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Abstract

Real-time forwarding prediction for predicting online con-
tents’ popularity is beneficial to various social applications
for enhancing interactive social behaviors. Cascade graphs,
formed by online contents’ propagation, play a vital role in
real-time forwarding prediction. Existing cascade graph mod-
eling methods are inadequate to embed cascade graphs that
have hub structures and deep cascade paths, or they fail to
handle the short-term outbreak of forwarding amount. To
this end, we propose a novel real-time forwarding prediction
method that includes an effective approach for cascade graph
embedding and a short-term variation sensitive method for
time-series modeling, making the best of cascade graph fea-
tures. Using two real world datasets, we demonstrate the sig-
nificant superiority of the proposed method compared with
the state-of-the-art. Our experiments also reveal interesting
implications hidden in the performance differences between
cascade graph embedding and time-series modeling.

Introduction
The dramatic growth of mobile Internet and social me-
dia facilitates the fast propagation of online contents, such
as tweets on Twitter, images on Instagram and videos on
YouTube. Popularity prediction of online contents is bene-
ficial to many social applications such as recommendation
and advertising, drawing wide attentions (Kipf and Welling
2016; Liao et al. 2019; Saito, Nakano, and Kimura 2008).
Forwarding amount, the number of times that an online con-
tent has been forwarded (or retweeted/reposted) through so-
cial media, is one of the most important measurement for
measuring the popularity of online contents (Gao et al. 2019;
Zhou et al. 2021; Li et al. 2017; Chen et al. 2019b,a), Real-
time forwarding prediction aims to model preceding propa-
gation process of online contents and predicts its forwarding
amount at the next specific observation time.

In social media, users share and exchange an interesting
online content with their friends, thus the propagation of an
online content generally starts with the author and spreads
through social networks, forming a cascade graph. Many
methods exploited and innovated cascade graph embedding

*The first two authors contributed equally.
†Corresponding authors.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of cascade graphs. The social hubs
are circled by the red boxes. The thickened cascade relation
lines mark the deep propagation paths. Please note that the
cascade graph here is presented as tree pattern to illustrate
its features, which generally has DAG pattern.

for improving forwarding prediction (Gao et al. 2019; Zhou
et al. 2021; Gao et al. 2020). However, it is still pending to
reach a competent cascade graph embedding methods and
challenging to facilitate real-time forwarding prediction by
leveraging cascade graphs.

On the one hand, existing graph embedding methods such
as random walk based methods (Li et al. 2017; Grover and
Leskovec 2016; Perozzi, Al-Rfou, and Skiena 2014) and
Graph Convolution Networks (GCN) based methods (Cao
et al. 2019; Chen et al. 2019b; Kipf and Welling 2016;
Hamilton, Ying, and Leskovec 2017) are inappropriate for
cascade graphs. As visualized in Fig. 1, cascade graphs are
generally evolving directed acyclic graphs (DAG) where a
directed path represents a content diffusion process through
social networks. Information diffusion on social networks
is formed as social reinforcement and hub patterns (Weng,
Menczer, and Ahn 2013), which makes hub structures and
deep cascade paths arise in cascade graphs. Even though
GCN based methods can finally travel through all nodes by
repeatedly aggregating neighbor node features and updating
node features, it is circuitous and rigmarole for modeling
deep cascade paths. Random walk based methods randomly
select partial pieces of cascade paths, which may lose infor-
mation about social hubs.

On the other hand, cascade graph embedding tends to
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emphasize microscopic diffusion process in cascade graphs
(Yang et al. 2018; Qiu et al. 2018) and to capture cascade
graph structure features. Predicting forwarding amount only
via cascade graph embedding ignores many relevant pre-
dictive features from the time-series of macroscopic history
variation of cascade graph size. In particular, although ex-
isting models for time-series modeling have achieved good
performances in popularity prediction (Du et al. 2016), such
as temporal process approaches (Hawkes intensity process
(Rizoiu et al. 2017)), regression models (Yu, Xie, and San-
ner 2015) and Recurrent Neural Network (RNN) (Liao et al.
2019). The increasing forwarding amount is very change-
able and accompanied by many short-term outbreaks (Ri-
zoiu et al. 2017; Liao et al. 2019), which hampers time-series
modeling for real-time forwarding prediction.

In this paper, we propose a novel method, Temporal Cas-
cade Graph modeling (TempCas), to address the above chal-
lenges. Specifically, TempCas introduce the following two
key techniques, to fully exploit cascade graph features in
terms of graph structure and graph size’s time-series, and
to accomplish accurate real-time forwarding prediction:

1. Competently cascade graph embedding. As shown in
Fig. 1, social hub nodes and deep propagation paths are
the key to the widespread diffusion of an online content.
Rather than random walk on cascade graphs, we imple-
ment a heuristic method to sample full critical paths on cas-
cade graphs, capturing both the complete diffusion process
over social hubs and deep cascade paths. Then Bidirectional
Gated Recurrent Unit (BiGRU) with an attention pooling are
employed for cascade path embedding. Besides, the “trivial”
nodes (e.g., the leaf nodes) of cascade graphs have less prop-
agation influence, but the amount of it implies cascade graph
scale. We extract graph scale features as supplement features
for cascade graph representations.

2. Short-term time-series variation modeling. Recently,
RNNs achieve satisfying performances in time-series mod-
eling, while it is not sensitive to changeable short-term out-
breaks. Convolution Neural Network (CNN) can extract lo-
cal features from time series, but cannot learn long-term
sequence changes. Hence, we develop an attention CNN
mechanism that captures short-term variation over time on
cascade graph size and merges the local features within a
fixed window. Then we employ Long Short Term Meomory
(LSTM) over the attention CNN to learn the historical trend.

Extensive experiments demonstrate the proposed method
significantly outperforms the state-of-the-art. Furthermore,
some interesting implications are discovered from the per-
formance differences between cascade graph embedding
and time-series modeling in diffusion time, scale and early
adopter dimensions, on real-time forwarding prediction
tasks. The comparison results show that time-series model-
ing is capable enough for most common real-time forward-
ing prediction, while cascade graph embedding is more ef-
fective for hot-spot detecting, and combination the two types
of features show superior performances from all aspects.

Related Work
This paper focuses on cascade graph modeling to predict
real-time forwarding amount, and combines cascade graph

features in aspects of cascade graph structure and time-series
of cascade graph size. In the following, we give brief liter-
ature reviews of cascade graph embedding and time-series
modeling respectively, then we discuss the existing forward-
ing prediction methods exploiting cascade graphs.

Time-series based solutions handle the forwarding predic-
tion problem by feature based methods, temporal process
methods and deep learning methods. Feature based meth-
ods extract hand-crafted features (Piotrkowicz et al. 2017;
Shulman, Sharma, and Cosley 2016; Keneshloo et al. 2016)
and construct machine learning models for prediction. A
number of models were proposed to describe the evolu-
tion of accumulation process of information diffusion vol-
umes (Shen et al. 2014; Cui et al. 2013; Gao, Ma, and Chen
2015; Mishra, Rizoiu, and Xie 2016; Rizoiu et al. 2017).
Recently, researchers leveraging deep learning frameworks
in forwarding predictions have achieved satisfying perfor-
mances. Deep learning methods can extract features auto-
matically for forwarding prediction (Li, Guo, and Mei 2018;
Dou et al. 2018; Zhang et al. 2018). RNNs and CNNs are
superior in time-series modeling (Liao et al. 2019; Cao et al.
2017; Du et al. 2016). However, modeling time-series of cas-
cade graph size only is not enough to understand the com-
plex and changeable information diffusion and communica-
tion through social networks.

Cascade graph embedding mainly includes random walk
based methods and GCN based methods. GCN is a pop-
ular and effective graph embedding technology (Kipf and
Welling 2016), which updates node features by aggregating
neighbor node features. GAN (Veličković et al. 2017) and
GraphSAGE (Hamilton, Ying, and Leskovec 2017) are de-
veloped from GCN. Random walk based methods sample
paths randomly to capture the topological structure of graphs
(Grover and Leskovec 2016; Perozzi, Al-Rfou, and Skiena
2014). While we argue that existing graph embedding meth-
ods are inadequate for forwarding predictions with cascade
graphs that feature hub structures and deep cascade paths.

Many methods have exploited cascade graphs to improve
forwarding prediction (Gao et al. 2020; Gao et al. 2019;
Zhou et al. 2021; Chen et al. 2019a; Cao et al. 2019). Chen
et al. proposed CasCN leveraging CasLaplacian for model-
ing information diffusion, which is an extension of directed
sensor graph (Li et al. 2018). DeepCas (Li et al. 2017) trans-
formed the cascade graph into node sequences by random
walk to learn the representation of individual graphs. Mo-
laei, Zare, and Veisi exploited meta-paths as main entities
of social networks and learned meta-paths by heterogeneous
deep diffusion network. Deephawkes (Cao et al. 2017) em-
ploys interpretable factors of Hawkes process for prediction.
Existing methods do not take macroscopic history variation
of cascade graph size seriously when conducting forward-
ing prediction with cascade graphs, and we argue that exist-
ing graph embedding methods are inappropriate for cascade
graphs.

Problem Formulation
We regard the real-time forwarding prediction task as a re-
gression task, predicting real-time forwarding amount of on-
line contents. We divide continuous time into time slots.
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Figure 2: Overview of the proposed method TempCas

At each time slot t, we capture a cascade graph snapshot
Gt and count the forwarding amount as the temporal feed-
back rt. The temporal feedback rt is the volume of “for-
ward” in time slot t, which is the increasing of cascade graph
size in the time slot. Formally, given a cascade graph snap-
shot series {G1, G2, ..., Gt} and a temporal feedback se-
ries {r1, r2, ..., rt}, the objective is to predict the forwarding
amount at the next time slot.

Method
The proposed method TempCas contains three main parts:
cascade graph embedding, time-series modeling and a fu-
sion layer. (i) Cascade graph embedding includes a novel
heuristic method to sample full critical paths, and a hier-
archical attention network to assemble node features into
graph vectors. Graph scale features are concatenated with
the graph vector, forming graph embedding outputs. To
better understand the temporal variation, a LSTM layer is
adopted on the graph embedding output series. (ii) Time-
series modeling adopts an attention CNN mechanism on
temporal feedback series for capturing short-term variation
and appends a LSTM layer for modeling the historical trend.
(iii) The fusion layer integrates the above parts through
an attention mechanism and fully connected layers. The
overview of TempCas is depicted in Fig. 2.

Cascade Graph Embedding
Given a cascade graph snapshot series, cascade graph em-
bedding is responsible for capturing the cascade graph fea-
tures in terms of diffusion, scale and temporal, whose work-
flow with 4 steps is illustrated in Fig. 2.
For cascade graph diffusion features: Social hubs and
deep cascade paths influence the cascade graph mostly,
while other “trivial” nodes (e.g., the leaf nodes) have little
propagation influence. To obtain the cascade graph diffu-
sion features adequately, it is the key to capturing the critical

paths that cover the most influential nodes and paths.
Step 1 : cascade path sampling. Our path sampling

strategy is formalized in Algorithm 1 where Child(ui) is
the children node set of ui. Assuming that the reasonable
weight ωi for each node ui has been learned to reflect
node propagation influence in cascade graphs by a weight
function WEIGHT(·), the intuition behind Algorithm 1
is by employing the root node as the starting node and
iteratively selecting the node with the maximum weight as
the next node to join the path being sampling, until a leaf
node is selected or reaching the the max length of paths.
TempCas can catch a full critical cascade path that carries
more diffusion features. In particular, once a node ûl is
picked, we decay its weight ωûl

by Equation (1) to avoid
sampling repeating paths:

ωi = ωi ∗ (1−
1

ωi
) (1)

Ideally, the weight for a node would exactly reflect the
propagation influence of the node in a cascade graph snap-
shot. We examine three candidate weight functions:
(i) Node weights by offspring amount. The large offspring
amount indicates the node is in a critical path either contain-
ing social hubs or in-depth propagation.

WEIGHT(ui) = oi :=


1 if Child(ui) is ∅

1 +
∑

uj∈Child(ui)

oj otherwise

(2)
(ii) Node weights by depth. The depth dei of a node indicates
the propagation depth from the root node to the node.

WEIGHT(ui) = dei (3)

(iii) Node weights by offspring amount plus depth. Both the
offspring amount and depth may represent nodes’ position
and propagation influence in cascade graphs.

WEIGHT(ui) = syni := oi + dei (4)
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Algorithm 1 Path Sampling Strategy

Input: A cascade graph snapshot Gt; the max length of
paths L; the max number of paths K; a root node uroot;
a node set of the graph {ui}ni=1; a weight function
WEIGHT(·); U ← ∅.

Output: Sampled paths U .
1: {ωi}ni=1 ← WEIGHT({ui}ni=1)
2: for k = 1, ...K do
3: Ĉ ← Child(uroot), uk ← ∅
4: for l = 1, ...L do
5: ûl ← argmaxuj∈Ĉ(ωj)

6: uk ← uk ∪ {ûl}
7: Update ωûl

by Equation (1)
8: Ĉ ← Child(ûl)
9: end for

10: U ← U ∪ {uk}
11: end for

In our experiments (cf. Table 3), we find that the offspring
amount weight function (Equation (2)) works best among
these weight functions.

Step 2 : cascade path embedding. Given a sampled cas-
cade path consisting of a node sequence u = {u1, u2, ...,
uL}, a BiGRU layer is conducted to capture the diffusion
process on u and obtain the node representation h:

h = BiGRU(u) (5)

In order to convert node representations to graph lev-
eled representations, two attention pooling mechanisms are
adopted. Let Att(·) denotes an attention pooling mechanism
(Vaswani et al. 2017). The first attention layer aggregates
the node vector h = {h1, h2, · · · , hL} to a path-level vec-
tor p, and the second one aggregates the path-level vector
p = {p1, p2, · · · , pK} to a graph-level vector vtg:

p = Att(h) (6)

vtg = Att(p) (7)

For cascade graph scale features (Step 3):
The critical paths cover the most influential nodes and

paths, but may lose information of many trivial nodes that
contribute to the main part of cascade graphs but have little
diffusion influence. Therefore we extract cascade scale fea-
tures vts as supplementary information to let the model un-
derstand the structure and scale of trivial nodes. The cascade
scale features used are shown in Table 1.
For cascade graph temporal features (Step 4):

Cascade graphs are evolving over time. Since LSTM is
capable of learning long-term dependencies, after concate-
nating the cascade diffusion features vtg and scale features vts
as the cascade snapshot representation v̂tg , we feed its series
to a LSTM layer for capturing the cascade temporal features.
⊕ represents vector concatenation:

v̂tg = vtg ⊕ vts (8)

ht
g = LSTM(v̂tg) (9)

No. Features
1 Number of nodes
2 Number of leaves
4 The median of number of neighbors
5 Maximum number of neighbors
6 Average number of neighbors (all)
7 Average number of neighbors (top 50%)
8 Average number of neighbors (top 75%)
9 Maximum path length
10 Average path length (all)
11 Average path length (top 50%)
12 Average path length (top 75%)

Table 1: Cascade Graph Scale Features

Time-series Modeling
Short-term outbreaks seriously impact on real-time forward-
ing prediction. We develop an attention CNN mechanism
(Liao et al. 2019) to model short-term outbreaks and stack
a LSTM layer to model the impact of historical short-term
outbreaks. Let us consider the forwarding amount variation
as a figure with one line: CNN is used to capture the burst
pattern, then the Attention mechanism can focus on the sud-
den break or down in the current time window. Concretely,
at a time slot t, we take a clipped temporal feedback series
rt = {rt−s+1, rt−s+2, · · · , rt} with window size s. We ap-
ply CNN with same padding on rt.

ct = CNN(rt) (10)

Then, an attention mechanism is performed to dynamically
aggregate the temporal features in the window and capture
the short-term outbreaks.

ĉt = Att(ct) (11)

Finally, LSTM is employed for merging the impact of his-
torical short-term outbreaks:

ht
r = LSTM(ĉt) (12)

Fusion Layer
The time-series modeling results ht

r contain the temporal
variation pattern of cascade graph size. The cascade graph
embedding results ht

g capture the cascade graph features in
terms of diffusion, scale and temporal. We concatenate the
above two parts and feed it to an attention pooling mecha-
nism and fully-connected layer sequentially, to get predic-
tion outputs. The fusion layer can be defined as follows:

ht = ht
v ⊕ ht

g (13)

ŷ = FC(Att(ht)) (14)

where ŷ is the predicted result. For optimization, we adopt
the mean square error loss and L2 regularization.

Experiments
Dataset
Weibo Dataset1. Weibo dataset is collected from a popular
Chinese microblog platform (Cao et al. 2017). It contains

1https://github.com/CaoQi92/DeepHawkes
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Dataset Weibo Multimedia
Content Number 119,313 26,893

Graph Snapshot Number 5,727,024 4,033,950
Avg. Nodes per Gt 142.36 4,637.70
Avg. Edges per Gt 174.02 7043.38

Table 2: Dataset Statistics

119, 313 posts generated on June 1st, 2016, and tracks all
re-tweets within the next 24 hours.
Multimedia Content Dataset2. We collect a multimedia
content dataset from a widely used mobile social applica-
tion. In the application, both media organizations and per-
sonal users can publish multimedia contents that are the mix-
tures of text, images, audios and videos. We randomly sam-
ple multimedia contents from August 1, 2019 to September
30, 2019 and track all forwardings of each multimedia con-
tent within the next 75 hours. In total, 26,893 multimedia
contents are included in the dataset.

The statistics of the two datasets are presented in Table
2. We set each time slot as 30 minutes, so that there are
150 time windows spanning 75 hours on Multimedia Con-
tent dataset, and 48 spanning 24 hours on Weibo dataset. We
randomly take 80% of data for training, 10% for validation
and 10% for evaluation. We conduct Z-Score normalization
on the ground truth, transforming data to have a mean of
zero and a standard deviation of 1.

Experiment Settings
Three widely used evaluation metrics are adopted to evaluate
our approach, including Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and R-Squared (R2).

Baseline methods: TempCas combines technologies of
time-series modeling and cascade graph embedding. Thus,
we select the state-of-the-art methods in each category as
strong baselines. The latest methods exploiting cascade
graphs for forwarding predictions are included in baselines.

Time-series based methods take variation features of
users’ feedbacks as input to predict the forwarding amount.
We extract all the predictive features that could be general-
ized across datasets from recent studies of popularity pre-
diction (Liao et al. 2019; Dou et al. 2018; Mishra, Rizoiu,
and Xie 2016). We employ both shallow machine learn-
ing methods and deep learning methods: Linear Regression
(LR); Gradient Boosting Decision Tree (GBDT); CNN and
LSTM.

Cascade graph embedding methods learn content diffu-
sion information. In addition to GCN (Kipf and Welling
2016), we compare TempCas with following methods.
GraphSAGE (Hamilton, Ying, and Leskovec 2017) up-
dates node features by aggregating the node features within
convolution windows, where mean pooling aggregator is
adopted in our experiments. DeepWalk (Perozzi, Al-Rfou,
and Skiena 2014) generates network representations by trun-
cated random walks on each graph, where graph vectors are

2https://github.com/tangguotxy/TempCas

generated in the same way as TempCas.
CasCN (Chen et al. 2019b) employs a sequence of sub-

cascade graphs with cascade Laplacian. DeepCas (Li et al.
2017) generates node sequences by heuristic random walks,
generating graph vectors by BiGRU and an attention mech-
anism. Deephawke (Cao et al. 2017) employs Hawkes’ in-
terpretable factors process for prediction.

Please notice that this paper focuses on cascade graph
modeling, some existing popularity prediction methods,
complemented by other features such as text content (Liao
et al. 2019; Piotrkowicz et al. 2017), publishers and users’
personal information (Chen et al. 2019a; Zhang et al. 2018),
are complementary directions and can be plugged into Tem-
pCas. Thus, they are not included in our baselines. Micro-
level models of cascade graphs (Zhou et al. 2021; Qiu et al.
2018; Wang et al. 2017) that focus on individual user ac-
tions/responses to specific information items, are also ex-
cluded.

Versions of TempCas: We derive variants of TempCas
according to the three weight functions: TempCas adopts
the weight function of offspring amount (Equation (2)).
TempCas-d adopts the depth weight function (Equation
(3)). TempCas-s adopts the weight function of the synthesis
of offspring amount and depth (Equation (4)).

For ablation study, we include two simplified versions:
TempCasT is the time-series modeling part of our model,
and TempCasG is the cascade graph embedding part.

Hyper-Parameters: In the cascade graph embedding part
of TempCas, the max path length L is fixed as 8 for multime-
dia contents and 4 for Weibo posts, and the max path number
k for each graph is set as 100 for multimedia contents and
50 for Weibo posts. The hidden size of the hierarchical at-
tention network and the LSTM layer is set as 64 and 128 re-
spectively. In time-series modeling, the kernel size of CNN
is set as 5 and the hidden size of CNN and LSTM is set as
128. The window size of attention CNN is 12 for multime-
dia contents and 5 for Weibo posts. We adopt 2 dense layers
for the final output, where the hidden dimensions are 128
and 1 respectively. At last, we leverage the Xavier initializa-
tion and Adam optimizer for parameter learning. L2 factor is
set as 10−5. For baselines, we follow the setting of Graph-
SAGE where the number of aggregating operations is set
as 2. The sequence length and sequence number for Deep-
Walk and DeepCas is set the same as our work. For other
hyper-parameters of GraphSAGE, CasCN, Deephawke and
Deepcas, we follow the setting of their works. Other hyper-
parameters of all the baselines are tuned to obtain the best
results on validation sets.

Results Analysis
Overall performance: The overall performance of all com-
peting methods is displayed in Table 3. The last row shows
the performance of the complete version of our method with
the weight function of offspring amount, outperforming all
baselines with a significant drop of RMSE and MAE.

As can be seen from Table 3, the model effectiveness of
cascade graph embedding based is relatively weaker than
time-series based. In fact, when facing the hot-spot online
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Methods Multimedia Dataset Weibo Dataset
MAE RMSE R2 MAE RMSE R2

LR 0.2809 0.7830 0.5343 0.0454 0.7181 0.4442
GBDT 0.1764 0.6319 0.6968 0.0420 0.7073 0.4577

CNN 0.2394 0.6174 0.7072 0.0343 0.2819 0.9454∗

LSTM 0.1533 0.4190 0.8711 0.0374 0.2412 0.5382
TempCasT 0.1502∗ 0.4153∗ 0.8854∗ 0.0312∗ 0.2163∗ 0.9012

GCN 0.4418 0.9800 0.1977 0.0592 0.7476 0.0624
GraphSAGE 0.4200 0.9809 0.2578 0.0520 0.6180 0.0508
DeepWalk 0.4078 0.9796 0.2559 0.0518 0.6859 0.1214

TempCasG 0.3106∗ 0.7744∗ 0.5104∗ 0.0384∗ 0.5297∗ 0.5424∗

DeepCas 0.4107 0.9773 0.2462 0.0518 0.6856 0.1768
CasCN 0.7891 1.7462 0.0027 0.0582 0.6605 0.0266

DeepHawke 0.5206 0.5775 0.4112 0.0391 0.3043 0.2511
TempCas-d 0.0869 0.2521 0.9461 0.0359 0.1039 0.9365
TempCas-s 0.0614 0.2840 0.9528 0.0173 0.1905 0.9030

TempCas 0.0599∗ 0.1479∗ 0.9807∗ 0.0133∗ 0.0781∗ 0.9704∗

Table 3: Overall Performance. The best performance is bold-
faced; the highest score in each category is labeled with ’*’;
MAE and RMSE are both the lower the better, R2 is the big-
ger the better.

contents, cascade graph embedding based methods are more
accurate than time-series based methods. We present a de-
tailed discussion for the performance comparison in the last
subsection of experiments.

TempCasT stacks an attention CNN and a LSTM layer
for capturing short-term variation, obtaining the best results
among other time-series based forwarding prediction meth-
ods. Random walk based methods (i.e. DeepWalk and Deep-
Cas), randomly selecting a node in graphs as the start node
for path sampling, tend to truncate the complete deep propa-
gation paths and may fail to capture the social hub nodes.
GCN based methods (i.e. GCN, GraphSage and CasCN)
generate node embeddings by aggregating features from
nodes’ local neighborhoods, which is indirect for model-
ing the cascade process. Compared with these graph embed-
ding methods, TempCasG generates full critical paths start-
ing from the publisher of online contents and ending to the
latest content consumers, which models the information dif-
fusion process adequately and achieves better results.

The two versions of TempCas according to the differ-
ent weight functions, TempCas-d and TempCas-s, all have
performance degradation, compared to TempCas. It empiri-
cally proves the effectiveness of the offspring amount weight
function. Offspring amount implies the propagation influ-
ence of nodes in terms of depth and width. Selecting the next
node with the maximum offspring amount directly grasps
the central node.
Effectiveness of time-series modeling: To obtain stronger
baselines and highlight the effectiveness of our time-series
modeling in forwarding prediction, we enhance the graph
modeling methods in baselines by concatenating their graph
modeling results with our time-series modeling results and
conducting the same “Fusion layer” of TempCas. We name
enhanced methods as EnGCN, EnGraphSAGE, EnDeep-
Walk and EnDeepCas. The average results on Multimedia
dataset are reported in Table 4(a). Compared with the re-

Methods Multimedia Dataset
MAE RMSE R2

EnGCN 0.1500 0.3931 0.8964
EnGraphSage 0.2231 0.5713 0.7183
EnDeepWalk 0.1564 0.3494 0.9005

EnDeepCas 0.2260 0.4576 0.8195

(a) Enhanced graph embedding methods.

Methods Multimedia Dataset
MAE RMSE R2

CNN 0.2355 0.5964 0.7255
LSTM 0.1495 0.3446 0.8897

TempCasT 0.1538 0.3018 0.9151
GCN 0.3389 0.8200 0.4416

GraphSAGE 0.3143 0.7888 0.5217

(b) Evaluating the effectiveness of graph scale features.

Table 4: Model Analysis

Methods K Node Cov. Avg. Len. Avg. Offs
DeepWalk

32
0.0290 1.2006 1.5601

DeepCas 0.0284 1.1747 1.4589
TempCas 0.0649∗ 2.6854∗ 1.8628∗

DeepWalk
64

0.1151 1.2209 1.5045
DeepCas 0.1122 1.1901 1.4879
TempCas 0.2154∗ 2.2844∗ 1.5964∗

DeepWalk
128

0.2217 1.2317 1.5562
DeepCas 0.2148 1.1932 1.5069
TempCas 0.3718∗ 2.0652∗ 1.8838∗

Table 5: Path Sampling Strategy Performance. K is the max
number of paths in sampling; the highest score for each K
value is labeled with ’*’.

sults in Table 3, the performances of these enhanced meth-
ods are improved a lot. Cascade graph embedding just cap-
tures information propagation mode, failing to fully express
the history popularity variation of forwarding amount. The
point is that cascade graph embedding can supplement the
comprehension of information diffusion and communication
through social networks.
Effectiveness of graph scale features: To evaluate the func-
tion of graph scale features included in our cascade graph
embedding part, the graph scale features as supplementary
features are concatenated to the graph modeling outputs for
GCN and GraphSage and to the temporal feedback for CNN
and LSTM. We run these methods on Multimedia dataset
and report the average results in Table 4(b). Referring to Ta-
ble 3, the performances of all these improved methods are
better than their previous version. It confirms our intuition
that the graph scale features let the model understand the
graph structure more explicitly and improve the model ca-
pacity of real-time forwarding prediction.
Effectiveness of path sampling strategy: In order to eval-
uate path selection strategies, we run the path strategies of
TempCas, DeepWalk and DeepCas on Multimedia dataset
and report the node coverage ( sampled nodes

nodes amount ), the average
length of sampled path, and the average out-degree of sam-
pled nodes. K is the max number of paths in sampling,
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(a) TempCas (b) DeepWalk (c) DeepCas-deg

Figure 3: Path strategy visualization (K=64): red nodes are
denoted the selected nodes in sampled paths; edges at the
sampled paths are thickened.

which is varied from 32 to 128, and the path length L is
fixed as 10 in this subsection. As shown in Table 5, no mat-
ter which value K takes, TempCas always has the high-
est node coverage, average length and average out-degree,
which means that the path strategy of TempCas is capable
of catching more comprehensive graph information than the
path strategies of DeepWalk and DeepCas. TempCas fixes
the root node (i.e., authors of online contents) as the start
node, hence it obtains the full cascade paths and covers more
nodes.

Fig. 3 shows a legible illustration where three path strate-
gies are conducted on a same cascade graph. Following the
setting of DeepCas (Li et al. 2017), DeepCas-deg is with
transition probabilities proportional to node degrees. It is
obvious that TempCas covers more hub nodes and deep cas-
cade paths (i.e. selected nodes are nearer to the center). Since
the start node is sampled with the probability assigned by
node degree in DeepCas and sampled randomly in Deep-
Walk, when the proportion of trivial nodes is large, they may
choose trivial nodes as start nodes, causing propagation in-
formation loss.

Interpreting the Performance Differences
Table 3 empirically shows time-series based methods per-
form better than cascade graph embedding based. Here, we
try to explore the reasons underling it, and confirm the ne-
cessity of combining cascade graph embedding and cascade
graph size’s time-series modeling in Tempcas.

To do this, for multimedia contents on Multimedia
dataset, we correlate RMSE results with the correspond-
ing final forwarding amount, depicting the average results in
Fig. 4. At the left of Fig. 4, the pink line denoting TempCasG
is always higher than the two dashdot lines denoting Temp-
CasT and RNN. While the forwarding amount exceeds 25K,
the RMSE results of TempCasG are lower than the results of
TempCasT and RNN. Notice that a smaller RMSE means a
better prediction result. Of course, multimedia contents with
the forwarding amount more than 25K make up a small por-
tion of the total. We still could make the following assump-
tions: the larger forwarding amount containing richer cas-
cade graph information may lead to the more powerful pre-
diction capability of cascade graph embedding based meth-
ods. In other words, when facing hot-spot contents, cascade
graph embedding based methods tend to perform better than
time-series based methods.

Fig. 5 reinforces the above conclusions, where we report

Figure 4: Relationship between model accuracy and content
popularity. Lower RMSE results mean better performances.
Dotted, dashdot and solid lines mark the graph based, the
time-series based and the methods with combining features
respectively. The red arrow marks the reversals that the per-
formance of the graph based method TempCasG exceeds the
two time-series based methods TempCasT and RNN.

Figure 5: Forwarding amounts of the top 500 multimedia
contents having RMSE extremum.

the average of final forwarding amount, for the top 500 mul-
timedia contents having the smallest predicted RMSE (the
best prediction results) and the top 500 having the largest
predicted RMSE (the worst prediction results). Fig. 5 shows
that graph based methods (i.e., TempCasG and DeepCas)
obtain their best prediction results with the richest user feed-
back information and get their worst results with the small-
est forwarding amount. By contrast, for time-series meth-
ods TempCasT and RNN, wealthy user feedback informa-
tion leads to the worst results. From this we draw the con-
clusion that time-series based methods cannot understand
well with the cascade size information under complex social
networks.

Discussion
In this paper, we propose a Temporal Cascade Graph mod-
eling (TempCas) method that measures cascade graphs to
facilitate real-time forwarding prediction. TempCas consists
of a novel approach for cascade graph embedding that cap-
tures cascade graph features in terms of diffusion, scale
and temporal, and includes a short-term variation sensi-
tive method for modeling the historical variation of cas-
cade graph size. Experiments on two real world datasets
demonstrate the proposed method significantly outperforms
the state-of-the-art.
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