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Abstract

In an order-driven financial market, the price of a financial as-
set is discovered through the interaction of orders - requests
to buy or sell at a particular price - that are posted to the
public limit order book (LOB). Therefore, LOB data is ex-
tremely valuable for modelling market dynamics. However,
LOB data is not freely accessible, which poses a challenge
to market participants and researchers wishing to exploit this
information. Fortunately, trades and quotes (TAQ) data - or-
ders arriving at the top of the LOB, and trades executing in
the market - are more readily available. In this paper, we
present the LOB recreation model, a first attempt from a deep
learning perspective to recreate the top five price levels of the
LOB for small-tick stocks using only TAQ data. Volumes of
orders sitting deep in the LOB are predicted by combining
outputs from: (1) a history compiler that uses a Gated Re-
current Unit (GRU) module to selectively compile prediction
relevant quote history; (2) a market events simulator, which
uses an Ordinary Differential Equation Recurrent Neural Net-
work (ODE-RNN) to simulate the accumulation of net order
arrivals; and (3) a weighting scheme to adaptively combine
the predictions generated by (1) and (2). By the paradigm of
transfer learning, the source model trained on one stock can
be fine-tuned to enable application to other financial assets of
the same class with much lower demand on additional data.
Comprehensive experiments conducted on two real world in-
traday LOB datasets demonstrate that the proposed model can
efficiently recreate the LOB with high accuracy using only
TAQ data as input.

Introduction
The majority of today’s financial markets are order-driven,
with traders submitting orders – requests to buy or sell some
quantity at a particular price – to a public limit order book
(LOB). Orders resting in the LOB form the instantaneous
supply and demand for an asset, with buy orders (or bids)
representing quantity demanded at each price level and sell
orders (or asks) representing quantity supplied at each price
level. Orders are matched using the continuous double auc-
tion (CDA) mechanism such that a buyer or seller can submit
an order at any time and a trade execution will occur when-
ever prices cross; i.e., when an ask (order to sell) price is
less than or equal to a bid (order to buy) price. The CDA
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mechanism and LOB determine the market microstructure
(O’Hara 1997) and enable a price formation process such
that the instantaneous price of a financial asset is entirely
determined by the contemporaneous demand and supply in
the market. In this manner, prices fluctuate freely and evolve
over time as orders are submitted, cancelled, and executed
in the market.

Given the tight association between the LOB of a finan-
cial asset and its price evolution, LOB data is a valuable re-
source for financial practitioners and academic researchers;
enabling back-testing of trading algorithms, offering the po-
tential to forecast price movements, and providing a re-
source to understand market dynamics. However, because
of this value, full LOB data is often supplied at considerable
cost, with subscription fees reaching tens of thousands of
dollars annually.1 In contrast, trades and quotes (TAQ) data
– trade executions and orders at the top of the LOB, which
represent the current best bid and ask (i.e., the highest priced
bid, and the lowest priced ask) – is much more readily avail-
able and often freely reported as an asset’s current price and
last trade price (Bouchaud et al. 2018). This situation pro-
vides strong motivation to attempt a recreation of the LOB
at depth using only the TAQ data stream as input.

Contribution This paper presents a novel limit order book
recreation model (LOBRM), where order volumes resting at
different price levels of the LOB are predicted using only
TAQ data. The LOBRM consists of three components: (i) a
history compiler (HC), which uses a Gated Recurrent Unit
(GRU) module (Cho et al. 2014) to compile the evolving
history of quote volumes; (ii) a market events simulator
(ES), which uses an Ordinary Differential Equation Recur-
rent Neural Network (ODE-RNN) module with gating con-
trol (Rubanova, Chen, and Duvenaud 2019) to encode TAQ
history into a continuous latent state that is then decoded by
a Multi-Layer Perceptron (MLP) into vectors of order arrival
rates at different price levels; and (iii) an adaptive weighting
scheme (WS), which fuses the output from (1) and (2) to
make a final prediction.

1http://www.nasdaqtrader.com/Trader.aspx?id=DPUSdata
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Figure 1: Evolution of a LOB containing 5 price levels, with
corresponding message book showing events.

Background and Related Work
The Limit Order Book (LOB) The continuous double
auction (CDA) mechanism used by most major financial
markets enables market participants to enter buy and sell or-
ders at any time. A limit order L(t, s, d, v, p) specifies a time
of submission t, a stock ID s, a direction d, a volume to trade
v, and a limit price to trade p, which for a buy order (i.e., a
bid) is the highest acceptable trade price and for a sell order
(i.e., an ask) is the lowest acceptable trade price. Each limit
order L enters the limit order book (LOB) for a given stock
s. The LOB contains a bid list and an ask list, each sorted
by price-time priority such that the bid at the front of the bid
list (i.e., the best bid) has the highest price, pb(1), and the ask
at the front of the ask list (i.e., the best ask) has the lowest
price, pa(1). When a new bid, b, is entered with price pb, it
will execute against the best ask if pb ≥ pa(1), else b will
enter the LOB in price ordered position. Likewise, when a
new ask, a, is entered with price pa, it will execute against
the best bid if pa ≤ pb(1), else a will enter the LOB in price
ordered position.

Fig. 1 presents a schematic of a LOB with 5 price levels
evolving over time. Initially, at time T1, the best bid has price
$23.01 with volume 10 and the best ask has price $23.11
with volume 25. The next event (time T2) is a new ask order
of price $23.12 with volume 15. This ask price is too high
to execute and so the order rests in the LOB on the ask side
at the second price level. The following event (time T3) is a
new bid with price $23.11 and volume 25. This order exe-
cutes in full against the best ask, which moves the best ask
price to $23.12.

The full LOB data contains a record of the volume at all
price levels in the order book after every event (a trade, or
a new order entry or cancellation), along with an affiliated
message book that records all market events. In compari-
son, trades and quotes (TAQ) data, which is generally more
freely available than LOB data, includes only the best bid
and ask and a record of trades. Although empirical studies
have indicated that the first level of the LOB accounts for
approximately 80% of future price movements (Cao, Han-
sch, and Wang 2009), there remains value to exploit in the

information stored deeper in the LOB (Biais, Hillion, and
Spatt 1995; Muni Toke 2015). This provides motivation for
modelling the full LOB from TAQ data.

Modelling the LOB There have been multiple attempts at
stochastic modelling of the LOB. In these works, the evolu-
tion of the LOB is described as a higher-order Markov sys-
tem, with the arrival of events following a particular proba-
bilistic process (Cont and De Larrard 2013; Blanchet, Chen,
and Pei 2017). Cont, Stoikov, and Talreja (2010) proposed
a continuous-time stochastic model for LOB dynamics, in
which the occurrences of events such as arrival and can-
cellation of limit orders were presumed to follow indepen-
dent Poisson processes conditioned on the current state of
the LOB. In the work of Vvedenskaya, Suhov, and Belit-
sky (2011), LOB dynamics were formulated as a discrete
time Markov process of which the deterministic dynamical
system is controlled by nonlinear ODEs. Stochastic models
are capable of capturing long-term and mid-term empirical
features in LOB evolution. However, in the noisier high fre-
quency domain, stochastic models with relatively few pa-
rameters are not a good fit as their strong probabilistic as-
sumptions of market events are likely to fail.

In recent years, there has been an emergence of research
using deep learning to model and exploit the LOB. One sig-
nificant study by Sirignano and Cont (2019) on a compre-
hensive pool of 500 stocks reveals that features learned by
a Long Short-Term Memory (LSTM) network are universal
for all stocks, and can be used to explain price formation
mechanisms. In particular, their universal LSTM model is
able to predict next mid-price movement with around 70%
accuracy across all 500 stocks. Sirignano and Cont (2019)
also demonstrate that deep learning models suffer less from
problems that exist in statistical models of the LOB, such as
regime drift. Other researches include feature design of the
LOB (Passalis et al. 2019), exploiting LOB dynamics for
price trend prediction (Zhang, Zohren, and Roberts 2019),
and generating simulated order flows (Li et al. 2020).

However, most prior work assumes that full LOB data is
available for model training, but unfortunately this is of-
ten not the case. Financial market simulators (e.g., Santa
Fe Artificial Stock Market (Arthur et al. 1996), Exchange
Portal (Stotter, Cartlidge, and Cliff 2014), and Bristol Stock
Exchange (Cliff 2018)) offer the opportunity to synthesise
LOB data, but this data may not accurately characterise the
real world. Therefore, the best approach for accurately recre-
ating LOB data is to forecast the LOB using real world TAQ
data. In this paper, we take a deep learning approach for
LOB recreation, using an ODE-RNN as the core component.

The recurrent neural network (RNN; originally intro-
duced by Rumelhart, Hinton, and Williams (1986)) has been
widely adopted to model sequential and temporal informa-
tion. In a vanilla RNN structure, each RNN cell encodes se-
quential inputs iteratively into a latent state, where the pre-
vious output is used as input to the next iteration. This char-
acteristic empowers the model to capture relations between
consecutive inputs of a sequence and enables it to accumu-
late an overall understanding of the whole trajectory.
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Figure 2: Latent state trajectories. Vertical lines indicate se-
quential inputs; colored lines show dimensions of the latent
state. Figure adapted from Rubanova, Chen, and Duvenaud
(2019).

However, while the vanilla RNN (and its variants with dis-
crete updating of the latent state) have achieved state-of-the-
art performance in tasks such as time series modeling (Con-
nor, Martin, and Atlas 1994) and natural language process-
ing (Mikolov et al. 2010; Sutskever, Vinyals, and Le 2014),
they do not perform well on irregularly sampled time se-
ries (i.e., where the time intervals between sequential inputs
are varied). To simulate the influence of time, one option
is to model the latent state continuously between sequential
inputs. To achieve this, the RNN-Decay model (Che et al.
2018; Mei and Eisner 2017) decays the latent state between
sequential inputs with a pre-defined exponential kernel, such
that the latent state tends to be deactivated gradually. How-
ever, as the decay function is pre-defined, the RNN-Decay
model risks under-fitting.

The ODE-RNN (Rubanova, Chen, and Duvenaud 2019;
Habiba and Pearlmutter 2020) is an extension of Neural
ODE (originally proposed by Chen et al. (2018)), charac-
terized by a continuous latent state representation where the
evolution process is learned rather than pre-defined. ODE-
RNN models the first-order derivative of the latent state over
observed steps instead of its exact state function, therefore
generalizing discrete updates in neural networks to contin-
uous dynamics. A comparison of latent state trajectories in
RNN schemes is illustrated in Fig. 2.

In ODE-RNN, a hidden state h(t) is defined as a solution
to an ODE initial value problem:

dh(t)
dt = fθ(h(t), t) where h(t0) = h0 (1)

where function fθ is a neural network simulating latent
state dynamics with parameter set θ. The gradients can be
derived by the adjoint sensitivity method (Pontryagin et al.
1962). Specifically, in ODE-RNN, neural ODE modules are
inserted between sequential inputs, with GRU gating used
to control the instant transformation of latent state at exact
observation time points. The latent state between two inputs
can then be derived using an ODE solver as:

hi
′ = ODEsolver(fθ, hi−1, (ti−1, ti)) (2)

The superiority of the ODE-RNN model over traditional
RNN models with discrete updates results from the abil-
ity to learn the evolution dynamics of the latent state for
any given length of time intervals. ODE-RNN has demon-
strated enhanced accuracy over discrete RNN schemes in

datasets with irregularly sampled observations such as med-
ical records and human movements (Rubanova, Chen, and
Duvenaud 2019). For this reason, we consider the ODE-
RNN for the LOBRM.

The LOB Recreation Model (LOBRM)
Problem Description
We attempt to recreate the LOB with 5 price levels for small-
tick stocks using TAQ data. Empirical studies on small-tick
stocks suggest that orders in the LOB tend to be densely dis-
tributed around the top price levels, with one tick (the min-
imum price interval) between each level (Blanchet, Chen,
and Pei 2017). We confirm a similar distribution is observed
in the LOBSTER data for MSFT and INTC. Therefore, as
the price for the current top levels of the LOB can be di-
rectly observed from TAQ data, the price for deeper levels
can be deduced by simply adding or subtracting ticks. This
simplification reduces the problem to predicting order vol-
umes in the hidden levels of the LOB.

For generalization, we denote trades and quotes streams
as {TDi}i∈n and {QTi}i∈n respectively, and trajectories of
time points for TAQ records as {Ti}i∈n, indexed by n =
{1, . . . , N}, where N equals the number of time points in
TAQ data. The states of the LOB sampled at {Ti}i∈n are
denoted as {LOBi}i∈n. For each record at time Ti, QTi =

(p
a(1)
i , v

a(1)
i , p

b(1)
i , v

b(1)
i ), where pa(1)i , v

a(1)
i , p

b(1)
i , v

b(1)
i de-

note best ask price, order volume at best ask, best bid
price, and order volume at best bid, respectively. TDi =
(ptdi , v

td
i , d

td
i ), where ptdi , v

td
i , d

td
i denote price, volume, and

direction of the trade, with +1 and −1 indicating orders be-
ing sold or bought. LOBi = (p

a(l)
i , v

a(l)
i , p

b(l)
i , v

b(l)
i ) de-

picts the price and volume information at all price levels,
with l ∈ (1, ..., L).

As we focus on a LOB with 5 price levels, hence L = 5.
QTi denotes the top levels of LOBi. From the aforemen-
tioned empirical results, we have p

a(l)
i = p

a(1)
i + (l −

1) ∗ ticksize and pb(l)i = p
b(1)
i − (l − 1) ∗ ticksize. Un-

der this formulation, for a single sample, the model pre-
dicts (v

a(2)
I , ..., v

a(L)
I ) and (v

b(2)
I , ..., v

b(L)
I ) conditioned on

the observations of {QTi}I−S:I and {TDi}I−S:I , with S
being the number of time steps that the model looks back in
TAQ data history.

Model Structure
An overview of the model structure is presented in Fig. 3. As
a common practice in exploiting LOB, the ask side and bid
side of the LOB are modelled separately. Here we only illus-
trate the modelling of the ask side, as the modelling of the
bid side follows exactly the same logic. We first illustrate the
encoding method used for TAQ data and then describe the
three components of the LOBRM: the history compiler, the
market events simulator, and the adaptive weighting scheme.

One-Hot Positional Encoding for TAQ Data
We use a sparse one-hot vector encoding to extract features
from TAQ records, with volume encoded explicitly as an ele-
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Figure 3: Overview of LOBRM for the ask side. The bid side prediction follows a similar workflow.

ment in the feature vector and price level encoded implicitly
by the position of the element.

In the history compiler, we consider only past volume in-
formation at current deep price levels. Conditioned on the
best ask price pa(1)I at target time TI , let spas = (p

a(1)
I−s −

p
a(1)
I )/ticksize be the distance between a history ask quote

and current best ask price.
We represent an ask quote record (p

a(1)
I−s , v

a(1)
I−s ) as:{

OL−1,where ospas = v
a(1)
I−s if spas ∈ [1, L− 1]

ZL−1 otherwise
(3)

whereOL−1 is a one-hot vector with dimension 1×(L−1);
ospas denotes the spas -th element of the vector; and ZL−1 de-
notes a zero vector of the same dimension. Then, the corre-
sponding mask used later in the weighting scheme is denoted
as: {

OL−1,where ospas = 1 if spas ∈ [1, L− 1]
ZL−1 otherwise

(4)

In the market events simulator, the model perceives the
whole trajectory of TAQ data at all price levels. Conditioned
on current best ask price pa(1)I at TI , we represent an ask
quote record (p

a(1)
I−s , v

a(1)
I−s ) at TI−s as:

Oaq2k−1,where ok+spas = v
a(1)
I−s (5)

where k ∈ R and 2k − 1 >> L− 1. For a bid quote record
(p
b(1)
I−s, v

b(1)
I−s), we have spbs = (p

b(1)
I−s−p

b(1)
I )/ticksize. Thus,

we represent a bid quote record as:

Obq2k−1,where ok+spbs = v
b(1)
I−s (6)

and a trade record (ptdI−s, v
td
I−s, d

td
I−s), is represented as:{

Otd2k−1,where o
ptd
I−s
−pa(1)

I

= vtdI−s if dtdI−s < 0

Otd2k−1,where o
ptd
I−s
−pb(1)

I

= vtdI−s if dtdI−s > 0
(7)

Finally, those three features are concatenated and are used
as input into the market events simulator. We find in experi-
ments that the one-hot positional encoding method for TAQ
data is robust, as it remains sparse while including all infor-
mation in the TAQ trajectory.

The History Compiler (HC)
The HC predicts the LOB from a historical perspective.
It contains a GRU module to compile volume histories
from the ask quotes trajectory, only if quote price is among
(p
a(2)
I , ..., p

a(L)
I ) at time TI . As quote price fluctuates over

time, it is likely that historical quote prices overlap with the
top price levels at target time, therefore the volume infor-
mation of these historical records tells us how many orders
were previously sitting at those price levels. In this sense,
quote histories can be used for deducing a rough estimation
of the current LOB status, despite the fact that orders are
frequently submitted and cancelled.

The Market Events Simulator (ES)
The ES predicts the LOB from a dynamic perspective. As
market participants, particularly algorithmic trading sys-
tems, submit and cancel orders at millisecond granularity,
we model arrival of limit orders at different price levels as
a probabilistic process by the means of continuous RNNs.
Following prior probabilistic modelling of the LOB, we as-
sume the occurrences of market events follow independent
Poisson processes with time-varying arrival rates, and con-
sequently their aggregation effect on net order arrivals still
follows a pooled inhomegeneous Poisson process.

We derive the vector of net order arrival rates ΛI−s =

[λ
a(2)
I−s , ..., λ

a(L)
I−s ] for different price levels at time TI−s di-

rectly from the latent state hI−s using MLP layers as:

hI−s = ODEsolver(fθ, hI−s−1, (tI−s−1, tI−s)) (8)

ΛI−s = MLP(hI−s) (9)

where fθ is a neural network parameterized by θ, which is
learned in a data-driven manner to deduce the derivative of
the latent state. After acquiring the trajectory of Λ at all trade
times over the defined length of time steps, we calculate the
accumulated order volumes between [TI−S , TI ] as:

I−1∑
i=I−S

Λi × (Ti+1 − Ti) (10)
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The Weighting Scheme (WS)
We use an adaptive weighting scheme to combine the HC
and ES predictions. A weighting vector with length equal to
the number of price levels on which volumes are predicted
(here equal to four) is derived from the masking sequence
of ask quotes used in the HC. The masking sequence of ask
quotes history indicates the timing and abundancy of records
at each price level, and a higher weighting is given to price
levels with a recent and abundant quote history as this in-
formation is more reliable. We again use a GRU module to
encode the masking sequence, and the decoded information
after sigmoid activation indicates the reliability of the HC
prediction at each price level. By balancing the predictions
according to the weighting scheme, the model produces its
final prediction of order volumes at pa(2)I , ..., p

a(L)
I .

Empirical Analysis of LOBRM
We present an empirical analysis of LOBRM on real world
LOB data provided by LOBSTER for one full day of trad-
ing (12/06/2012) for two small-tick technology stocks (Mi-
crosoft, symbol MSFT; and Intel, symbol INTC).2 These
data contain ≈1 million LOB updates.

Data Preprocessing
Following Blanchet, Chen, and Pei (2017), we select unique
time points on which trades happen for LOB recreation. As a
common practice to reduce noise, we also remove LOB data
during the first half-hour after market open and the last half-
hour before market close. This process results in 10K time
series samples over 5.5 hours of trading. We then directly
extract TAQ data from the LOB and its affiliated message
book. To alleviate the effect of outliers, we divide all vol-
ume numbers by 100 and winsorize the data by the range
[0.005, 0.995]. The processed data distribution is shown in
Fig. 4. We set parameters S = 100 and k = 8. After test-
ing S = {50, 100, 150}, we found S = 100 has best per-
formance; while k is selected to cover more than 90% of
observed price movements in window of size S.

For training and testing the source model, we extract TAQ
(top line) and LOB data from the full LOBSTER dataset.
These data are then converted to time series samples using a
rolling window of size S = 100, such that the first sample
consists of TAQ histories at timesteps 1-100 and is labeled
by LOB volume at deep price levels at time step 100. The
second sample consists of TAQ history at timesteps 2-101
and is labeled using LOB volume at deep price levels at time
step 101, etc. Samples are then shuffled (producing a random
ordering) and split into train (80%) and test (20%) sets.

Comparison of Models in LOB Prediction
We first illustrate LOB prediction performance of main-
stream regression and machine learning methods: (1) Ridge
Regression (RR); (2) Support Vector Regression (SVR); (3)
Random Forest (RF); and (4) Single Layer Feedforward Net-
work (SLFN). We then evaluate the performance of LO-
BRMs with ODE-RNN substituted by four discrete RNN

2https://lobsterdata.com/info/DataSamples.php

 

Figure 4: 2-D distribution of the dataset after winsorization.

modules: (1) LSTM; (2) LSTM-T, with time concatenated
input; (3) GRU; and (4) GRU-T, with time concatenated in-
put. Finally, we show the performance of the full LOBRM.

In the HC and ES, latent size is set to 32. Decoders consist
of two MLP layers containing 64 units, with LeakyReLU
and Tanh activation respectively. In the WS, latent size is set
to 16, and the decoder consists of one MLP layer containing
16 units with Sigmoid activation. The network used to derive
the derivative of the latent state consists of three MLP layers
containing 64 units with Tanh activation. The Euler method
is used to solve differential equations for ODE-RNN. Batch
size is set to 64 and loss function is L1 loss. We use 80%
of the shuffled data to train the model. The initial learning
rate is set to 1e-2 and it gradually decays to 1e-3, with a
decay rate 0.999. It roughly takes 1000 and 250 iterations
for discrete and continuous LOBRMs to converge.

To evaluate these models, three criteria are used: (1) L1
loss function is used to measure the average absolute dis-
tance between the predicted volume and the ground truth
volume; (2) L1 loss/average volume in ground truth, which
measures the prediction accuracy as a percentage; and (3)
R-squared, calculated on the test data, using the method pre-
sented by Blanchet, Chen, and Pei (2017) to gain a better
comparison with the existing literature.

Table 1 presents evaluation results, and demonstrates that
the LOBRM with ODE-RNN module outperforms alterna-
tive discrete RNN modules on all criteria. Loss curves (not
shown) indicate that the LOBRM with continuous ODE-
RNN is more efficient, reaching a lower loss value after 50
iterations than the discrete RNNs reach after 1000 iterations.
We find that the concatenation of time onto feature vectors
in discrete RNN models has little effect on the model per-
formance. Additionally, we observe that non-linear models
overwhelmingly outperform linear models, the fact of which
is consistent with Sirignano and Cont (2019).

To the authors’ knowledge, this is the first deep learn-
ing attempt to address the problem of recreating the LOB,
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Model Type Train Loss Test Loss Test Loss (%) R2

Bid Ask Bid Ask Bid Ask Bid Ask

RR (Linear) 30.94 26.94 32.03 27.04 17.32% 15.22% 0.169 0.141
SVR (Linear) 30.93 26.92 31.99 26.97 17.30% 15.18% 0.167 0.145
RF (Non-Linear) 7.29 6.23 19.45 15.98 10.52% 8.99% 0.638 0.641
SLFN (Non-Linear) 5.88 5.40 18.62 16.43 10.07% 9.25% 0.627 0.609
LOBRM (GRU) (Discrete RNN) 10.95 9.69 15.44 13.56 8.35% 7.63% 0.726 0.675
LOBRM (GRU-T) (Discrete RNN) 11.96 9.28 16.96 13.17 9.17% 7.41% 0.687 0.688
LOBRM (LSTM) (Discrete RNN) 11.91 9.38 17.28 13.83 9.35% 7.79% 0.674 0.681
LOBRM (LSTM-T) (Discrete RNN) 11.77 9.93 15.99 13.86 8.65% 7.80% 0.695 0.675
LOBRM (ODE-RNN) (Continuous RNN) 7.22 6.62 13.61 11.56 7.36% 6.50% 0.773 0.753

Table 1: Comparison between models. Introducing non-linearity and temporal continuity significantly enhance LOB prediction.

Train Loss Test Loss Test Loss (%) R2

Bid Ask Bid Ask Bid Ask Bid Ask

HC 26.44 22.73 28.10 23.33 15.20% 12.57% 0.273 0.291
ES 7.51 6.91 13.83 12.44 7.48% 7.00% 0.769 0.723
HC + ES 7.71 7.06 13.36 11.62 7.23% 6.54% 0.775 0.743
HC + ES + WS 7.22 6.62 13.61 11.56 7.36% 6.50% 0.773 0.753

Table 2: Ablation study (HC = History Compiler; ES = Event Simulator; WS = Weighting Scheme).

therefore we are unable to compare results with the deep
learning literature. While statistical models have previously
been used to approach a similar problem, results comparison
is not ideal as either the evaluation criteria are different or
models are for different time scales. The most similar study
is by Blanchet, Chen, and Pei (2017), who present R-squared
values in the range [0.81, 0.88] for daily average volume
at different price levels. However, in comparison, our R-
squared values presented in Table 1 are regressed against the
ground truth with no averaging procedure. When we average
the predictions over every batch at each price level, which
transforms volume predictions into approximately five min-
utes frequency, the value of R-squared is over 0.9. This value
would rise again if our predictions are averaged into daily
frequency. Therefore, we suggest performance of the full
LOBRM is superior than related work in the literature.

Ablation Study
We conduct an ablation study to investigate the contribution
to prediction accuracy of each module in the LOBRM. Four
experiments are conducted: HC, using only the history com-
piler; ES, using only the market events simulator; HC+ES,
which includes the history compiler and event simulator,
using a pre-defined weighting scheme to combine outputs;
and HC+ES+WS, which is the full LOBRM with adaptive
weighting scheme. Model specifications are the same as Ex-
periment I, except all model training lasts 250 iterations.

Results from the ablation study are presented in Table 2.
We see that predictions from the HC alone have relatively
high error. In comparison, the ES achieves much higher
performance, and demonstrates that the market events sim-
ulator, dominated by the ODE-RNN, is the most impor-
tant component in the LOBRM. Finally, combining the pre-
dictions using either the pre-defined or adaptive weighting

Train Loss Test Loss Test Loss (%) R2

Bid Side 3.96 17.70 9.78% 0.685
Ask Side 4.30 15.04 8.95% 0.649

Table 3: Transfer learning results.

scheme achieves the best test performance, suggesting that
the history compiler can add benefit when used in con-
junction with the event simulator. We conduct Wilcoxon
signed rank tests on the test L1 loss between different ex-
periment sets to test whether the improvement is statisti-
cally significant. We find that ES has lower test loss than
HC (p-value<0.01, bid/ask side) and HC+ES has lower test
loss than ES (p-value<0.01, bid/ask side). Although the WS
module contributes little to accuracy, it makes the full LO-
BRM more flexible and we find in later experiments that
its transferred model performs better. Therefore, we proceed
with the full LOBRM as our main model.

Transfer Learning
We attempt transfer learning (Pratt 1993; Pan and Yang
2009) by using the full LOBRM trained on one stock to per-
form prediction on a different stock. We first learn the source
model on the MSFT dataset and then fine tune the model for
INTC, using only 30% of INTC data for the fine tuning. The
model specifications used are the same as Experiment I, ex-
cept that batch size, final learning rate, and number of itera-
tions are set as 32, 5e-4, and 500 respectively.

Results are shown in Table 3. We see that the accuracy
of the transferred model for INTC (Table 3) is lower than
the accuracy of the fully trained model for MSFT (Table 1).
However, the transferred model reaches an accuracy that is
approximately equivalent to a fully trained model using dis-
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Figure 5: Visualization of the difference between order vol-
umes in the real and the recreated LOB for symbol INTC.
Colors indicate volume differences; time is seconds since
midnight. Average volume across all price levels ≈ 17, 500.

LOB Data Train Accuracy Test Accuracy

Top level only (Quote) 84.05% 75.17%
Real LOB (LOBSTER) 93.94% 81.14%
Recreated LOB (LOBRM) 93.93% 79.75%

Table 4: Mid-price movement prediction results.

crete RNNs (Table 1).
Fig. 5 presents a visualisation of the difference between

the real and the recreated LOB for INTC, during a random
time period. We see that the differences are mostly under
2000 units, which demonstrates the utility of the transferred
model and provides evidence that it is possible to apply the
LOBRM to financial assets with limited LOB training data.

Application Scenario
Finally, we provide a potential application scenario of the
recreated LOB for INTC in order to demonstrate that the
recreated LOB contains the majority of information in the
real LOB. For market practitioners, LOB data is a valuable
source of information for predicting future mid price trends.
Here, we compare the future mid-price prediction accuracy
of using: (i) the recreated LOB; (ii) the real LOB; and (iii)
only the first level of LOB (equivalent to using quote data
only). The model attempts to predict the mid-price move-
ment at the next time point as up, same, or down. To pre-
dict mid-price, we follow the method proposed by Zhang,
Zohren, and Roberts (2019).

The mid price prediction model has two convolution lay-
ers with 16 [1 ∗ 2] kernels and [1 ∗ 2] strides in the first
layer, and 16 [1 ∗ 5] kernels and [1 ∗ 5] strides in the sec-
ond layer. These settings are chosen to fit the structure of the
LOB. Both layers are followed by batch normalization lay-
ers and LeakyReLU activation. The outputs from the convo-
lutional layers are used as sequential inputs into a GRU mod-
ule. To enhance accuracy, we replace the inception module
with a temporal attention module (Luong, Pham, and Man-
ning 2015). The output is activated by a Softmax function
to produce a probabilistic distribution over three trend la-
bels. For data preprocessing, we run a rolling average of five

time steps to alleviate label imbalance (Ntakaris et al. 2018).
Label distribution after preprocessing is approximately bal-
anced, with 31%, 39%, and 30% for up, same, and down,
respectively. We train the model with cross entropy loss and
run experiments for 200 iterations.

Table 4 presents results. We see that using only the top
level of the LOB achieves much lower accuracy than us-
ing a real LOB with five price levels. This result conforms
with the finding that the top level accounts for ≈ 80% of fu-
ture price movements (Cao, Hansch, and Wang 2009). The
real LOB accuracy of 81.14% is also consistent with the
accuracy range [0.75, 0.84] for the same three-class classi-
fication problem presented by Zhang, Zohren, and Roberts
(2019), and higher than the range [0.65, 0.76] for the two-
class problem (up, down) presented by Sirignano and Cont
(2019). More pertinently, the LOBRM has only 1.5% lower
accuracy than the real LOB, and 4.5% higher accuracy than
the top level, demonstrating that the LOBRM can recover
the majority of LOB information.

Conclusion
We have presented the LOB recreation model (LOBRM) to
recover the LOB of five price levels for small-tick stocks
from only TAQ data. To the authors’ knowledge, this is the
first attempt to solve this problem from a deep learning per-
spective. The LOBRM contains three components: a history
compiler, a market events simulator, and an adaptive weight-
ing scheme. We have demonstrated accuracy is improved by
encoding irregularly sampled TAQ data into a continuous la-
tent state using an ODE-RNN, compared with using discrete
RNN variants. Through an ablation study, we find that even
though the market events simulator plays a dominant role in
LOB prediction accuracy, the combination of all three com-
ponents further improves accuracy. The results of applying
transfer learning show that the knowledge learned on LOB
data for one stock can be transferred to a different stock with
a relatively small amount of additional data needed for fine
tuning. Finally, we demonstrated that the recreated LOB can
be effectively applied to the real world scenario of predict-
ing future mid-price movements. The LOBRM enables us to
create a synthetic LOB at no extra cost from only TAQ data.
In cases where either the historical LOB records are incom-
plete, or online streaming of the LOB data is prohibitively
expensive, the LOBRM can be a valuable tool for practi-
tioners and researchers alike.

Limitations and Future Work Since we also suffer from
the scarce availability of public LOB data, an obvious limi-
tation of this research is that we only train and test the LO-
BRM on two intraday datasets. There exist LOB datasets
with longer time horizons, such as the FI-2010 dataset
(Ntakaris et al. 2018), but unfortunately this dataset is miss-
ing timestamps. We have recently sourced additional LOB-
STER data and will continue to conduct larger scale re-
search. We also plan to use the finding of Sirignano and
Cont (2019) to attempt a universal LOBRM model; and will
incorporate the use of simulation platforms to model LOB
recreation and mid-price prediction for automated trading.
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