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Abstract

Low-shot (one/few-shot) segmentation has attracted increas-
ing attention as it works well with limited annotation. State-
of-the-art low-shot segmentation methods on natural images
usually focus on implicit representation learning for each
novel class, such as learning prototypes, deriving guidance
features via masked average pooling, and segmenting using
cosine similarity in feature space. We argue that low-shot seg-
mentation on medical images should step further to explicitly
learn dense correspondences between images to utilize the
anatomical similarity. The core ideas are inspired by the clas-
sical practice of multi-atlas segmentation, where the indis-
pensable parts of atlas-based segmentation, i.e., registration,
label propagation, and label fusion are unified into a single
framework in our work. Specifically, we propose two alter-
native baselines, i.e., the Siamese-Baseline and Individual-
Difference-Aware Baseline, where the former is targeted at
anatomically stable structures (such as brain tissues), and the
latter possesses a strong generalization ability to organs suf-
fering large morphological variations (such as abdominal or-
gans). In summary, this work sets up a benchmark for low-
shot 3D medical image segmentation and sheds light on fur-
ther understanding of atlas-based few-shot segmentation.

Introduction
The recent success of deep neural networks in medical im-
age analysis relies on large amounts of labeled training data.
However, it is labor-intensive and time-consuming to man-
ually produce 3D annotations for supervised training. To
reduce the demand for manual annotations, low-shot seg-
mentation is proposed to solve this problem. Recently, a
large body of literature (Nguyen and Todorovic 2019; Sha-
ban et al. 2017; Siam, Oreshkin, and Jagersand 2019; Wang
et al. 2019a; Zhang et al. 2018) has been devoted to the de-
velopment of low-shot segmentation algorithms in the natu-
ral image domain, and inspired the development of low-shot
algorithms in the medical imaging domain.
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Although evolved from the natural image domain, low-
shot segmentation in medical imaging develops distinct
characteristics. First, in the natural image domain, the seg-
mentor is trained on base classes, and the performance is
evaluated on novel classes. However, in medical imaging,
both the training and evaluation focus on the “base” classes
due to the relatively fixed human tissue types (Wang et al.
2020; Xu and Niethammer 2019; Zhao et al. 2019), i.e.,
the low-shot learning is more like semi-supervised learning.
Second, human organs/tissue are anatomically similar across
individuals, hence geometric and topological priors can be
exploited to help segmentation with limited data. Such dif-
ferences in concepts and levels of domain knowledge lead
to essential differences in algorithm design. Low-shot seg-
mentation in natural images emphasizes on representation
learning, which is more likely to learn a class-agnostic ob-
ject “concept” with a large pool of labeled data of base
classes, where the features learned on base classes should
transfer well to novel classes; whereas low-shot segmen-
tation in medical images makes effort to better utilize the
anatomical similarity between subjects, which is served as
surrogate supervision to remedy the scarcity of labeled data.

Recently, low-shot segmentation methods in medical im-
ages (Wang et al. 2020; Xu and Niethammer 2019; Zhao
et al. 2019) resorted to the practice of classical atlas-based
segmentation (Jia, Yap, and Shen 2012; Lorenzo-Valdés
et al. 2002), and proposed to implement this classical con-
cept under the deep learning (DL) framework, which shifts
from implicit representation learning in the feature space
to explicit dense correspondence learning. The main idea
of these works can be summarized as follows: (1) utilizing
few labeled images (the atlases), the algorithms exploit the
anatomical priors to establish structural correspondences be-
tween the atlases and unlabeled images; and (2) these corre-
spondences are then utilized to propagate the segmentation
labels from the atlases to the unlabeled images. Given the en-
couraging results obtained, the idea of extending atlas-based
segmentation for low-shot learning is compelling.

In this paper, we first adopt a simple yet effective base-
line, which leverages the cutting edge technologies (Sun
et al. 2018) in correspondence learning to boost the per-
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formance of pixel/voxel-wise matching. Specifically, it em-
ploys a Siamese structure (Koch, Zemel, and Salakhutdinov
2015) with a principled network design—feature pyramid,
warping, and cost volume (Sun et al. 2018). We name this
baseline the Siamese-Baseline (Fig. 1). We experimentally
demonstrate that such a simple baseline can outperform the
state-of-the-art (SOTA) methods (Balakrishnan et al. 2019;
Wang et al. 2020; Zhao et al. 2019) in segmentation of brain
anatomical structures, which are anatomically stable with
small inter-subject morphological variations.

Further, we observe that existing methods and the pro-
posed Siamese-Baseline often generalize poorly on or-
gans/tissue presenting large morphological variations, such
as abdominal organs. We experimentally identify that the
individual differences between subjects are the main obsta-
cle for learning accurate correspondences in such applica-
tions, as pixels/voxels involved in such differences are exclu-
sive to a specific individual and should not contribute to the
loss computation. Hence, we further propose an individual-
difference-aware (IDA) network (Fig. 2)—which is incre-
mentally built on top of the Siamese-Baseline—as a new
baseline named IDA-Baseline to learn the bidirectional cor-
respondences between the atlas and target images, and de-
fine individual differences as the large displacement be-
tween forward and backward correspondences. To learn the
bidirectional correspondence, we employ a forward and a
backward branch with the same structure as the Siamese-
Baseline to simultaneously model the bidirectional correla-
tions with shared weights, which does not incur any extra
parameter but makes the training more stable.

In summary, our contributions are as follows:

• We present the Siamese-Baseline, which innovatively in-
corporates feature pyramid, warping, and cost volume
into a Siamese structure for low-shot segmentation.

• We further propose the IDA-Baseline to segment organs
with large morphological variations. As far as we know,
this is the first work that involves individual differences in
atlas-based low-shot segmentation in a DL framework.

• Our one-shot settings naturally match the core concepts
of registration-based segmentation, and innovatively im-
plement registration and label propagation with a single
framework. In addition, we further implement label fu-
sion to match the practice of multi-atlas segmentation.

Superior results towards several SOTA methods verify that
the proposed baselines not only perform well for anatomi-
cally stable structures (such as brain tissues) in one-shot set-
tings but also possess a strong generalization ability for ab-
dominal organs with large morphological variations in low-
shot settings.

Related Work
Low-shot Segmentation of Natural Images. Low-shot
segmentation can be seen as a natural extension of low-
shot classification (Koch, Zemel, and Salakhutdinov 2015;
Wang et al. 2019b) to the pixel level on natural images. As
aforementioned, the main idea behind existing methods is
to learn transferable weights/features with a large pool of

training samples of base classes, which are expected to be
easily adaptable for novel classes with a limited support set.
They approached this task via (i) learning prototypes for
each novel classes (Dong and Xing 2018; Wang et al. 2019a)
as an extension of the Prototypical Network (Snell, Swersky,
and Zemel 2017) from classification to segmentation, (ii) de-
riving guidance features via masked average pooling (Siam,
Oreshkin, and Jagersand 2019; Zhang et al. 2018; Zhao et al.
2020b), segmenting using cosine similarity in feature space
(Nguyen and Todorovic 2019; Zhang et al. 2018), etc. Dif-
ferent from natural images, low-shot segmentation in med-
ical imaging places more emphasis in utilizing anatomical
priors to learn dense correspondence. In the remaining of
this paper, the low-shot segmentation is raised in the context
of medical image segmentation unless explicitly stated.

Atlas-based Low-shot Segmentation of Medical Im-
ages. Existing one/few-shot segmentation methods often
approached atlas-based segmentation by learning transfor-
mations for data augmentation (Zhao et al. 2019), learn-
ing the correspondence for propagating labels (Wang et al.
2020), joint learning of segmentation with registration (Xu
and Niethammer 2019), etc. For example, Zhao et al. (2019)
proposed a data augmentation method for one-shot seg-
mentation, which firstly modeled the spatial and appear-
ance transformations between the atlas and unlabeled im-
ages, and then synthesized new labeled images by randomly
applying the learned transformations to the atlas. With the
enlarged training set, the supervised segmentation network
was expected to improve performance. Wang et al. (2020)
proposed to directly learn bidirectional correspondences be-
tween the atlas and unlabeled images, and incorporate super-
vision in the image, transformation, and label spaces to push
the learning system towards an anatomically meaningful di-
rection, by revisiting the classic forward-backward consis-
tency concepts for supervision. Xu and Niethammer (2019)
proposed the joint learning of segmentation and registration
with a single DL framework, under the assumption that joint
optimization would lead to better performance.

We strengthen the network capacity of Zhao et al. (2019)
and Wang et al. (2020) with the Siamese-Baseline to in-
corporate feature pyramid, warping, and cost volume into
a Siamese structure, while avoiding extra overhead for reg-
istration (Xu and Niethammer 2019). Besides, these works
mainly focused on knee (Xu and Niethammer 2019) or
brain (Balakrishnan et al. 2019; Zhao et al. 2019), which
in general present relatively small inter-subject variability
compared with abdominal organs (Schreibmann, Marcus,
and Fox 2014). To account for wide morphological varia-
tions due to individual differences, we further propose the
IDA-Baseline to zero out the contribution of pixels/voxels
exclusive to a single individual.

Correspondence Learning. Learning correspondence is a
fundamental computer vision problem closely related to a
variety of tasks from object to pixel levels (Li et al. 2019;
Wang, Jabri, and Efros 2019), such as tracking (Pan, Porikli,
and Schonfeld 2009; Kalal, Mikolajczyk, and Matas 2010),
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Figure 1: (a) An overview of the proposed Siamese-Baseline. It innovatively incorporates (b) feature pyramid, warping, and cost
volume into a Siamese structure for low-shot segmentation. Given the feature pyramids extracted by the encoder, the Siamese-
Baseline warps features of the atlas image using the upsampled flow, computes a cost volume, and process the cost volume
using CNNs at each pyramid level in the decoder (illustrated with the middle level). The Siamese-Baseline is 3D, but shown
here in 2D for simplicity.

patch matching (Bailer, Varanasi, and Stricker 2017), op-
tical flow estimation (Meister, Hur, and Roth 2018; Wang
et al. 2018; Sun et al. 2018; Zhao et al. 2020a; Hur and Roth
2017; Liu et al. 2019), stereo matching (Lai, Tsai, and Chiu
2019; Wu et al. 2019), and registration (Balakrishnan et al.
2019; Xu and Niethammer 2019; Haskins, Kruger, and Yan
2020). By treating atlas-based segmentation as a correspon-
dence problem, we could utilize cutting edge technologies
from these research areas to guide the design of our frame-
work. For example, the feature pyramid, warping, and cost
volume are important building blocks in the network design
for dense correspondence learning (Meister, Hur, and Roth
2018; Wang et al. 2018; Sun et al. 2018; Hosni et al. 2012;
Lai, Tsai, and Chiu 2019; Wu et al. 2019; Zhao et al. 2020a;
Hur and Roth 2017; Liu et al. 2019). Forward-backward
consistency has been the evaluation metric (Kalal, Mikola-
jczyk, and Matas 2010) as well as the measure of uncertainty
(Pan, Porikli, and Schonfeld 2009) for tracking, and is a
means to define an occluded region, which was excluded for
training in optical flow estimation (Meister, Hur, and Roth
2018; Wang et al. 2018; Hur and Roth 2017; Liu et al. 2019).

Methodology
Preliminaries
Let {(l(i), l(i)s )}Ki=1 denote the atlas and corresponding seg-
mentation pairs, where K is the number of given atlases.
Let {u(i)}Ni=1 denote the unlabelled images, where N is the
number of unlabelled images. In the following, for an un-
cluttered notation, we omit the index i and use l, u to denote
an atlas image and an unlabelled image, respectively. The
goal of atlas-based segmentation in DL is to learn a corre-
spondence map φ from l to each u(i) (Fig. 1(a)), which is
supervised by an image similarity loss between the warped
atlas u = l◦φ, and the original unlabeled image u (where ◦ is
a warping operation). In addition, a transformation smooth-
ness loss is usually involved to regularize the learned φ to be
reasonable. When testing, the correspondence map φs from
the atlas l to an unlabeled image u is predicted by the trained
network, and the segmentation us of u can be obtained by
us = ls ◦φs. For example, VoxelMorph (Balakrishnan et al.

2019) employed a 3D U-Net (Çiçek et al. 2016) to learn the
correspondence φ, and a spatial transformer network (Jader-
berg et al. 2015) to implement the warping operation ◦.

Siamese-Baseline
A weakness of existing low-shot segmentation works (Wang
et al. 2020; Xu and Niethammer 2019; Zhao et al. 2019) is
that they do not distinguish between the atlas and target im-
ages, and simply fuse them at the first convolutional layer of
the network. Such early fusion does not make full use of the
multi-level information in the downsampling path. In con-
trast, our method employs two encoders (one for each im-
age) which interact along the way, mimicking the coarse-to-
fine strategy in classical registration approaches. Concretely,
we adopt the Siamese structure to separately extract seman-
tics from the atlas and target images (Fig. 1(a)), which has
been verified to be effective in low-shot classification prob-
lem (Koch, Zemel, and Salakhutdinov 2015) and other com-
puter vision tasks, such as face verification (Taigman et al.
2014), object tracking (Tao, Gavves, and Smeulders 2016),
fine-grained classification (Dubey et al. 2018), optical flow
estimation (Sun et al. 2018), and visual co-segmentation
(Lu et al. 2019). Besides, recent advances in dense corre-
spondence learning practically confirmed the effectiveness
of the concepts of feature pyramid, warping, and cost vol-
ume (Meister, Hur, and Roth 2018; Wang et al. 2018; Sun
et al. 2018; Hosni et al. 2012; Lai, Tsai, and Chiu 2019; Wu
et al. 2019; Zhao et al. 2020a; Hur and Roth 2017; Liu et al.
2019; Lai, Tsai, and Chiu 2019; Wu et al. 2019); e.g., in opti-
cal flow estimation, all of these concepts are verified useful,
such as in the PWC-Net (Sun et al. 2018).

We leverage the above-mentioned advanced technolo-
gies to build a strong backbone network for the Siamese-
Baseline. Since most of these technologies are implemented
in 2D, we reimplement them in 3D. To reduce computa-
tional cost of 3D networks, we follow the principle of using
fewer channels and downsampling operations. A schematic
overview of the network structure and key components is
shown in Figs. 1(a) and 1(b), and the detailed network archi-
tecture is described in the supplementary material. The im-
age similarity loss Li and transformation smoothness loss
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Figure 2: An overview of the proposed IDA-Baseline. Bidirectional training is employed to estimate individual differences
between subjects with a forward-backward consistency check. The IDA-Baseline is 3D, but shown here in 2D for simplicity.

Ls used for the Siamese-Baseline (with a trade-off hyper-
parameter λ) are similar to previous methods (Balakrishnan
et al. 2019; Zhao et al. 2019; Xu and Niethammer 2019;
Wang et al. 2020):

Li(u, u) = 1− 1

V

∑
v

CC(u, u)v,

and Ls(φ) = λ
∑
v

||O(φ(v))||2,
(1)

where CC is the per-voxel map of the local normalized cross-
correlation (NCC; Balakrishnan et al. 2019), V = H×W ×
D with H , W , D representing the numbers of voxels along
the coronal, sagittal, and axial directions, respectively, and
Ls is formulated with first-order derivatives of φ: for each
location v of the image space, we approximate ||O(φ(v))||2
with spatial gradient differences between neighboring vox-
els along x, y, z directions.

Let fu(v) and fū(v) denote images with local mean in-
tensities: fu(v) = 1

n3

∑
vi
u(vi), where vi iterates over a n3

volume around v. Then CC can be written as:
CC(u, ū)v =(∑

vi

(
u(vi)− fu(v)

)(
ū(vi)− fū(v)

))2

(∑
vi

(
u(vi)− fu(v)

)2)(∑
vi

(
ū(vi)− fū(v)

)2) . (2)

IDA-Baseline
Bidirectional Framework. Although we will experimen-
tally demonstrate the effectiveness of the Siamese-Baseline
over existing methods (Balakrishnan et al. 2019; Wang et al.
2020; Zhao et al. 2019) in segmenting brain anatomical
structures, all of these methods generalize poorly on or-
gans/tissues with large intrinsic morphological variations,
such as abdominal organs (a noteworthy weakness that was
also mentioned in the survey of classical atlas-based seg-
mentation (Iglesias and Sabuncu 2015)). To address this is-
sue, we propose the IDA-Baseline to specifically model the
individual differences between subjects to enhance the back-
bone of the Siamese-Baseline (Balakrishnan et al. 2019) via

the addition of the forward and backward branches. Con-
cretely, the addition of the forward-backward branches en-
ables us to identify the individual differences by checking
the forward-backward consistency, and avoid enforcing sim-
ilarity constraint on those regions corresponding to the in-
dividual differences. An overview of the IDA-Baseline is
shown in Fig. 2.

To compute bidirectional correspondences, the IDA-
Baseline contains a forward and a backward branch with
shared weights. The forward branch takes the atlas and one
unlabeled image (l and u) as input and outputs the for-
ward correspondence φf from l to u, whereas the backward
branch takes the same pair of images u and l as input but
outputs the backward correspondence φb from u to l. After
that, φf is used to warp l to reconstruct u, and φb is used to
warp u to reconstruct l. A smoothness loss L′

s is proposed
as a regularization constraint on φf and φb as:

L′
s(φf , φb) = λfLs(φf ) + λbLs(φb), (3)

where λf and λb are the weights balancing the importance
of learning forward and backward correspondences.

Individual Difference Identification. The individual dif-
ference problem is analogous to the occlusion problem in
optical flow estimation, where the differences between or-
gans can be analogously interpreted as being occluded in
optical flow estimation, and should not contribute to the im-
age similarity loss. In this sense, we borrow ideas from re-
cent works on occlusion estimation (Meister, Hur, and Roth
2018; Wang et al. 2018; Hur and Roth 2017; Liu et al.
2019), which incorporate a forward-backward consistency
check to identify the occluded pixels based on the assump-
tion that, for non-occluded pixels, the forward correspon-
dences should be the inverse of the backward correspon-
dences. Specifically, in our method, we identify the indi-
vidual difference by a forward-backward consistency check,
that is, a voxel is considered as belonging to a single individ-
ual when the displacement between the forward correspon-
dence and backward correspondence is too large. Taking the
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individual difference in the forward direction for example,
we define a difference flag dvf to be one for each location v
of the image space in the correspondence if the constraint

|φf (v) + φb(v + φf (v))|2 <
α1(|φf (v)|2 + |φb(v + φf (v))|2) + α2

(4)

is violated, and zero otherwise. In the backward direction,
we define dvb in the same way with φf and φb exchanged.
Following Meister, Hur, and Roth (2018), we set α1 =
0.01, α2 = 0.5. Then, we mask the voxels flagged as indi-
vidual differences to avoid learning incorrect deformations,
and the IDA image similarity loss is thus defined as

Ld = λf

(
1− 1

V

∑
v

(
CC(u, u)v · (1− dvf )

))
+ λb

(
1− 1

V

∑
v

(
CC(l, l)v) · (1− dvb )

))
+

1

V

∑
v

(
ρ(dvf ) + ρ(dvb )

)
.

(5)

We add a constraint on both dvf and dvb with the robust gener-
alized Charbonnier penalty function (Sun, Roth, and Black
2014) ρ(x) = (x2 + ε2)γ , where we set γ = 0.45, again
following Meister, Hur, and Roth (2018).

Along with the smoothness loss and IDA image similarity
loss, the consistency loss (Meister, Hur, and Roth 2018; Hur
and Roth 2017) is adopted to impose constraints on the net-
work for producing consistent predictions for both forward
and backward directions, which is formulated as

Lc =
0.2

V

(∑
v

ρ
(
φf (v) + φb

(
v + φf (v)

))
+
∑
v

ρ
(
φb(v) + φf

(
v + φb(v)

)))
.

(6)

The final loss for training the IDA-Baseline is thus the
sum of Ld, Lc, and L′

s. Note that in the loss function of
the IDA-Baseline, we only include two hyper-parameters of
λf and λb to balance the importance of learning forward
and backward correspondences to other regularization con-
straints, avoiding too much parameter tuning.

Training and Inference Details
To investigate the k-shot segmentation problem, we assume
that only k images have associated labels (k from one to
five). Since the atlas is important for learning correspon-
dences and atlas selection is a crucial step in atlas-based
segmentation (Iglesias and Sabuncu 2015), in the training
phase we select the atlases with a similarity rank by com-
puting the average score of per-voxel local NCC (Zhao et al.
2019) between each of the image pair (one from the train-
ing set, and the other from the test set). Specifically, for each
image in the training set, we aggregate scores by averaging
the scores of the image to all test images, and select the top
k examples as the atlases. In the training process, the images
in the k atlases are randomly coupled with the unlabeled im-
ages in the training set to train the Siamese-Baseline and

IDA-Baseline. Note that the segmentation labels are not used
during training. In the test phase, to get the segmentation us
of the target image u, we first compute k warped atlases by
separately inputting the k atlases each coupled with the tar-
get image into the Siamese-Baseline and IDA-Baseline. For
the one-shot setting, the segmentation can be obtained with
the forward correspondence φf from the selected atlas to u.
For few-shot settings, we employ two different label fusion
strategies in accordance with different scenarios. First, for
the Siamese-Baseline targeted at anatomically stable struc-
tures, we compute per-voxel local NCC between each pair
of k warped atlas u and the original target image u, and fed
the local NCCs to a softmax function to weight the k warped
segmentation {u(i)

s , i = 1, 2, ..., k}; the final us is then ob-
tained by selecting the maximum score among u(i)

s voxel by
voxel. Second, for the IDA-Baseline proposed to deal with
large morphological variations, we use the segmentation of
the warped atlas u which is most similar to the original tar-
get image u (ranked by the average score of per-voxel local
NCCs (Zhao et al. 2019)) as the segmentation us of u.

Correlation with Atlas-based Segmentation. As sug-
gested in a survey (Iglesias and Sabuncu 2015), registration
and label propagation are indispensable parts of registration-
based segmentation; when further combined with label fu-
sion, they constitute the indispensable parts of multi-atlas
segmentation. Our one-shot and few-shot settings naturally
implements the core concepts of registration-based segmen-
tation and multi-atlas segmentation within a single frame-
work, and such an end-to-end framework is expected to
achieve high performance by Iglesias and Sabuncu (2015).

Experiments
Since the tasks of segmenting brain anatomical structures
and abdominal organs are noticeably different, we eval-
uate the Siamese-Baseline on brain anatomical structures
(the CANDI Dataset (Kennedy et al. 2011)), and the IDA-
Baseline on abdominal organs (the Multi-organ Dataset
(Gibson et al. 2018; Roth et al. 2015; Clark et al. 2013; Xu
et al. 2016)). For both datasets, we randomly select 20 vol-
umes as test data, and use the others for training. The details
of both datasets can be found in the supplementary material.

Implementation Details
All experiments are implemented with Keras 2.2.0 (Chollet
et al. 2015) and TensorFlow 1.10.0 (Abadi et al. 2016). The
network is trained with the Adam (Kingma and Ba 2014)
optimizer with a learning rate of 0.0002 for the Siamese-
Baseline for 600 epochs and 0.0001 for the IDA-Baseline
for 2,000 epochs. We train the Siamese-Baseline and IDA-
Baseline on one NVIDIA GeForce RTX 2080 Ti GPU with
a single pair of volumes for each batch, on a workstation
with Ubuntu 18.04.2 LTS and 251 GB memory. The same as
DataAug (Zhao et al. 2019) and LT-Net (Wang et al. 2020),
we use the average Dice score as the evaluation metric. In all
experiments, the NCC searches an n3 local cube with n = 9
as Balakrishnan et al. (2019). We use random flipping for
data augmentation to alleviate the overfitting problem. It is
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Method 1-shot 5-shot

Mean (std) Min Max Mean (std) Min Max

VoxelMorph 76.0 (9.7) 61.7 80.1 83.4 (6.4) 75.9 87.1
DataAug 80.4 (4.3) 73.8 84.0 84.1 (6.2) 78.2 87.5
LT-Net 82.3 (2.5) 75.6 84.2 84.6 (6.2) 77.1 87.8
DeepAtlas 66.5 (1.8) 63.7 70.6 74.1 (2.3) 67.5 77.3

Siamese-Baseline 83.0 (1.8) 77.6 85.9 86.2 (2.1) 78.1 88.4

U-Net (upper bound) 86.5 (6.3) 83.7 89.2 86.5 (6.3) 83.7 89.2

Table 1: Comparison of our Siamese-Baseline (λ = 1) with
VoxelMorph (Balakrishnan et al. 2019), DataAug (Zhao
et al. 2019), LT-Net (Wang et al. 2020), and DeepAtlas
(Xu and Niethammer 2019) in low-shot settings on the
CANDI dataset; the fully supervised U-Net (Çiçek et al.
2016) trained with 83 samples is served as the upper bound.
We show the mean Dice scores (%) with standard deviations.
Besides, Min and Max represent the minimum and maxi-
mum Dice scores (%).

worth mentioning that we also tune the comparison methods
for optimal performance.

Siamese-Baseline on Brain Anatomical Structures
We compare the proposed Siamese-Baseline with several
SOTA approaches implemented with DL, i.e., VoxelMorph
(Balakrishnan et al. 2019), DataAug (Zhao et al. 2019), LT-
Net (Wang et al. 2020), and DeepAtlas (Xu and Niethammer
2019). Although VoxelMorph was proposed for medical im-
age registration, we compare to it in low-shot settings as also
done in DataAug and LT-Net. Besides, as DataAug and LT-
Net were proposed for one-shot setting, we adapt them for
the few-shot settings, where more atlases (here, five) are in-
volved for training. The results are shown in Table 1. We can
observe that the proposed Siamese-Baseline outperforms the
SOTA methods in both the one-shot and few-shot settings.
Especially, our Siamese-Baseline using five atlases achieves
very competitive results compared to the fully-supervised U-
Net trained with 83 samples. The good performance con-
firms the important roles of feature pyramid, warping, and
cost volume in atlas-based segmentation.

We further study the performance with different combina-
tions of warping and cost volume at different levels of fea-
ture pyramids, and the sensitivity of the Siamese-Baseline
with different settings of λ in Eq. (1). Due to the page limit,
we put the results in the supplementary material.

IDA-Baseline on Abdominal Organs
Ablation Study on the Number of Atlases: We present
experimental results of the proposed IDA-Baseline with k-
shot segmentation across various organs. The results with k
equaling to one to five are shown in Table 2. The results in-
dicate that, as the number of atlases increases, better results
are achieved, which is in accordance with our intuition. Be-
sides, the consistent improvements verify the flexibility and
expansibility of our IDA-Baseline, which should benefit the

clinical practice, that is, with more data being labeled, IDA-
Baseline should present a better performance.

Ablation Study on Key Components: To investigate
the effectiveness of the key components of our pro-
posed method—forward-backward correspondence consis-
tency and individual difference estimation, we perform ab-
lation studies on the training set with five atlases. We first
adopt the Siamese-Baseline as the initial performance base-
line. Specifically, the network is trained to learn forward
correspondence only, and propagates the labels of atlases to
the segmentation of unlabeled images. Based on the basic
framework, we then add a backward correspondence learn-
ing path to form a complete cycle. As the forward correspon-
dence should be the inverse of the backward correspondence
at the corresponding pixels, we introduce forward-backward
correspondence consistency loss defined as Eq. (6) in the
learning process. After that, we further replace the image
similarity loss with the proposed IDA loss to model wide
variations in organ morphology as defined in Eq. (5).

The results are listed in Table 3. As shown, compared
to the baseline, the proposed IDA-Baseline achieves 2.14%
and 4.97% improvements in average Dice score by gradu-
ally adding the forward-backward correspondence consis-
tency and IDA loss. It is worth noting that the IDA loss
achieves a further 2.83% improvement in average Dice score
over only imposing the forward-backward correspondence
consistency. Our IDA-Baseline takes into account the wide
variations in organ morphology, which may damage the per-
formance in correspondence learning. Unsurprisingly, by re-
moving the contribution of voxels belonging to a single in-
dividual in the loss computation, the network can be trained
better under more uncluttered supervision.

Comparison with Other SOTA Methods: We first
compare our IDA-Baseline with two classical multi-
atlas/registration methods: PICSL MALF (Wang and
Yushkevich 2013) with the joint label fusion and corrective
learning techniques, and DEEDS (Heinrich et al. 2013)
the SOTA for classical registration-based abdominal organ
segmentation (Rohlfing et al. 2004). All methods are trained
with five atlases. The results are tabulated in Table 4. We can
observe that our IDA-Baseline outperforms PICSL MALF
by a large margin of 10.91%, and outperforms DEEDS by
a noticeable margin of 3.38%. In addition, we set up the
comparison experiment with two recent SOTA approaches
implemented with DL, i.e., DataAug (Zhao et al. 2019)
and LT-Net (Wang et al. 2020)1. Comparatively, we also
present the results by DataAug and LT-Net in one-shot
settings in Table 2. As shown in Table 2 and Table 4, the
IDA-Baseline achieves the best segmentation performance
in both one-shot and k-shot settings. Besides, although
the margins of improvements over DataAug and LT-Net in
one-shot settings are small, our IDA-Baseline in five-shot

1Despite our efforts, we are unable to tune VoxelMorph (Bal-
akrishnan et al. 2019) or DeepAtlas (Xu and Niethammer 2019) to
yield comparable results with DataAug and LT-Net on abdominal
organs. Therefore, their results are not included.
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Num. of Atlases Spleen Left Kidney Liver Stomach Pancreas Duodenum Esophagus Mean

1 (DataAug) 71.00± 16.29 81.22± 9.67 86.55± 5.59 60.57± 15.00 35.59± 12.21 38.12± 10.72 40.09± 18.17 59.02
1 (LT-Net) 74.72± 11.24 78.91± 11.41 82.76± 4.78 47.69± 13.12 43.13± 9.88 30.35± 8.31 48.75± 14.41 58.05
1 (IDA-Baseline) 75.03± 16.64 83.94± 8.45 87.58± 5.31 61.66± 14.55 35.94± 13.34 38.09± 11.10 46.73± 17.18 61.28

2 (IDA-Baseline) 76.91± 17.73 84.55± 8.93 89.05± 5.03 64.08± 16.92 40.47± 14.35 41.55± 13.16 45.52± 16.07 63.16
3 (IDA-Baseline) 76.99± 15.54 86.25± 7.16 88.6± 5.54 61.97± 19.33 42.81± 16.55 42.68± 15.11 51.55± 13.75 64.41
4 (IDA-Baseline) 77.36± 16.41 85.72± 10.02 90.07± 3.76 64.65± 16.93 44.12± 17.48 44.00± 14.30 51.83± 15.21 65.39
5 (IDA-Baseline) 80.34± 15.61 88.44± 5.33 91.55± 2.47 68.40± 15.18 51.14± 12.94 48.50± 12.34 51.91± 14.33 68.61

Table 2: Dice scores (%) of IDA-Baseline (λf = 3, λb = 1) with k-shot segmentation across various organs. One-shot results
with DataAug (Zhao et al. 2019), and LT-Net (Wang et al. 2020) are also presented.

Method Spleen Left Kidney Liver Stomach Pancreas Duodenum Esophagus Mean

Siamese-Baseline 78.88± 13.47 83.79± 8.17 88.92± 3.66 61.61± 16.13 41.13± 15.78 43.67± 12.07 47.47± 14.01 63.64
+cycle-consistency 78.29± 15.87 85.81± 7.32 89.93± 3.85 65.26± 17.85 46.26± 16.20 44.84± 13.42 50.08± 14.64 65.78
+Individual modeling80.34± 15.6188.44± 5.3391.55± 2.4768.40± 15.1851.14± 12.9448.50± 12.3451.91± 14.3368.61

Table 3: Ablation study on the proposed IDA-Baseline (λf = 3, λb = 1) equipped with different modules using five atlases
(5-shot). We show the Dice scores (%) across various organs.

Method Spleen Left Kidney Liver Stomach Pancreas Duodenum Esophagus Mean

PICSL MALF 76.62± 14.90 79.22± 14.05 85.50± 5.06 59.92± 16.10 37.93± 19.89 32.96± 17.12 31.73± 21.21 57.70
DEEDS 76.11± 11.53 76.17± 19.02 89.59± 2.89 68.20± 12.33 50.53± 12.10 45.00± 9.66 51.02± 17.97 65.23
DataAug 74.05± 17.93 82.92± 9.68 88.09± 4.07 61.57± 19.04 40.32± 14.68 40.65± 13.65 43.80± 14.39 61.63
LT-Net 76.79± 16.48 83.92± 9.10 88.70± 4.68 63.30± 16.08 38.47± 14.57 41.25± 13.51 46.20± 15.60 62.66

IDA-Baseline 80.34± 15.6188.44± 5.3391.55± 2.4768.40± 15.1851.14± 12.9448.50± 12.3451.91± 14.3368.61

U-Net (upper bound) 93.04± 5.27 92.96± 2.30 94.31± 1.13 81.56± 9.88 71.88± 10.74 63.10± 11.42 62.18± 10.98 79.86

Table 4: Comparison of IDA-Baseline (λf = 3, λb = 1) with PICSL MALF (Wang and Yushkevich 2013), DEEDS (Heinrich
et al. 2013), DataAug (Zhao et al. 2019), and LT-Net (Wang et al. 2020) trained with five atlases (5-shot). The results with fully
supervised U-Net (Çiçek et al. 2016) serve as the upper bound. We show the Dice scores (%) across various organs.

settings outperforms these two methods by large margins
of 6.98% and 5.95%, respectively. This can be attributed
to the individual difference modeling in abdominal CT
images of the IDA-Baseline. In addition, with more atlases,
the IDA-Baseline can select the most similar atlases for
warping. We visualize some example slices of segmentation
results in the supplementary material.

We further study how the hyper-parameters of λf and λb
in Eqs. (3) and (5) affect the performance, and put the results
in the supplementary material due to the limited space.

Conclusion and Future Work
In this paper, we proposed the Siamese-Baseline and IDA-
Baseline, which are served as alternative baselines for low-
shot segmentation of data suffering slight and consider-
able individual differences, respectively. Experimental re-
sults verified the effectiveness of these two baselines in two
distinctive situations, i.e., segmentation of brain structures
with relatively stable anatomy and abdominal organs suffer-
ing large morphological variations between individuals.

We believe the correlation of atlas-based low-shot seg-
mentation with correspondence learning in natural images
would further inspire the research community of medical

image analysis to rethink critically the design of neural net-
works and loss functions. It should be noted that there still
remains an apparent gap between low-shot segmentation
and fully supervised learning in segmenting organs suffering
large morphological variations, which should be further ad-
dressed by joint efforts of the research community. The main
practice of atlas-based segmentation is on tissues/organs,
and due attention should be paid to how it can contribute to
the segmentation of tumors/lesions. For example, it is pos-
sible to learn the tumor/lesion segmentation by comparing
the images of tumor patients to those of normal subjects to
explicitly taking into account the difference in appearance,
and we plan to explore this direction in future work. Lastly,
although our one-shot and few-shot settings naturally match
the core concepts of classical atlas-based segmentation with
an end-to-end framework, an important next step is how to
implement such concepts more effectively and efficiently.
We hope this work would inspire the development of low-
shot learning for medical image segmentation.
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