DeepWriteSYN: On-Line Handwriting Synthesis via Deep Short-Term Representations


  • Ruben Tolosana Universidad Autonoma de Madrid
  • Paula Delgado-Santos Universidad Autonoma de Madrid
  • Andres Perez-Uribe University of Applied Sciences Western Switzerland
  • Ruben Vera-Rodriguez Universidad Autonoma de Madrid
  • Julian Fierrez Universidad Autonoma de Madrid
  • Aythami Morales Universidad Autonoma de Madrid


Biometrics, Biometrics, Face, Gesture & Pose, General


This study proposes DeepWriteSYN, a novel on-line handwriting synthesis approach via deep short-term representations. It comprises two modules: i) an optional and interchangeable temporal segmentation, which divides the handwriting into short-time segments consisting of individual or multiple concatenated strokes; and ii) the on-line synthesis of those short-time handwriting segments, which is based on a sequence-to-sequence Variational Autoencoder (VAE). The main advantages of the proposed approach are that the synthesis is carried out in short-time segments (that can run from a character fraction to full characters) and that the VAE can be trained on a configurable handwriting dataset. These two properties give a lot of flexibility to our synthesiser, e.g., as shown in our experiments, DeepWriteSYN can generate realistic handwriting variations of a given handwritten structure corresponding to the natural variation within a given population or a given subject. These two cases are developed experimentally for individual digits and handwriting signatures, respectively, achieving in both cases remarkable results. Also, we provide experimental results for the task of on-line signature verification showing the high potential of DeepWriteSYN to improve significantly one-shot learning scenarios. To the best of our knowledge, this is the first synthesis approach capable of generating realistic on-line handwriting in the short term (including handwritten signatures) via deep learning. This can be very useful as a module toward long-term realistic handwriting generation either completely synthetic or as natural variation of given handwriting samples.




How to Cite

Tolosana, R., Delgado-Santos, P., Perez-Uribe, A., Vera-Rodriguez, R., Fierrez, J., & Morales, A. (2021). DeepWriteSYN: On-Line Handwriting Synthesis via Deep Short-Term Representations. Proceedings of the AAAI Conference on Artificial Intelligence, 35(1), 600-608. Retrieved from



AAAI Technical Track on Application Domains