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Abstract

Panoramic X-ray (PX) provides a 2D picture of the patient’s
mouth in a panoramic view to help dentists observe the in-
visible disease inside the gum. However, it provides limited
2D information compared with cone-beam computed tomog-
raphy (CBCT), another dental imaging method that gener-
ates a 3D picture of the oral cavity but with more radiation
dose and a higher price. Consequently, it is of great interest
to reconstruct the 3D structure from a 2D X-ray image, which
can greatly explore the application of X-ray imaging in den-
tal surgeries. In this paper, we propose a framework, named
Oral-3D, to reconstruct the 3D oral cavity from a single PX
image and prior information of the dental arch. Specifically,
we first train a generative model to learn the cross-dimension
transformation from 2D to 3D. Then we restore the shape of
the oral cavity with a deformation module with the dental arch
curve, which can be obtained simply by taking a photo of
the patient’s mouth. To be noted, Oral-3D can restore both
the density of bony tissues and the curved mandible surface.
Experimental results show that Oral-3D can efficiently and
effectively reconstruct the 3D oral structure and show criti-
cal information in clinical applications, e.g., tooth pulling and
dental implants. To the best of our knowledge, we are the first
to explore this domain transformation problem between these
two imaging methods.

Introduction
Extra-oral imaging techniques such as PX and CBCT are
widely used in dental offices as examination methods before
the treatment. Both methods can show detailed bone infor-
mation, including the tooth, mandible, and maxilla, of the
entire oral cavity. However, during the imaging process of
PX, the X-ray tube moves around the patient’s head and can
only take a 2D panoramic picture. This has limited its ap-
plication in the cases when the disease needs to be located.
In comparison, CBCT can reconstruct the whole 3D struc-
ture of the lower head with divergent X-rays and provide
abundant information about the health condition of the oral
cavity. Nevertheless, the patient needs to take more radiation
dose and pay a higher price during a CBCT scan. We sum-
marize the characteristics of these two imaging methods in
Table 1. We can see that although CBCT can provide more
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Figure 1: An overview of Oral-3D. We first back-project the
panoramic image into a flattened 3D image of the oral cavity
with a generative network, then deform the generation result
into a curved plane according to the dental arch.

information in clinical applications (Momin et al. 2009), it
generates 39.4× radiation (Brooks 2009) and takes 3.7× of
the price (Petersen et al. 2014) on average than PX. This
problem is especially evident for those sensitive to the ra-
diation dose and the developing countries where people are
unwilling to invest much in dental healthcare. Therefore, it
is of great interest to directly reconstruct the 3D structure of
the oral cavity from a PX image.

However, it is of great challenge to reconstruct a 3D object
from a single 2D image due to the lack of spatial information
in the rendering direction. Most works rely on additional in-
formation, such as shadow or prior shape of the object, to
regularize the reconstruction result. Furthermore, this prob-
lem is more difficult for the oral cavity due to the compli-
cated shape of the mandible and detailed density informa-
tion of the teeth. To overcome such challenges, we propose
a two-stage framework, named Oral-3D, to generate a high-
resolution 3D structure of the oral cavity by decoupling the
reconstruction process of shape and density. We first train
a generation model to extract detailed density information
from the 2D space, then restore the mandible shape with the
prior knowledge of the dental arch. Although our method
can not fully replace CBCT in the dental examination, we
provide a compromise solution to obtain the 3D oral struc-
ture when only the PX is available.
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Imaging
Method

Dimension Cost Radiation Dose Diagnostic
Accuracy

Wisdom
Tooth

Tooth
Decay

Implant Orthodontics

CBCT 3D e 184.44 58.9-1025.4 µSv 94.8% X X X X
PX 2D e 49.29 5.5-22.0 µSv 83.3% X X

Table 1: A comparison of CBCT and panoramic X-ray on common dental disease.

Our work can be summarized as a combination of a
single-view reconstruction problem and a cross-modality
transformation problem, where the model should recover
both the shape and density information of the target object
from a single image at the same time. We show an overview
of Oral-3D in Figure 1. At first, we train a generation net-
work to learn the cross-dimension transformation that can
back-project the 2D PX image into 3D space, where the
depth information of teeth and mandible can be learned auto-
matically from the paired 2D and 3D images. In the second
step, we register this generated 3D image, a flattened oral
structure, into a curved plane to restore the original shape ac-
cording to the dental arch. This prior knowledge effectively
restricts the shape and location of the 3D structure and can
be obtained in many ways, such as by fitting the β function
with the width and depth of the mouth (Braun et al. 1998). To
show the effectiveness of our framework, we first compare
Oral-3D with other methods on synthesized images gener-
ated from a CBCT dataset. Then we evaluate the reconstruc-
tion results for some clinical cases to prove the feasibility
of our method. Experimental results show that Oral-3D can
reconstruct the 3D oral structure with high quality from a
single panoramic X-ray image and keep the density infor-
mation simultaneously. In conclusion, we make the follow-
ing contributions:

• We are the first to explore the cross-modality transfer of
images in different dimensions for dental imaging by deep
learning. In addition to restoring the 3D shape and surface
of the bone structure, our model can restore the density in-
formation simultaneously, which is of great help for den-
tal diagnosis.

• We decouple the reconstruction process for density and
shape recovery by proposing a deformation module that
embeds a flattened 3D image into a curved plane. This
has not been addressed in previous research and can sig-
nificantly improve the reconstruction performance.

• We propose an automatic method to generate paired 2D
and 3D images to train and evaluate the reconstruction
models, where Oral-3D achieves relatively high perfor-
mance and can show key features of some typical cases.
Meanwhile, we propose a workflow to evaluate our model
on a real-world dataset, which indicates the feasibility of
clinical applications.

Related Work
Deep Learning for Oral Health
Deep learning has dramatically promoted the computer as-
sistance system for dental healthcare by automatically learn-
ing feature representations from large amounts of data. For

example, (Cui, Li, and Wang 2019) proposes an automatic
method for instance-level segmentation and identification of
teeth in the CBCT image. (Liang et al. 2020a) utilizes the
smartphone to diagnose common dental disease with a de-
tection model. (Imangaliyev et al. 2016) designs a classi-
fication model for red auto-fluorescence plaque images to
assist in detecting dental caries and gum diseases. (Prajap-
ati, Nagaraj, and Mitra 2017) uses transfer learning to clas-
sify three different oral diseases for X-ray images. Although
these methods have improved oral healthcare service by pro-
viding intelligent assistance, the model needs to be trained
with annotations on large datasets, which requires both pro-
fessional knowledge and tedious labour. Compare with these
works, our model helps dental healthcare without the super-
vision of labelled data, where the reconstruction is learned
from the latent relationship between 2D and 3D images.

Cross-Modality Transfer in Medical Imaging
The target of cross-modality transfer is to find a non-linear
relationship between medical images in different modali-
ties. It can help reduce the extra acquisition time and ad-
ditional radiation in a medical examination or provide ad-
ditional training samples without repetitive annotation work
to augment the dataset. Most works take this as a pix-to-pix
transfer problem, where the layout and the structure are con-
sistent, but the colour distribution is changed after the trans-
formation between images in different modalities. For exam-
ple, as shown in Figure 2, (Costa et al. 2017) takes the vessel
tree of eyes as a condition to synthesis new images for fun-
dus photography. (Choi and Lee 2018) proposes a generation
network to produce realistic structural MR images from flor-
betapir PET images. However, few studies have discussed
the cross-modality transfer problem from a lower-dimension
image to a higher-dimension one, which is more challeng-
ing as the model needs to infer high-dimension information
from the lower-dimension image. We only find two works
that achieve a similar target to ours. Specifically, (Henzler
et al. 2018) uses an encoder-decoder network to reconstruct
3D skull volumes of 175 mammalian species from 2D cra-
nial X-rays, but the result is subject to too much ambiguity.
To improve the visual quality, (Ying et al. 2019) utilizes bi-
planar X-rays to extract 3D anatomical structures of body
CT with adversarial training and reconstruction constraints.
However, our problem is quite different from theirs as the
PX image can not be synthesized only from the orthogonal
projection over the corresponding CT. Besides, our task is
more challenging due to the complicated structure of the oral
cavity, where the model is required to restore more details of
the teeth and mandible. (Liang et al. 2020b) proposes a very
similar work to ours. However, their model requires pixel-
wise annotation for each tooth, and they only reconstruct the
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Figure 2: We show some examples of cross-modality trans-
fer for Retina → Fundus (Costa et al. 2017) and PET →
MRI (Choi and Lee 2018), where the source image and the
target image usually contains consistent physiological struc-
tures although in different modalities.

shape for each tooth. In contrast, our model is unsupervised
and can recover the entire oral structure with density distri-
bution.

3D Reconstruction from 2D Image
The recent 3D reconstruction work from 2D images can
be concluded as two categories: multi-view reconstruction
and single-view reconstruction. For the first one, the method
generally requires little prior knowledge about the 3D ob-
ject as the images taken from multiple angles can restrict the
reconstruction shape. For example, (Kolev, Brox, and Cre-
mers 2012) computes the most probable 3D shape that gives
rise to the observed colour information from a series of cal-
ibrated 2D images. (Choy et al. 2016) learns the mapping
function from arbitrary viewpoints to a 3D occupancy grid
with a 3D recurrent neural network. As a comparison, re-
construction from a single-view image usually requires ad-
ditional information, e.g., prior shape, to inference the ob-
ject shape. As such, (Yang et al. 2018) proposes a unified
framework trained with a small amount of pose-annotated
images to reconstruct a 3D object. (Wu et al. 2018) takes the
adversarially learned shape priors as a regularizer to penal-
ize the reconstruction model. However, the PX image can be
either seen as a single-view image taken by a moving cam-
era or a concatenate image blended with multiple views. In
this paper, we take our problem as the first kind to decou-
ple the reconstruction process for the bone density and the
mandible shape. In the experiment, we also show that this
can significantly promote performance over the multi-view
reconstruction model both in quality and quantity.

Method
In this section, we introduce our framework that reconstructs
a high-resolution 3D oral cavity from a 2D PX image. We
choose to break this problem into two stages to recover more
details of the bone density. We show the structure of Oral-
3D, which consists of a back-projection module and a defor-
mation module in Figure 3. The back-projection module de-
velops from generative adversarial networks (GAN (Good-
fellow et al. 2014)), where the generator is trained to learn
a back-projection transformation by exploring the depth in-
formation contained in the X-ray image. The deformation
module takes in the generated 3D image (Image c) from the
back-projection module and the dental arch (Image e) to re-
store the curved shape of the mandible.

Back-Projection Module
GANs have proved to be an effective model to learn latent
data distribution by training the generatorG and the discrim-
inator D in an adversarial way. The generator learns to out-
put a fake image from a random vector to deceive the dis-
criminator, while the discriminator tries to distinguish sam-
pling data between real and fake images. As we aim to gen-
erate the consistent 3D content from the semantic informa-
tion of the panoramic X-ray image, we utilize conditional
GANs (Mirza and Osindero 2014) as the generative model
to learn the back-projection transformation.

Objective Function To improve the generation quality
and guarantee the stable training process, we use LSGAN
(Mao et al. 2017) as the keystone to train the generator and
discriminator. The adversarial loss can be summarized as:

LossD =Ey

[
(D(y)− 1)2

]
+ Ex

[
D(G(x))2

]
LossG =Ex

[
D(G(x))− 1)2

]
,

(1)

where x is the PX image and y is the flattened oral structure.
To maintain the structural consistency of the input and

generation result, we also introduce the reconstruction loss
and projection loss to improve the generation quality. These
proposed loss functions can bring voxel-wise and plane-wise
regularization to the generation network, which can be de-
fined as:

LossR =Ex,y

[
(y −G(x))2

]
LossP =Ex,y

[
(P (y)− P (G(x)))2

]
,

(2)

where the function P () is achieved by orthogonal projec-
tions along each dimension of the generated 3D image. In
summary, the total optimization problem can be concluded
as:

D∗ =argmin
D

LossD

G∗ =argmin
G

λ1 · LossG + λ2 · LossR + λ3 · LossP .
(3)

Generator During the X-ray imaging, the depth informa-
tion can be reflected in the absorption of radiation through
the bone. Therefore it is reasonable to extract the thickness
of the tooth and the mandible from a PX image. Then the
objective for the generator is to find a cross-dimension trans-
formation G from 2D to 3D, which can be denoted as:

G : I2DH×W → I3DH×W×D, (4)

where I2D is the PX image with a size ofH ×W and I3D is
the flattened 3D structure with a size ofH ×W ×D. In this
paper, we utilize 2D convolution to retrieve the latent depth
information. The 3D information is embedded into differ-
ent channels of feature maps. As shown in Fig. 3, the en-
coding network decreases the resolution of feature maps but
increases the number of feature channels, while the decod-
ing network increases the resolution to generate a 3D object.
The output voxel value is restricted to (−1, 1) with a tanh
layer at the end.
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Figure 3: Our framework consists of two modules to decouple the recovery of bone density and the mandible shape. The back-
projection module utilizes a generation network to restore the 3D density information from the 2D space, and the deformation
module transforms the flattened 3D image into a curve plane according to the prior knowledge in the dental arch.

Dense Block Dense connections (Huang et al. 2017) have
shown compelling advantages for feature extraction in deep
neural networks. This architecture is especially efficient in
forwarding 3D information as each channel of the output
has a direct connection with intermediate feature maps. In
the back-projection module, we utilize two kinds of dense
blocks, noted as A and B, to extract depth information from
the X-ray image. As shown at the bottom of Figure 3, the
dense block A explores the depth information by increasing
the channel number of feature maps. In contrast, the dense
block B fuses feature maps from the up − samplinglayer
and the skip-connections but maintain the number of chan-
nels to forward the depth information. In the end, the number
of stacked features in the output is equal to the depth of the
generated 3D image.

Discriminator The discriminator has been frequently
used in many generative models to improve the generation
quality by introducing an instance-level loss. In the back-
projection module, we adopt a patch discriminator intro-
duced by (Isola et al. 2017) to improve the generation quality
of tooth edges by learning high-frequency structures. We set
the patch size as 703 and follow a similar structure in (Isola
et al. 2017) but replace 2D convolution with 3D. The dis-
crimination network ends with a Sigmoid layer to predict
the probability of the samples belonging to the real image.
To be noted, we sample the same number of 3D patches at
the same position from the paired of 3D images.

Deformation Module
With the generation of a 3D image from the back-projection
module, the deformation model maps the flattened 3D struc-
ture into the curved space according to the arch curve to
output the final reconstruction object. As shown in the right
part of Figure 3, we propose a registration algorithm that
can best restore the shape of the oral cavity and keep the
recovered density information. We first sample the gener-
ated 3D image (Image c) into slices (Image f ) in the sagit-
tal plane, then interpolate these slices along the dental arch
curve (Image e). To achieve this, we sample a number of
points from the curve with equal distance and embed the
slices into the curve. In the end, we interpolate the voxels
between the neighbouring slices to output a smooth 3D im-
age (Image g). For computation convenience, we combine
these steps together and conclude it in Algorithm 1, where
we assume that the generated 3D image and the bone model
has the same height of H .

Experiment
Dataset
As grouped data of PX image, dental arch shape, and 3D
oral structure of the same patient, especially in the same pe-
riod, is hard to find, we first use synthesized data to evaluate
the performance. We collect 100 CBCT scans from a major
stomatological hospital in China and re-sample these 3D im-
ages into a size of 288 × 256 × 160. The dataset is finally
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Algorithm 1 Embedding and Interpolation

1: function REGISTER(Slices,W3D, D3D, curve)
2: W,H,D ← SHAPE(Slices)
3: OralImage← ZEROS(W3D, H,D3D)
4: SamplePoints← SAMPLE(curve)
5: for i = 0; i < W3D; i++ do
6: for j = 0; j < D3D; j ++ do
7: id, dist← DIST((i, j), SamplePoints)
8: Slice← Slices[id, :, :]
9: Slice← INTERPOLATE(Slice, dist)

10: OralImage[i, :, j]← Slice
11: end for
12: end for
13: return OralImage
14: end function

normalized into a range of (−1, 1) and split into a ratio of
3 : 1 : 1 for training, validation, and testing.

An overview of preparing the synthesized data can be seen
in Figure 4. We first obtain a 2D image in the axial plane
by maximum intensity projection (MIP) (Image b) over the
CBCT slices (Image a). Then we obtain the dental curve
with a similar method as in (Yun et al. 2019) to estimate the
curve function and boundaries of the dental arch. To gener-
ate the PX image (Image d), we simulate projection with the
Beer-Lambert absorption-only model along the arch curve.
This imaging process is similar to the way for a real PX ma-
chine, where the manufacturer usually improves the imag-
ing quality by designing a trajectory of the camera to fit
the mandible shape. Finally, we extract the 3D oral struc-
ture (Image e) by removing the unrelated tissues with the
boundaries and generate the flattened 3D structure (Image
c) by re-sampling along the arch curve.

Evaluation Metrics
• PSNR: Peak signal-to-noise ratio (PSNR) is often used

to measure the difference between two signals. Compared
with mean squared error, PSNR can be normalized by the
signal range and expressed in terms of the logarithmic
decibel scale. We take this to measure the density recov-
ery of our models.

• Dice: In order to reflect the deformation of the reconstruc-
tion, we use dice coefficient between our reconstruction
results and the groundtruth in a volume level of the oral
cavity. The 3D volume of the oral cavity is obtained by
setting a threshold (e.g.,−0.8 over the reconstruction re-
sult.

• SSIM: We use the structural similarity index (SSIM)
(Wang et al. 2004) as the key criterion to quantify the per-
formance of density recovery.SSIM considers the bright-
ness, contrast and structure information at the same time
and can match better the subjective evaluation of humans.
It can effectively indicate the reconstruction quality and
is widely used in other similar works, such as (Ying et al.
2019).

• Overall: To combine these three metrics together, we also

Figure 4: An overview of generating paired data for 3D oral
structure and 2D panoramic X-ray is shown in this picture.
We first get the MIP image from the CBCT scan to obtain
the dental arch curve (red), and boundaries of the dental area
(blue and green). Then we obtain the flattened oral structure,
PX image, and the 3D oral structure by re-sampling, projec-
tion, and extraction, respectively.

define a score S = (PSNR/20 +Dice + SSIM)/3 to
compare the overall performance of the 3D reconstruc-
tion.

Comparison Models
To show the effectiveness and efficiency of Oral-3D, we also
compare our framework with other models that work on a
similar problem:

• Residual CNN: An encoder-decoder network that has
been introduced in (Henzler et al. 2018) to reconstruct the
3D model with a single X-ray.

• GAN: A generative model based on (Goodfellow et al.
2014) that takes the Res-CNN as the backbone for gener-
ator with reconstruction loss and the same discriminator
as Oral-3D.

• R2N2: We transform our task into a multi-view recon-
struction problem to train R2N2 (Choy et al. 2016) by tak-
ing the PX image as a composition of X-ray image taken
from three different views.

• Oral-3D (Auto-Encoder) We remove the discriminative
network in Oral-3D and keep the encoder-decoder net-
work only in the back-projection module.

Training
All the experiment are trained by Adam optimizer (Kingma
and Ba 2014) with a batch size of 1 for 300 epochs. The
learning rate starts at 1×10−3 and decreases 10 times every
50 epochs. We use the validation data as the stop criterion,
and all models converge after 300 epochs. For adversarial
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Figure 5: We show the qualitative comparison from different views and rendering ways in this picture. We can see that our
method generates the best results with more detailed density and a more sharp surface.

Figure 6: We show reconstruction results for patients with
wisdom/missing teeth and mark the key features with red
bounding boxes. We can see that our method can accurately
locate these positions, which can be an important reference
during the surgery.

networks, i.e. Oral-3D and GAN, we introduce the discrim-
inative network after 100 epochs to alleviate the influence of
discrimination loss at the beginning.

Results

In this section, we evaluate the reconstruction performance
of Oral-3D from different perspectives. We first compare
Oral-3D with other methods qualitatively and quantitatively.
Then we show the results of special cases for some typical
dental applications. In the end, we do clinical trials by eval-
uating our method on real-world images.

Comparison with Other Methods
We first show the results in Figure 5, where the volume ren-
dering can show the reconstructed surface, and the maxi-
mum projection can indicate the restored density distribu-
tion. Then we summarize the evaluation metrics in Table 2
to compare with other methods. We can see that Oral-3D has
the best performance over other models. Comparing Oral-
3D with the Residual CNN and GAN, we can see the im-
portance of decoupling the back-projection and deformation
process. To be noted, R2N2 achieves the worst performance,
where the model only learns the shape of the oral cavity but
loses details of teeth. This has indicated the defect when con-
verting the PX image as a collection of multi-view images.
Additionally, we see that the Oral-3D (Auto-Encoder) has
the closest performance to Oral-3D, although the latter has
a more clear surface. This has proved the promotion brought
by the adversarial loss.

Identification of Wisdom/Missing Teeth
In this paragraph, we show two of the most common cases
in dental healthcare, e.g., dental implants and tooth pulling,
to see if Oral-3D can provide dentist useful reference. Both
cases require locating the operation location before the
surgery. In the first row of Figure 6, three wisdom teeth
can be seen clearly on both sides in PX. These features also
present in the two sides of the reconstruction results. In the
second row, the patient misses two teeth on both sides of
the mandible. While the missing place can also be located
accurately in the reconstruction image.
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Figure 7: We show a workflow to apply Oral-3D to obtain the dental arch curve in real-world applications in this picture. We
first take a picture of the patient’s mouth and segment then dental area semi-automatically. Then we use a cubic function to the
fit points sampled from the skeletonized image of the binary mask.

Method View Prior D-Net PSNR (dB) SSIM (%) Dice (%) Overall
Residual CNN 1 No No 17.46±9.58 72.90±2.09 57.95±7.43 73.54

GAN 1 No Yes 17.71±1.04 69.96±1.91 57.80±7.76 73.78
R2N2 3 No No 18.06±0.94 71.94±1.36 57.71±6.52 73.32

Oral-3D (Auto-Encoder) 1 Yes No 19.04±0.85 76.78±1.65 69.68±4.98 80.56
Oral-3D (GAN) 1 Yes Yes 19.22±0.83 78.27±1.74 71.28±4.69 81.89

Table 2: Quantitative evaluation of 3D reconstruction results.

DL only DL+PL DL+RL DL+RL+PL
PSNR 8.06 18.06 19.14 19.22
SSIM 46.61 73.0 78.41 78.27
Dice 35.50 64.53 70.89 71.28

Overall 40.79 75.95 81.66 81.89

Table 3: Evaluation results of different combination of dis-
crimination loss (DL), reconstruction loss (RL), and projec-
tion loss (PL).

Dataset PSNR SSIM Dice
Real 17.36±0.70 69.30±2.03 71.44±3.66

Synthesized 19.22±0.83 78.27±1.74 71.28±4.69

Table 4: Evaluation results on real-world images.

Ablation Study
To reveal the factors that influence the reconstruction quality
of the generation network, we also do an ablation by chang-
ing the combination of the loss functions. As shown in Ta-
ble 3, we see that the model shows the worst performance if
trained only with the adversarial loss. This is mainly because
the adversarial loss can not bring voxel-wise optimization.
We can also see that the major improvement comes from the
reconstruction loss, while the projection loss brings much
less promotion, especially when trained with the reconstruc-
tion loss together. This is also reasonable as the reconstruc-
tion loss can supervise the generation network to learn more
detailed information.

Clinical Trials
In the end, we evaluate Oral-3D on real-world data from 6
patients. The workflow of collecting dental arch information
is shown in Figure 7. We use cycleGAN (Zhu et al. 2017) to
alleviate the colour variance between the training and testing
PX images. As shown in Table 4, the drop mainly comes

Figure 8: Although the quality decreases in density details
for real-word PX, we can still identify each tooth in the re-
construction result.

from the PSNR and SSIM, which is because of the colour
variance in different CBCT machines. From Figure 8 we can
that although the quality decreases in density details, we can
still identify each tooth in the reconstruction result.

Conclusion
In this paper, we propose a two-stage framework to recon-
struct the 3D structure of the oral cavity from a single 2D
PX image, where individual shape information of the dental
arch is provided as prior knowledge. We first utilize a gen-
erative model to back-project the 2D image into 3D space,
then deform the generated 3D image into a curved plane to
restore the oral shape. We first use synthesized data to com-
pare with different methods, then evaluate the model with
real-world data to see the feasibility in clinical applications.
Experimental results show that our model can recover both
the shape and the density information in high resolution. We
hope this work can help improve dental healthcare from a
novel attitude.
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