrate HiLight
significantly outperforms conventional control methods and
state-of-the-art RL methods. By ablation studies, we verify
the effectiveness of the hierarchy, multi-critic, and adaptive
weighting.

Related Work
Conventional traffic signal control depends on hand-
crafted rules, e.g., fixing time interval between two phases
in steady traffic condition (Roess, Prassas, and McShane
2004), pre-defining rules to trigger traffic signal by real-
time traffic (Mirchandani and Head 2001; Cools, Gershen-
son, and D’Hooghe 2013), or setting a fixed offset among all
intersections along an arterial for multi-intersection coordi-
nation (Roess, Prassas, and McShane 2004). However, these
methods heavily rely on human knowledge, as they require
manually designed traffic signal plans or rules. More re-
cently, max pressure control (Varaiya 2013) is proposed for
multi-intersection coordination, which minimizes the pres-
sure of an intersection. However, it still relies on assump-
tions to simplify traffic condition.
RL based traffic signal control learns to control traffic sig-
nal by interacting with the environment, which does not re-
quire any pre-defined plans or rules and has shown superior
performance to conventional control methods in many re-
cent studies (Wei et al. 2018; Zheng et al. 2019; Wei et al.
2019a,b; Chen et al. 2020). Some studies consider each in-
tersection isolated in a road network, i.e., each intersection is
controlled by an agent independently. These methods differ
in terms of environment settings including state (Wei et al.
2018; Xu et al. 2019), action (change to next phase (Wei
et al. 2018) or set a phase (Zheng et al. 2019; Chen et al.
2020)) and reward (queue length (Zheng et al. 2019), de-
lay (El-Tantawy and Abdulhai 2012), or/and waiting time
(Wei et al. 2018)), learning algorithms (Aslani, Mesgari, and
Wiering 2017; Liang et al. 2018), and policy adaptation (Xu
et al. 2019; Zang et al. 2020). These methods can easily scale
up to multi-intersection scenarios. However, as they ignore
the interaction between neighboring intersections in a road
network, they indeed cannot optimize their objectives in the
road network. To jointly optimize the objective in the road
network, one can use centralized optimization to coordinate
intersections (Van der Pol and Oliehoek 2016) or use cen-
tralized learning decentralized execution paradigms, such as
QMIX (Rashid et al. 2018) and QTRAN (Son et al. 2019).
However, as the road network scales up, centralized learn-
ing is infeasible due to exponentially increased joint action
space. Therefore, other studies aim to enable agents to learn
cooperation in a decentralized way by acquiring information
from neighboring intersections (El-Tantawy and Abdulhai
2012; Nishi et al. 2018; Wei et al. 2019b) or optimizing a
chosen reward that induces cooperation between agents, i.e.,
pressure (Wei et al. 2019a; Chen et al. 2020). However, these
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Figure 1: Illustration of multi-intersection road network and
movement and phase setting. The intersection in Figure 1b
has 12 movements: m0-m11 (turn left/right, go straight). A
phase consists of several non-conflicting movements; e.g.,
phase 1 is composed of m1, m2, m5, m7, m8, and m11,
which means vehicles can go straight W-E and turn right.

methods still do not work well, mainly because their opti-
mization objectives, such as queue length and pressure, are
not always aligned with average travel time of all vehicles in
the road network.
Hierarchical RL can solve complex tasks with sparse re-
wards or long time horizons. It learns multiple levels of poli-
cies, of which the higher level gives goals or options to the
lower level and the lowest level applies actions to the envi-
ronment. Therefore, the higher levels are able to plan over a
long time horizon or a complex task. Existing studies con-
sider learning sub-goals (Vezhnevets et al. 2017; Nachum
et al. 2018), options (Bacon, Harb, and Precup 2017; Frans
et al. 2018), or optimizing multiple objectives (Jiang and Lu
2019). However, none of these hierarchical RL methods can
be directly applied to learning cooperative traffic signal con-
trol.

Preliminary
In this paper, we investigate traffic signal control in the sce-
nario of multi-intersection as illustrated in Figure 1a. To il-
lustrate the definitions clearly, we use the intersection with
four approaches as an example as depicted in Figure 1b.
However, the definitions can be easily extended to different
kinds of intersections.

Intersection and Road Network Each intersection is
controlled by traffic signals as shown in Figure 1b. The inter-
section consists of four incoming approaches and four out-
going approaches, namely East, South, West, North incom-
ing approaches and East, South, West, North outgoing ap-
proaches. Each incoming approach consists of three lanes.
From inner to outer, three lanes of each approach represent
the “left-turn”, “straight”, “right-turn” directions.

Movements and Phase Generally, the vehicles of each in-
coming approach are going to turn right/left, or go straight.
Considering that a vehicle can turn right at any time, we de-
fine 12 movements of an intersection, m0 to m11, as shown
in Figure 1b. As some movements may conflict (e.g., m1
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Figure 2: The main loop con-
sists of phases 1 to 4, when
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Figure 3: Local area of an
intersection is yellow col-
ored, and neighborhood area
is both yellow and green col-
ored.

from west to east and m3 from south to west), only non-
conflicting movements can be combined into one phase. We
define five phases for a four-approach intersection (phase
setting of different kinds of intersections may be different):
phase 0 includes m2, m5, m8, and m11; phase 1 includes
m1, m2, m5, m7, m8, and m11; phase 2 includes m0, m2,
m5, m6, m8, and m11; phase 3 includes m2, m4, m5, m8,
m10, and m11; phase 4 includes m2, m3, m5, m8, m9, and
m11. The phase cycle is illustrated in Figure 2, where the
main loop consists of phases 1 to 4 and phase 0 (yellow sig-
nal) is added when changing phase from one to another.

Average Travel Time The travel time of a vehicle is the
time discrepancy between entering and leaving a particular
area. Average travel time of all vehicles in a road network
is the most frequently used measure to evaluate the perfor-
mance of traffic signal control. However, as it can only be
measured over a long time horizon, it is hard to optimize
average travel time directly. In this paper, each agent (inter-
section) considers two other versions of average travel time:
local travel time and neighborhood travel time. Local travel
time of an intersection is average time vehicles spent on the
local area of the intersection, while neighborhood travel time
is average time vehicles spent on the neighborhood area of
the intersection, which are both illustrated in Figure 3.

Method
The basic idea of HiLight is to align different targets that are
easy to optimize using RL with the objective of traffic signal
control in road networks. However, since average travel time
of all vehicles in a road network is hard to optimize directly,
HiLight instead optimizes local travel time. Further, to en-
courage cooperation towards optimizing average travel time,
each agent additionally optimizes neighborhood travel time.
HiLight is a hierarchy with a multi-critic controller, where
two objectives are adaptively weighted to learn a policy for
cooperative traffic signal control.

Hierarchy
Each intersection is controlled by a HiLight agent that has a
hierarchical architecture as illustrated in Figure 4. The hier-
archy consists of a controller and several sub-policies. Every

Controller

Sub-policies

Critic ( )
Critic ( )

Policy ( )

A A

Figure 4: HiLight architecture. Each intersection is con-
trolled by an agent which has one controller and several
sub-policies. Every T timesteps, the controller selects a sub-
policy to interact with the environment. The selected sub-
policy gets a reward every timestep, while the controller gets
a reward every T timesteps. The policy of the controller is
learned based on two critics, which are weighted adaptively
for optimizing local and neighborhood travel time.

T timesteps, the controller selects one of the sub-policies
and the chosen sub-policy directly interacts with the envi-
ronment for the next T timesteps. The controller gets a re-
ward every T timesteps while the sub-policy get a reward ev-
ery timestep. Therefore, the controller can focus on the long-
term objective while the sub-policies concentrate on short-
term targets. The hierarchy well suits traffic signal control.
Average travel time is a statistic over a long time horizon,
and thus can be optimized by the controller. The sub-policies
focus on the targets that can be immediately and easily mea-
sured, such as queue length and waiting time, and be aligned
with the long-term objective. In the following, we describe
the design of the sub-policies and controller in detail.

Specialized Sub-Policies The sub-policies can optimize
any targets that can be aligned with the optimization of av-
erage travel time. In current instantiation of HiLight, three
sub-policies are employed to respectively optimize queue
length, waiting time, and delay. However, they are not lim-
ited to these targets and can include any additional targets,
e.g., pressure (Wei et al. 2019a). Assuming there areN inter-
sections in a road network, at each timestep, the sub-policy
of each agent gets an observation o, which is the concate-
nation of three vectors: current phase, next phase, and the
number of vehicles of the incoming lanes. Current and next
phases are one-hot vectors, and the next phase is determined
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by the phase cycle. The action of the sub-policy as is to stay
in the current phase or change to the next phase for next
timestep. Note that the action is not limited to whether to
change to the next phase, but can also be selecting next phase
as in other studies (Zheng et al. 2019; Wei et al. 2019b; Chen
et al. 2020). The rewards for the three sub-policies are the
negatives of the sum of queue length of all incoming lanes
(rq), the sum of waiting time of all vehicles on the incoming
lanes (rw), and the sum of delay of all incoming lanes (rd),
respectively. The queue length is the total number of wait-
ing vehicles on an incoming lane. The waiting time is the
total time a vehicle in the waiting position (the speed of ve-
hicle is below 0.1m/s). The delay of a lane is the difference
between maximum speed and lane speed, divided by maxi-
mum speed. The three sub-policies are parameterized by θq ,
θw, and θd, respectively, and learned using DQN (Mnih et al.
2015) by minimizing the loss (the superscripts are dropped
for generality),

L(θ) = E[(r + γmax
a′

Q(o′, a′; θ)−Q(o, a; θ))2], (1)

where o′ denotes the next observation. Note that the sub-
policies can also be learned using other RL methods.

Multi-Critic Controller The action of the controller, de-
noted as ac, is to choose which sub-policy to interact with
the environment for next T timesteps. The reward of the
controller is the negative of local travel time, rl. However,
our objective is to optimize average travel time of all vehi-
cles in the road network. Individually optimizing local travel
time cannot guarantee that. It is because if each controller
only considers its local travel time, their policies may con-
flict in terms of minimizing average travel time. Therefore,
the controller is designed to additionally optimize an addi-
tional reward, neighborhood travel time rn. From Figure 3,
we can see that neighborhood travel time of intersection A
is a statistic of local travel time of all the intersections in its
neighborhood including itself. That said, optimizing neigh-
borhood travel time takes neighboring agents’ policies into
account, towards better performance in a larger area. As
the neighborhood areas of adjacent intersections overlaps,
agents tend to cooperate on jointly optimizing their neigh-
borhood travel time, which eventually leads to all agents
cooperating on minimizing average travel time in the road
network.

To enable the controller to jointly optimize both local
and neighborhood travel time, we adopt actor-critic RL
method and introduce multi-critic. Specifically, the con-
troller has two value networks V l(o;φl) and V n(ô;φn) that
respectively approximate the value function of the policy
π(ac|o;φπ) in terms of local travel time and neighborhood
travel time. The value functions and the policy are parame-
terized by φl, φn, and φπ , respectively. Note that the input
of V n is different from V l and π, where ô is the concatena-
tion of the observations of the intersections in the neighbor-
hood. For example, in Figure 3, ô at A is the concatenation
of all the observations of A, B, C, D, and E. As V n needs
to learn the value function in terms of neighborhood travel
time, V n can approximate it more accurately by taking ô as
input instead of o. With the two critics, the policy gradient

Algorithm 1 HiLight training
1: Initialize controller φ, sub-policies θ, and w for each agent
2: for episode = 1, . . . ,M do
3: for agent =1, . . . ,N do
4: The controller chooses one sub-policy θ
5: for t = 1, . . . ,max-episode-length do
6: The chosen sub-policy θ acts to the environment

and gets the reward

rqt if θ = θp,
rwt if θ = θw,
rdt if θ = θd,

7: Update θ using update rule (1)
8: if t%T = 0 then
9: The controller gets rewards rlt and rnt

10: Update φl and φn

11: Update φπ with weight w using (2)
12: Update w using (3)
13: The controller re-selects one sub-policy
14: end if
15: end for
16: end for
17: end for

of π(ac|o;φπ) is

∇φπ = E
[
log π(ac|o;φπ)(δl + wδn)

]
, (2)

where δl = rl + γV l(o′;φl) − V l(o;φl) and δn = rn +
γV n(ô′;φn)−V n(ô;φn) are the advantages of the two value
functions respectively, and w is a weighting parameter.

Adaptive Weighting
The weight w needs to be tuned to balance these two ob-
jectives. However, manually tuning w incurs several issues.
First, the importance of optimizing neighborhood travel time
might change under different traffic patterns, and thus using
a fixed value w may limit the performance. Second, if the
value of w is fixed, then it can be learned by hyperparameter
optimization. However, the learning process has to be run to
near-convergence many times to determine the optimal value
of w. This dramatically increases the computation.

To address these problems, we adapt the adaptive weight-
ing mechanism (Lin et al. 2019) to enable the controller
to learn the weight online to dynamically balance these
two objectives during the learning process. Let L(φπi ) =
Ll(φπi ) + wLn(φπi ), where Ll(φπi ) = δl, Ln(φπi ) = δn,
and φπi are the model parameters of the policy at training
iteration i. As policy gradient is gradient ascent, we have
φπi+1 = φπi + α∇φπi L(φπi ), where α is the learning rate of
φπ . We aim to find the weight w where Ll decreases the
fastest. Specifically, let us define si(w) as the speed at which
Ll decreases at iteration i, and then we have,

si(w) =
dLl (φπi )

d i
≈ Ll

(
φπi+1

)
− Ll (φπi )

= Ll
(
φπi + α∇φπi L (φ

π
i )
)
− Ll (φπi )

≈ Ll (φπi ) + α∇φπi L
l (φπi )

T∇φπi L (φ
π
i )− Ll (φπi )

= α∇φπi L
l (φπi )

T∇φπi L (φ
π
i ) ,
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(a) Dongfeng sub-district, Jinan, China (b) Gudang sub-district, Hangzhou, China (c) Manhattan, New York City, USA (d) Fuhua sub-district, Shenzhen, China

Figure 5: Experimental road networks

where the third line is the first-order Taylor approximation.
Then, we can calculate the gradient of w as,

∇wsi(w) = α∇φπi L
l (φπi )

T∇φπi L
n (φπi ) . (3)

Thus,w is simply updated by the dot product of the gradients
of Ll and Ln by gradient ascent. With adaptive weighting,
HiLight learns to dynamically adjust w during learning.

Decentralized Training
During training, the critic for neighborhood travel time of
each agent needs the observations of neighbors and neigh-
borhood travel time. However, such information can be eas-
ily obtained, and thus HiLight can be easily learned in a
decentralized way. Moreover, since the controller is learned
using actor-critic, such information is not needed during ex-
ecution. The training process of HiLight is detailed in Al-
gorithm 1. HiLight is learned end-to-end, where the sub-
polices are learned based on DQN (Mnih et al. 2015) and the
controller is learned based on PPO (Schulman et al. 2017).

Experiments
We conduct the experiments on CityFlow (Zhang et al.
2019), an open-source simulator for large-scale traffic sig-
nal control. The simulator runs on the traffic data, provides
the state for the traffic signal control method, executes its ac-
tion, and returns the feedback. HiLight is investigated based
on four real datasets (real traffic data and road networks)
and compared with both conventional and state-of-the-art
RL methods for traffic signal control.

Settings
Datasets The four real datasets are from four cities includ-
ing Manhattan, New York City in US and Jinan, Hangzhou,
and Shenzhen in China. The road networks are illustrated
in Figure 5. The road networks and traffic flows of Jinan,
Hangzhou, and New York City are the public datasets1.

The road networks of Jinan and Hangzhou contain 12
and 16 intersections in 4 × 3 and 4 × 4 grids, respec-
tively. The traffic flow is generated from surveillance cam-
era data. The road network of Manhattan includes 48 in-
tersections in a 16 × 3 grid. The traffic flow is generated

1https://traffic-signal-control.github.io/

Hyperparameter HiLight PressLight CoLight

discount (γ) 0.9 0.8 0.8
batch size 128 20 20

buffer capacity 2048 1× 104 1× 104

sample size 512 1000 1000
ε and decay 0.4/0.97 0.8/0.95 0.8/0.95

T 50 −
optimizer Adam RMSprop RMSprop

learning rate 0.0001 0.001 0.001
learning rate of V l 0.001 −
learning rate of V n 0.001 −

# convolutional layers − 3
# MLP layers 3 4 2
# MLP units (32, 32)

# MLP layers of V l and V n 3 −
# MLP units V l and V n (32, 32) −

MLP activation ReLU
initializer random normal

Table 1: Hyperparameters

from open-source taxi trip data. The traffic of the three road
networks has a time span of 3600 seconds. The road net-
work of Shenzhen contains 33 intersections, imported di-
rectly from OpenStreeMap. All the intersections controlled
by traffic signals in the enclosed area in Figure 5d are in-
cluded. The traffic flow is generated from surveillance cam-
era data. There are two sets of traffic data: one weekday
and one weekend day, both of which have a time span of
10000 seconds. Moreover, the road network of Shenzhen is
not grids, different from other three road networks.

Baselines We compare HiLight with both conventional
and RL methods2. For ablation studies, we also compare
with the variants of HiLight to verify the effectiveness of
each component of HiLight. For fair comparison, the action
of all RL methods is to decide whether to change to next
phase in the phase cycle, and the action interval is five sec-

2Some existing RL methods for traffic signal control, e.g., MP-
Light (Chen et al. 2020), cannot run successfully on the latest
CityFlow, and some targets on single intersection, e.g., MetaLight
(Zang et al. 2020). Therefore, they are omitted for comparison.
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Method Average Travel Time (seconds) Throughput

Jinan Hangzhou Manhattan Shenzhen (D) Shenzhen (E) Jinan Hangzhou Manhattan Shenzhen (D) Shenzhen (E)

FixedTime 749 762 1649 3821 3886 3399 1947 192 32 187
SOTL 1350 1413 1686 3854 3972 1480 2119 148 20 147

MaxPressure 397 352 443 3838 3873 5465 10428 2349 26 198

PressLight 382 425 1369 2220 1444 5517 9971 587 841 2246
CoLight 320 359 278 1574 1099 5688 10394 2615 1267 2999

IQLQ 381 386 292 531 665 5516 10251 2568 2126 3581
IQLW 437 470 866 817 758 5424 9673 1381 2197 3555
IQLD 452 736 526 797 795 5059 7279 1907 2140 3082

LocalCritic 346 343 271 395 440 5665 10529 2637 2370 3849
NBHDCritic 485 516 412 574 453 5137 9217 2228 2200 3826
StaticWeight 313 260 262 379 285 5725 11011 2631 2377 3968

HiLight 290 252 251 337 223 5769 11063 2635 2482 4088

Table 2: Performance of all methods in Jinan, Hangzhou, Manhattan, and Shenzhen with weekday (D) and weekend (E) traffic
in terms of average travel time and throughout. From top to down are conventional methods, RL based methods, ablations of
HiLight, and HiLight. The performance of all the RL methods is the average of three training runs with different random seeds
after convergence.

onds for each method. Moreover, we use parameter-sharing
for each kind of intersections in the road network to ease the
training for all the RL methods.
• FixedTime (Koonce and Rodegerdts 2008) uses a pre-
defined plan for cycle length and phase time, which is widely
used for steady traffic.
• SOTL (Cools, Gershenson, and D’Hooghe 2013) speci-
fies the upper and lower limit time of each phase. When
the lower limit is reached, it will continue to detect whether
there is a vehicle arriving. If there are no more vehicles ar-
riving, the phase will be changed; otherwise, the green light
time will be prolonged until no more vehicles arrive or the
phase duration reaches the upper limit.
• MaxPressure (Varaiya 2013) selects the phase that maxi-
mizes the pressure.
• PressLight (Wei et al. 2019a) is an RL method that opti-
mizes the pressure of each intersection.
• CoLight (Wei et al. 2019b) is an RL method that exploits
graph convolutional reinforcement learning (Jiang et al.

2020) to use information from neighbors to optimize the
queue length.

• IQL optimizes queue length, waiting time, or delay at
each intersection using DQN, respectively denoted as IQLQ,
IQLW, and IQLD, which are the sub-policies of HiLight and
used for ablation studies.

• LocalCritic is HiLight with only the critic for local travel
time, which is used for ablation studies.

• NBHDCritic is HiLight with only the critic for neighbor-
hood travel time, which is used for ablation studies.

• StaticWeight is HiLight with a static w for each intersec-
tion, which is used for ablation studies.

Hyperparameters Table 1 summarizes the hyperparame-
ters of HiLight, CoLight, and PressLight. For CoLight and
PressLight, we use their open-source implementations. For
fair comparison, we also use their default parameter settings
which perform better than other settings as verified by ex-
periments.
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Figure 6: Behaviors of the sub-policies of an intersection in the road network of Jinan, in terms of percentage of time taken by
each phase in an episode. The sub-policies indeed develop different policies to control traffic signals.
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Evaluation Metrics Following the previous studies, we
use average travel time of all vehicles and throughput of the
road network to evaluate the performance of different meth-
ods for traffic signal control. The travel time of a vehicle
is the time span between entering and leaving the road net-
work. The throughput is the number of vehicles which have
finished their routes over the course of the simulation.

Performance Comparison
The performance of all the baselines in four road networks
is shown in Table 2, in terms of average travel time and
throughput. The performance of all the RL methods is the
average of three training runs with different random seeds.

We can see that the conventional methods have poor per-
formance, i.e., FixedTime, SOTL, and MaxPressure, espe-
cially in the road network of Shenzhen. This is because in
these real road networks, traffic is different and dynamic,
and the conventional methods that heavily rely on pre-
defined rules or assumptions about traffic can easily fail.
Note that we use the implementations of these methods in
CoLight (Wei et al. 2019b).

CoLight and PressLight are cooperative traffic signal con-
trol methods. PressLight optimizes the pressure that indi-
rectly promotes the coordination between neighboring inter-
sections. However, it does not perform well in some of the
road networks, such as Manhattan and Shenzhen. The main
reason is that PressLight may only work in arterial roads as
shown in their paper (Wei et al. 2019a), where the experi-
ments were all conducted in arterial roads. Moreover, from
Figure 7, the convergence of PressLight in terms of average
travel time is slow and unstable. This indicates that the opti-
mization of pressure is not aligned with average travel time.
CoLight optimizes queue length at each intersection by ex-
ploiting shared observations from neighboring intersections.
However, CoLight does not perform well in the road net-
work of Shenzhen. The reason may be that the irregular road
network incurs the learning difficulty for CoLight. HiLight
significantly outperforms all the baselines in all the road net-
works, and the learning of HiLight is much more quickly and
stable than CoLight and PressLight as depicted in Figure 7.
Unlike existing methods, HiLight learns to directly optimize
average travel time locally by aligning the specialized sub-
policies and additionally optimizes neighborhood travel time
to encourage cooperation among agents.

Ablation Studies
The learned sub-policies (i.e., IQLQ, IQLW, amd IQLD) do
not performance as well as LocalCritic. Among the sub-
policies, IQLQ performs the best in all the road networks.
Optimizing waiting time or delay alone cannot effectively
reduce average travel time, while optimizing queue length
is more stable and achieve better performance. This may be
the reason that queue length is frequently chosen as the op-
timization objective in existing methods. The learning curve
of IQLQ is even comparable with LocalCritic in the road
networks of Jinan and Hangzhou. However, in the road net-
work of Shenzhen, IQLQ performs much worse than Local-
Critic, indicating that optimizing queue length alone is not a
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Figure 7: Learning curves in the road network of Jinan,
Hangzhou, Manhattan, and Shenzhen (D, E), plotted based
on three training runs using different random seeds. As
PressLight and CoLight take much more episodes to con-
verge than HiLight, the curves are plotted with 100 episodes
for clear presentation.

good option in irregular networks. Moreover, as these sub-
policies optimize different targets, they indeed behave dif-
ferently, as illustrated in Figure 6, in terms of percentage of
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Figure 8: The change of the weight (w) of each intersection in the road network of Jinan during training. The number in each
plot corresponds to the intersection index in Figure 5a.

time taken by each phase in an episode.
LocalCritic that employs a controller to optimize only lo-

cal travel time by selecting among sub-policies outperforms
its sub-policies, thought the difference is marginal in some
road networks. However, the sub-policies provide the adapt-
ability for LocalCritic in various kinds of road networks.
NBHDCritic does not perform as well as LocalCritic, even
worse than some of the sub-policies. This is because neigh-
borhood travel time greatly depends on the policies of other
agents in the neighborhood and thus it is hard to directly op-
timize by itself. StaticWeight that optimizes both objectives
(i.e.,w = 1) outperforms LocalCritic and NBHDCritic. This
is because taking into consideration neighborhood travel
time while optimizing local travel time encourage the coop-
eration between neighboring agents. As the neighborhood
of agents overlaps, this could boost cooperation across the
entire network and thus reduce average travel time.

By adaptively weighting the importance of optimizing
neighborhood travel time for optimizing local travel time
at each intersection, the performance of HiLight further im-
proves. The reason is that adaptive weighting can dynam-
ically find a good weight that captures the importance of

optimizing neighborhood travel time under different traffic
patterns. Figure 8 shows the change of the weights of 12
intersections in the road network of Jinan during training.
At each intersection the weight varies differently and con-
verges to different values. This is because the intersections
have various traffic patterns and the importance of optimiz-
ing neighborhood travel time also varies.

Conclusion
We have proposed HiLight, a hierarchical RL method for
cooperative traffic signal control. The controller minimizes
local travel time and neighborhood travel time jointly with
adaptive weighting by selecting among the sub-policies that
optimize short-term targets. Cooperation among agents is
encouraged by the optimization of neighboring travel time.
It is empirically demonstrated in four real datasets that Hi-
Light significantly outperforms the existing RL methods for
cooperative traffic signal control.

Acknowledgments
This work is supported by NSFC under grant 61872009.

676



References
Aslani, M.; Mesgari, M. S.; and Wiering, M. 2017. Adap-
tive traffic signal control with actor-critic methods in a real-
world traffic network with different traffic disruption events.
Transportation Research Part C: Emerging Technologies 85:
732–752.

Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-
critic architecture. In AAAI’17.

Chen, C.; Wei, H.; Xu, N.; Zheng, G.; Yang, M.; Xiong, Y.;
Xu, K.; and Li, Z. 2020. Toward a thousand lights: Decen-
tralized deep reinforcement learning for large-scale traffic
signal control. In AAAI’20.

Cools, S.-B.; Gershenson, C.; and D’Hooghe, B. 2013. Self-
organizing traffic lights: A realistic simulation. In Advances
in applied self-organizing systems, 45–55. Springer.

El-Tantawy, S.; and Abdulhai, B. 2012. Multi-agent rein-
forcement learning for integrated network of adaptive traffic
signal controllers. In ITSC’12.

Frans, K.; Ho, J.; Chen, X.; Abbeel, P.; and Schulman, J.
2018. Meta learning shared hierarchies. In ICLR’18.

Jiang, J.; Dun, C.; Huang, T.; and Lu, Z. 2020. Graph Con-
volutional Reinforcement Learning. In ICLR’20.

Jiang, J.; and Lu, Z. 2019. Learning faireness in multi-agent
systems. In NeurIPS’19.

Koonce, P.; and Rodegerdts, L. 2008. Traffic signal timing
manual. Technical report, United States. Federal Highway
Administration.

Liang, X.; Du, X.; Wang, G.; and Han, Z. 2018. Deep rein-
forcement learning for traffic light control in vehicular net-
works. arXiv:1803.11115 .

Lin, X.; Baweja, H.; Kantor, G.; and Held, D. 2019. Adap-
tive auxiliary task weighting for reinforcement learning. In
NeurIPS’19.

Mirchandani, P.; and Head, L. 2001. A real-time traffic
signal control system: architecture, algorithms, and analy-
sis. Transportation Research Part C: Emerging Technolo-
gies 9(6): 415–432.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. Nature 518(7540):
529–533.

Nachum, O.; Gu, S. S.; Lee, H.; and Levine, S. 2018.
Data-efficient hierarchical reinforcement learning. In
NeurIPS’18.

Nishi, T.; Otaki, K.; Hayakawa, K.; and Yoshimura, T. 2018.
Traffic signal control based on reinforcement learning with
graph convolutional neural nets. In ITSC’18.

Rashid, T.; Samvelyan, M.; De Witt, C. S.; Farquhar, G.;
Foerster, J.; and Whiteson, S. 2018. QMIX: monotonic
value function factorisation for deep multi-agent reinforce-
ment learning. In ICML’18.

Roess, R. P.; Prassas, E. S.; and McShane, W. R. 2004. Traf-
fic engineering. Pearson/Prentice Hall.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv:1707.06347 .
Son, K.; Kim, D.; Kang, W. J.; Hostallero, D. E.; and Yi,
Y. 2019. QTRAN: Learning to factorize with transforma-
tion for cooperative multi-agent reinforcement learning. In
ICML’19.
Van der Pol, E.; and Oliehoek, F. A. 2016. Coordinated deep
reinforcement learners for traffic light control. In Proceed-
ings of Learning, Inference and Control of Multi-Agent Sys-
tems.
Varaiya, P. 2013. The max-pressure controller for arbitrary
networks of signalized intersections. In Advances in Dy-
namic Network Modeling in Complex Transportation Sys-
tems, 27–66. Springer.
Vezhnevets, A. S.; Osindero, S.; Schaul, T.; Heess, N.; Jader-
berg, M.; Silver, D.; and Kavukcuoglu, K. 2017. Feudal net-
works for hierarchical reinforcement learning. In ICML’17.
Wei, H.; Chen, C.; Zheng, G.; Wu, K.; Gayah, V.; Xu, K.;
and Li, Z. 2019a. PressLight: Learning max pressure control
to coordinate traffic signals in arterial network. In KDD’19.
Wei, H.; Xu, N.; Zhang, H.; Zheng, G.; Zang, X.; Chen, C.;
Zhang, W.; Zhu, Y.; Xu, K.; and Li, Z. 2019b. Colight: learn-
ing network-level cooperation for traffic signal control. In
CIKM’19.
Wei, H.; Zheng, G.; Yao, H.; and Li, Z. 2018. IntelliLight: A
reinforcement learning approach for intelligent traffic light
control. In KDD’18.
Xu, N.; Zheng, G.; Xu, K.; Zhu, Y.; and Li, Z. 2019. Tar-
geted knowledge transfer for learning traffic signal plans. In
PAKDD’19.
Zang, X.; Yao, H.; Zheng, G.; Xu, N.; Xu, K.; and Li, Z.
2020. MetaLight: Value-based meta-reinforcement learning
for traffic signal control. In AAAI’20.
Zhang, H.; Feng, S.; Liu, C.; Ding, Y.; Zhu, Y.; Zhou, Z.;
Zhang, W.; Yu, Y.; Jin, H.; and Li, Z. 2019. Cityflow: A
multi-agent reinforcement learning environment for large
scale city traffic scenario. In WWW’19.
Zheng, G.; Xiong, Y.; Zang, X.; Feng, J.; Wei, H.; Zhang, H.;
Li, Y.; Xu, K.; and Li, Z. 2019. Learning phase competition
for traffic signal control. In CIKM’19.

677


