
GTA: Graph Truncated Attention for Retrosynthesis

Seung-Woo Seo *†1, You Young Song*1

June Yong Yang2, Seohui Bae2, Hankook Lee2, Jinwoo Shin2, Sung Ju Hwang2, Eunho Yang2

1 Samsung Advanced Institute of Technology (SAIT), Samsung Electronics
2 Korea Advanced Institute of Science and Technology (KAIST)

{sw32.seo, yysong02}@gmail.com, {laoconeth, shbae73, hankook.lee, jinwoos, sjhwang82, eunhoy}@kaist.ac.kr

Abstract

Retrosynthesis is the task of predicting reactant molecules
from a given product molecule and is, important in organic
chemistry because the identification of a synthetic path is as
demanding as the discovery of new chemical compounds. Re-
cently, the retrosynthesis task has been solved automatically
without human expertise using powerful deep learning mod-
els. Recent deep models are primarily based on seq2seq or
graph neural networks depending on the function of molecu-
lar representation, sequence, or graph. Current state-of-the-
art models represent a molecule as a graph, but they re-
quire joint training with auxiliary prediction tasks, such as the
most probable reaction template or reaction center prediction.
Furthermore, they require additional labels by experienced
chemists, thereby incurring additional cost. Herein, we pro-
pose a novel template-free model, i.e., Graph Truncated At-
tention (GTA), which leverages both sequence and graph rep-
resentations by inserting graphical information into a seq2seq
model. The proposed GTA model masks the self-attention
layer using the adjacency matrix of product molecule in the
encoder and applies a new loss using atom mapping acquired
from an automated algorithm to the cross-attention layer in
the decoder. Our model achieves new state-of-the-art records,
i.e., exact match top-1 and top-10 accuracies of 51.1% and
81.6% on the USPTO-50k benchmark dataset, respectively,
and 46.0% and 70.0% on the USPTO-full dataset, respec-
tively, both without any reaction class information. The GTA
model surpasses prior graph-based template-free models by
2% and 7% in terms of the top-1 and top-10 accuracies
on the USPTO-50k dataset, respectively, and by over 6%
for both the top-1 and top-10 accuracies on the USPTO-full
dataset.

Introduction
In pharmaceuticals and organic chemistry, the synthesis of
a certain chemical compound is equally important as iden-
tifying new compounds with the desired properties. Ret-
rosynthesis first formulated by (Corey 1988, 1991), is the
task of predicting a set of reactant molecules that is syn-
thesized to a specified product molecule by identifying the
inverse reaction pathway. Since its coinage, chemists have
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Figure 1: Example of reaction: Synthesis of benzene (right)
from furan (left) and ethylene (middle). Each molecule is
expressed in SMILES notation.

attempted to adopt computer-assisted methods in retrosyn-
thetic analysis to achieve fast and efficient reactant candi-
date searches. Owing to the recent success of deep learn-
ing in solving various chemical tasks (Feinberg et al. 2018;
You et al. 2018; Altae-Tran et al. 2017; Sanchez-Lengeling
and Aspuru-Guzik 2018), studies have been conducted to
address the retrosynthesis problem in a data-driven manner
using deep learning (Liu et al. 2017; Lee et al. 2019; Co-
ley et al. 2017; Dai et al. 2019; Segler and Waller 2017; Shi
et al. 2020). These deep learning-based approaches attempt
to improve the current retrosynthesis performance and en-
able task automation by excluding human intervention and
domain knowledge usage, resulting in both time and cost ef-
fectiveness.

Recent deep-learning-based approaches for retrosynthesis
can be categorized into two groups: ‘template-based’ and
‘template-free’. A template is a set of rules describing the
manner in which reactants transform into a product using
atom-wise mapping information. Blending such information
into a model requires well-established domain knowledge
managed by a professional. Hence, current state-of-the-art
template-based models such as that by Dai et al. exhibit
better performances compared with those of template-free
models (Shi et al. 2020). However, reactions not included
by extracted templates are barely predicted using template-
based models (Liu et al. 2017; Chen et al. 2019), resulting
in coverage limitation, which hinders generalization. There-
fore, template-free models can perform generalization be-
yond the extracted templates by learning data pertaining to
reactions, reactors, and products.

Template-free retrosynthesis models, i.e., the focus of
this study, are further dichotomized by molecule represen-
tations, i.e., sequences or graphs. The dominant represen-
tation among recent studies involving template-free models
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(Liu et al. 2017; Lee et al. 2019; Karpov, Godin, and Tetko
2019; Chen et al. 2019) is a sequence, e.g., the simplified
molecular-input line-entry system (SMILES), as shown in
Figure 1, which is widely adopted in the field of cheminfor-
matics (Gasteiger and Engel 2006). This form of molecular
representation is advantageous as effective seq2seq models
(Vaswani et al. 2017a) can be utilized.

Using the graphical nature of molecules, state-of-the-art
performance was achieved among template-free models re-
cently by regarding molecules as graphs as well as perform-
ing reaction center prediction, splitting molecules into syn-
thons (molecular fragments from products), and translating
synthons to reactants (i.e., graph to graph, G2G) (Shi et al.
2020). However, such an approach requires additional effort
with expert domain knowledge to generate additional labels,
and a fully end-to-end graph to graph translation model has
yet to be established. Moreover, it is noteworthy that the pro-
cedures of G2Gs are the same as those of template-based
models. The only difference is that the template is a set of re-
action centers and functional groups, whereas G2Gs predict
them separately. Hence, G2Gs are affected by the coverage
limitation issue, as in template-based models.

Herein, we propose a new model combining the SMILES
and graph strengths to benefit from their advantages. First,
we reanalyzed the untapped potential of Transformer-based
seq2seq models (Vaswani et al. 2017a). We demonstrate
that Transformer-based models have been performed sim-
ply because their various hyperparameters were not fully in-
vestigated and optimized. If adjusted appropriately, even a
vanilla Transformer with simple data augmentation for se-
quence representation can outperform state-of-the-art graph
models (Shi et al. 2020) significantly. Furthermore, we pro-
pose a novel method known as Graph-Truncated Atten-
tion (GTA), which affords the advantages of both graph and
sequence representations by encouraging the graph neural
network characteristics of the transformer architecture. Our
method yields record values on both the USPTO-50k and
USPTO-full datasets in every exact match top-k accuracy.
Our contributions are as follows:

• We disprove the conclusion of a recent study that graph-
based models outperform transformer-based models when
processing sequence representations of molecules. We
demonstrate that Transformer-based models have been
investigated without full optimization. Using our opti-
mized parameters, a vanilla Transformer trained on the
augmented USPTO-50k dataset achieved top-1 and top-
10 accuracies of 49.0% and 79.3%, respectively.

• We propose a novel graph-truncated attention method
that utilizes the graph-sequence duality of molecules for
retrosynthesis. We accomplish our purpose of using the
graph adjacency matrix as a mask in sequence modeling
without introducing additional parameters.

• We validate the superiority of the proposed architec-
ture on the standard USPTO-50k benchmark dataset and
demonstrate record values of top-1 and top-10 accuracies
of 51.1 % and 81.6 %, respectively. The best-achieved
top-1 and top-10 accuracies on the USPTO-full dataset
are 46.0 % and 70.0 %, respectively.

Related Works
Retrosynthesis models Validating templates experimen-
tally require a significant amount of time, e.g., 15 years for
70k templates (Bishop, Klajn, and Grzybowski 2006; Grzy-
bowski et al. 2009; Kowalik et al. 2012; Szymkuć et al.
2016; Klucznik et al. 2018; Badowski et al. 2020); and, diffi-
cult to monitor the increasing speed of new reactions added
to the database, e.g., approximately 2 million per year in
2017 to 2019 (Reaxys 2017), although automatic template
extraction is available (Coley et al. 2017).

Template-free models are not affected by above limita-
tions. The first template-free model used the seq2seq model
to predict the reactant sequence from a specified product se-
quence (Liu et al. 2017). A bidirectional LSTM encoder and
decoder with encoder-decoder attention were used, and the
model showed results comparable to those of a template-
based expert system. A multi-head self-attention model or
Transformer (Vaswani et al. 2017a) was adopted. (Kar-
pov, Godin, and Tetko 2019) reported that character-wise
tokenization and cyclic learning rate scheduling improved
the model performance without modifying the Transformer.
(Chen et al. 2019) added a latent variable on the top of a
Transformer to increase the diversity of predictions. A re-
cent template-free model G2Gs using graph representation,
yielded excellent performance on the USPTO-50k dataset
(Shi et al. 2020). However, the procedure of G2Gs is similar
to that of template-based models, as they require additional
predictions to identify the reaction center; this involves sig-
nificant dependence on atom-mapping labeled by chemists
and translation from synthons to equivalent reactants.

Unlike the existing models mentioned above, our GTA
model focuses on the graph-sequence duality of molecules
for the first time. GTA uses both chemical sequences and
graphs to model retrosynthetic analysis without any additive
parameters to the vanilla Transformer. It guides both self-
and cross-attention to a more explainable direction based
on only its graphical nature. Additionally, we re-evaluated
the performance of a vanilla Transformer for retrosynthesis
and discovered that it can surpass the current state-of-the-art
model in terms of the top-k accuracies using a graph.

Attention study Other studies regarding the nature of at-
tention have been conducted. Truncated self-attention for re-
ducing latency and computational cost in speech-recognition
tasks was investigated, and it was discovered that the per-
formance deteriorated (Yeh et al. 2019). (Raganato, Scher-
rer, and Tiedemann 2020) reported that fixed encoder self-
attention is more effective for smaller-sized databases.
(Maziarka et al. 2020) added the softmax function of the
inter-atomic distance and adjacency matrix of a molecular
graph to learn the attention for molecular property prediction
tasks. (Tay et al. 2020) suggested synthetic self-attention,
which has a wider expressive space than dot-product atten-
tion and requires less calculation complexity owing to its
dense layer and random attention. However, GTA does not
fix or widen the expressive space of self-attention. In fact,
GTA limits the attention space using a graph structure that
can be applied to both self- and cross-attention.
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Background and Setup
Notation Throughout this paper, let P andR denote prod-
uct and reactant molecules, respectively. Let also G(mol)
and S(mol) denote the corresponding molecular graph and
SMILES representations for a molecule mol ∈ {P,R}. We
use Tmol and Nmol to denote the number of tokens and
atoms in S(mol) respectively. The number of atoms are in
fact same as the number of nodes in G(mol).

Molecule as sequence Simplified molecular-input line-
entry system (SMILES) (Weininger 1988) is a typical se-
quence molecular representation where a molecule is ex-
pressed in a sequence of characters. Since a SMILES nota-
tion of a molecule is not unique and varies depending on the
choice of the center atom or the start of the sequence, canon-
icalization algorithms are often utilized to generate a unique
SMILES string among all valid strings, as in RDkit (Lan-
drum et al. 2006). Thanks to its simplicity, SMILES repre-
sentations with enough information inside, is widely used
as descriptors in cheminformatics, e.g., molecular property
prediction (Ramakrishnan et al. 2014; Ghaedi 2015), molec-
ular design (Sanchez-Lengeling and Aspuru-Guzik 2018)
and reaction prediction (Schwaller et al. 2019). In this work,
we follow the SMILES tokenization of (Chen et al. 2019),
which separates each atom (e.g., B, C, N, O), and non-atom
tokens such as bonds (e.g., -, =, #), parentheses, and numbers
for cyclic structures with whitespace.

Transformer and masked self-attention The retrosyn-
thesis problem, the goal of this work, is to reversely pre-
dict the process of a synthesis reaction in which a number
of reactants react to give a single product. The Transformer
(Vaswani et al. 2017b) architecture with a standard encoder-
decoder structure, is the current de facto for solving numer-
ous natural language processing (NLP) tasks such as ma-
chine translation as they are capable of learning long-range
dependencies in tokens through self-attention. For retrosyn-
thesis tasks, the Molecular Transformer (Schwaller et al.
2019) performs another ‘translation’ task with SMILES
given target product P to produce a set of reactants {R}.

The key component of the Transformer is the attention
layer that allows the tokens to effectively access the informa-
tion in other tokens. Formally, for queryQ ∈ RTmol×dk , key
K ∈ RTmol×dk and value V ∈ RTmol×dv matrices, each of
which is linearly transformed by learnable parameters from
the input token, we have

S =
QKT

√
dk

,

[
Masking(S,M)

]
ij
=

{
sij if mij = 1

−∞ if mij = 0
, (1)

Attention(Q,K, V ) = softmax
(

Masking(S,M)
)
V

where S = (sij) and M = (mij) ∈ {0, 1}Tmol×Tmol are
score and mask matrices. The mask matrix M is customized
according to the purpose of each attention modules - for ex-
ample, a lower triangular matrix for decoder self-attention
and a matrix of ones for encoder self-attention.

(a)

1 c c c c c 1c 1 c c c c c 1c

(b)

(c) (d) (e)

Figure 2: (a) Chemical graph of benzene and its SMILES
(b) Graph Truncated Attention (left: mask for encoder self-
attention (of red); right: atom mapping toward which mask
for cross-attention is encouraged (of red)); (c), (d), (e) ex-
amples of modified adjacency matrix at graph geodesic dis-
tances 1, 2, and 3 applied as mask to self-attention.

Graph Truncated Attention Framework
In this section, we introduce our graph truncated attention
(GTA) framework. The conceptual idea of our model is to
inject the knowledge of molecular graphs into the self- and
cross-attention layers of the Transformer by truncating their
attentions with respect to the graph structure. Based on the
fact that the atom tokens in SMILES correspond to the atoms
in a molecular graph, the attention modules can focus more
on chemically relevant atoms with truncated attention con-
nection.

Although most actively used in NLP fields, Transformer
architecture can be reinterpreted as a particular kind of graph
neural network (GNN). For example, tokens in source and
target sequences can be viewed as nodes, and attentions are
edge features connected with every token but its values are
unknown initially. Then, the training Transformer model is
a step to figure out edge features that well explain training
data. More detail in (Joshi 2020; Ye et al. 2018).

Leveraging this connection, we extract information from
both SMILES and graph by enhancing the graph neural net-
work nature of the vanilla Transformer with the connec-
tion of given graph and sequence representations. Toward
this, we propose a novel attention block of Transformer for
SMILES, which we name a graph truncated attention (GTA),
that utilizes corresponding graph information in computing
attentions using masks, inspired by the recent success of us-
ing masks in pre-trained language model (Devlin et al. 2019;
Song et al. 2019; Ghazvininejad et al. 2019). GTA can re-
duce the burden of training while the attention layer learns
graph structure and hence perform better than vanilla Trans-
former. Since self-attention and cross-attention have differ-
ent shapes, we devise two different truncation strategy for
each of them.
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REACTANTGTA-cross
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Figure 3: Graph Truncated Attention to Transformer (GTA-self: Self-attention encoder structure, GTA-cross: Selective MSE
loss between cross-attention and atom-mapping in decoder)

Graph-truncated self-attention (GTA-self) GTA-self
constructs a maskM ∈ {0, 1}Nmol×Nmol utilizing the graph
representation of molecule and truncate the attention using
this mask in the attention procedure in (1). More specifi-
cally, we set mij = 1 if the geodesic distance between atom
i and j on the molecule graph is d (or equivalently, if atom i
and j are d-hop neighbors) and allow to attend only between
these atoms. Otherwise, mij = 0. Note that d is the tunable
hyper-parameter that can be a set if we want to allow to at-
tend to atoms in multiple hops. In this paper, our model uses
d = 1, 2, 3, 4 for entire experiments.

Through the multi-head attention introduced in the origi-
nal Transformer (Vaswani et al. 2017b), the above-truncated
atom attention according to geodesic distance can be en-
riched. Let distance matrix, D = (dij) be the geodesic dis-
tance between the atoms in G(mol), then mask matrix for
h-th head is set as:

mij =

{
1 if dij = dh
0 otherwise

(2)

where dh is the target geodesic distance to attend for head
h. GTA can learn a richer representation by different heads
paying attention to atoms at a different distance. It is also
worth noting that if all heads are using dh = 1, GTA
would become similar to Graph Attention Network (Velick-
ovic et al. 2018). In the experiments, each two heads have
the same target distance as dh = (h mod 4) + 1 where h is
indices of heads from 0 to 7.

One caveat here is that not all tokens in SMILES match
the nodes of its chemical graph representation, especially,
tokens for non-atoms (e.g., =, −, #, ., etc). These tokens are
closely related to both atoms and other non-atoms tokens in
a wide range. For example, the type of bond tokens such
as double, =, or triple, #, can be clarified in the entire con-
text and the digit tokens of cyclic structure mark where the
ring opens and closes, which would require a wider range of

information. Therefore, GTA-self is designed to allow non-
atom tokens to exchange attentions with all other tokens
regardless of the molecule graph structure. Overall, when
all of these non-atom tokens are considered, the size of the
mask matrix becomes larger than the previously considered
mask only between atom tokens.

Figure 2 illustrates the examples of mask M with differ-
ent choices of d for benzene ring. Finally, this maskM is ap-
plied to score, S to update the graph-related attentions only
(see Figure 3).

Graph-truncated cross-attention (GTA-cross) Since the
reaction is not a process that completely breaks down
molecules to produce a completely new product, product and
reactant molecules usually have quite common structures
and hence it is possible to make atom-mappings between
product and reactant atoms. From here, we make a simple
assumption that ideal cross-attention should catch this atom-
mappings because cross-attention reflect the relationship be-
tween tokens in product and reactant.

Unfortunately, how to make atom-mapping is not triv-
ial in general and has become an active research topic in
chemistry (Jaworski et al. 2019). For example, many map-
ping algorithms start from finding maximum common sub-
structure (MCS) which is the largest structure that shared
by two molecules. However, finding such MCS is known
to be a computationally intractable NP-hard problem (Garey
and Johnson 1979). As such, various methods of approxi-
mating atom mapping may be controversial depending on
performance and computational efficiency, which is out of
the scope of our work. As it will become clearer later, unlike
other methods (Dai et al. 2019; Shi et al. 2020; Coley, Green,
and Jensen 2019) based on atom mapping for retrosynthesis,
our GTA-cross does not require exact atom mapping for all
nodes but only leverages the information of certain pairs.
Therefore, for simplicity, we simply use FMCS algorithm
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(Dalke and Hastings 2013) implemented in the standard RD-
kit (Landrum et al. 2006).

Given the (partial) information of atom mapping between
product and reactant molecules, the mask for cross-attention
M = (mij) ∈ {0, 1}TR×TP is constructed as follows:

mij =

{
1 if Ri′ ←−−−→

mapped
Pj′

0 else
(3)

where i′ and j′ are indices of nodes in G(R) and G(P ) cor-
responding to i- and j-th tokens in S(R) and S(P ), Ri′ and
Pj′ denote the nodes in G(R) and G(P ), respectively. That
is, the element of mask for cross-attention is 1 when cor-
responding atoms are matched by the atom mapping and 0
otherwise, as shown in Figure 2(b), and 3.

The way of using mask constructed from (3) in GTA-cross
should be a completely different one from that of using a
mask in GTA-self following the standard way (1). This is
not just because the atom mapping is not perfect as discuss
above but because the auto-regressive nature of decoder in
cross attention makes incomplete SMILES and unable to
find mapping during sequence generation at inference time.
To side-step this issue, GTA-cross does not force attention
by a hard mask but encourages the attention by selective
`2 loss only with certain information (i.e. where mij = 1)
among uncertain and incomplete atom mapping so that the
cross attention gradually learns complete atom-mapping:

Lattn =
∑[

(Mcross −Across)
2 �Mcross

]
(4)

where Mcross is the mask from (3), Across is a cross-attention
matrix and � is Hadamard product (element-wise multipli-
cation).

Finally along with GTA-self component, the overall loss
of GTA is Ltotal = Lce +αLattn where the effect of GTA-self
is implicitly represented since the self attention generated
by GTA-self contributes to cross-entropy loss Lce through
model outputs. Here α is the tunable hyper-parameter to bal-
ance two loss terms and we set it as 1.0 for all our experi-
ments.

Experiments
In this section, we provide experimental justifications to our
statements. First, as stated in our contributions, we show that
even the naive Transformer is capable of achieving state-
of-the-art performance simply by tuning hyperparameters.
Second, we demonstrate the even higher performance of the
vanilla Transformer equipped with our graph-truncated at-
tention.

Experimental Setup
Datasets and augmentation strategy We use the open-
source reaction database from U.S. patent, USPTO-full and
USPTO-50k as a benchmark in this study which was used in
previous studies. Detailed information on each dataset and
difference between them is well summarized in (Thakkar
et al. 2020). USPTO-full contains the reactions in USPTO
patent from 1976 to 2016, curated by (Lowe 2012, 2017)
that have approximately 1M reactions. USPTO-50k, a subset

of USPTO-full, is refined by randomly choosing 50k out of
630k reactions which are identically and fully atom-mapped
reactions using two different mapping algorithms out of
whole 1M reactions (Schneider, Stiefl, and Landrum 2016).
We follow data splitting strategy of (Dai et al. 2019) which
is randomly dividing train/valid/test set to 80%/10%/10%
of data. We augment the USPTO-50k dataset by changing
the order of reactant molecule(s) as <c1cocc1.C=C> and
<C=C.c1cocc1> in SMILES notation, and changing the
starting atom of SMILES as in (Tetko et al. 2020). For exam-
ple, standard or canonical form of a furan molecule in Fig.
1 is <c1cocc1> in SMILES notation, and we can create an
alternative SMILES representation<o1cccc1> by changing
the starting atom to oxygen. We refer this reactant order-
ing change as ‘ s’ and altering the starting atom as ‘2P2R’,
where 2 denotes one random alternative SMILES of prod-
uct and reactant SMILES are added to original USPTO-50k.
Both augmentation methods are applied to ‘2P2R s’ dataset.
It is worth noting that these kinds of augmentation are in-
compatible with graph-based approaches.

Baselines We compare our method with six different base-
lines from other previous researches and two re-evaluated
baselines that we conducted with our optimized hyper-
parameters and USPTO-50k dataset. BiLSTM (Liu et al.
2017) is the first template-free model with seq2seq LSTM
layers. Transformer is a baseline using self-attention based
seq2seq model reported by (Vaswani et al. 2017a). Latent
model (Chen et al. 2019) implements discrete latent variable
for diverse prediction. We refer to the results of latent size
equal to five with the plain USPTO-50k dataset and their
best result with data augmentation and pre-training. Syn-
tax correction (Zheng et al. 2019) added denoising auto-
encoder which corrects predicted reactant SMILES. G2Gs
(Shi et al. 2020) is the only graph model among template-
free researches. In this paper, we compare our USPTO-50k
results only to the ’template-free’ models except for BiL-
STM in Table 1. We think ‘template-free’ is the hardest but
the most practical problem setting in novel material discov-
ery, as which it may need a new unseen template or the
user may not have enough experience to guess the right re-
action class. Furthermore, to examine the scalability, GTA
is trained with USPTO-full and compared to the template-
based model GLN (Dai et al. 2019) in Table 2.

Evaluation metrics We used top-k exact match accuracy
which is most widely used, and also used in the aforemen-
tioned baselines. Predicted SMILES was standardized using
RDkit package first, and then exact match evaluation was
done. We use k = 1, 3, 5, 10 for performance comparison
using beam search. Beam size of 10 and top-50 predictions
are found to be the optimal settings for our GTA model with
USPTO-50k dataset, while beam size of 10 and top-10 pre-
dictions are used in USPTO-full dataset, hyperparameter op-
timization and ablation study.

Other details GTA is build-up on the work of (Chen et al.
2019) which is based on Open Neural Machine Translation
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Method (Dataset) Top-1 Top-3 Top-5 Top-10

BiLSTM 37.4 52.4 57.0 61.7
Transformer 42.0 57.0 61.9 65.7
Syntax correction 43.7 60.0 65.2 68.7
Latent model, l=1 44.8 62.6 67.7 71.7
Latent model, l=5 40.5 65.1 72.8 79.4
G2Gs 48.9 67.6 72.5 75.5

ONMT (Plain) 44.7 63.6 69.7 75.6
(±0.29) (±0.20) (±0.25) (±0.04)

ONMT (2P2R s) 49.0 65.8 72.5 79.3
(±0.30) (±0.39) (±0.14) (±0.14)

GTA (Plain) 47.3 67.8 73.8 80.1
(±0.29) (±0.35) (±0.20) (±0.19)

GTA (2P2R s) 51.1 67.6 74.8 81.6
(±0.29) (±0.22) (±0.36) (±0.22)

Table 1: Top-k exact match accuracy (%) of template-free
models trained with USPTO-50k dataset. ONMT and GTA
accuracies achieved using optimized hyperparameters. Stan-
dard error with 95% confidence interval written after± sym-
bol.

(ONMT) (Klein et al. 2017, 2018) and Pytorch (Paszke et al.
2017). We also used RDkit (Landrum et al. 2006) for ex-
tracting distance matrix, atom-mapping, and SMILES pre-
and post-processing. GTA implements Transformer archi-
tecture with 6 and 10 layers of both encoder and decoder for
USPTO-50k and USPTO-full dataset, respectively. Embed-
ding size is set to 256, the number of heads is fixed to 8, and
dropout probability to 0.3. We train our model using early-
stopping method, training was stopped without improve-
ment within 40 times in validation loss and accuracy for
every 1000 (for USPTO-50k) and 10000 (for USPTO-full)
steps with a batch size of maximum 4096 tokens in batch.
Relative positional encoding (Shaw, Uszkoreit, and Vaswani
2018) is used with maximum relative distance of 4. Adam
(Kingma and Ba 2015) optimization method with noam de-
cay (Vaswani et al. 2017a) and learning rate scheduling for
8000 warm-up steps on a single Nvidia Tesla V100 GPU
takes approximately 7, 18 hours, and 15 days of training
time for USPTO-50k plain, 2P2R s, and USPTO-full dataset
respectively. All experiments are trained with five seeds
2020 to 2024 and averaged to validate pure model perfor-
mance. Then, we calculate and report the mean and standard
error of mean from the experiments.

To explore the best hyperparameters for our model, we
optimized early stopping step, dropout, number of layers and
maximum relative distance for both ONMT and GTA and
optimized GTA-self distance and GTA-cross alpha for GTA.
These results can be found in Supplementary. In addition,
our implementation, data, and pretrained weight details can
be found in Supplementary.

USPTO-50k Results
Reproducibility Before reporting GTA result, we found
that hyperparameters were not optimized in previous re-

Method USPTO-50k USPTO-full

Top-1 Top-10 Top-1 Top-10

GLN 52.5 83.7 39.3 63.7

GTA 51.1±0.29 81.6±0.22 46.6±0.20 70.4±0.15

Table 2: Top-k exact match accuracy (%) of template-based
GLN and our template-free GTA trained with USPTO-50k
and USPTO-full dataset. Standard error with 95% confi-
dence interval written after ± symbol.

searches with Transformer architecture. They used dropout
probability value of 0.1; however, using 0.3 drastically in-
creases the performance of the vanilla Transformer about
+2.7% and +9.9% point in terms of top-1 and top-10 ac-
curacy, as shown in Table 1 even without data augmentation
(compare Transformer and ONMT(Plain)). When augmen-
tation 2P2R s is applied, the vanilla Transformer breaks pre-
vious state-of-the-art result with 49.0% and 79.3% in terms
of top-1 and top-10 accuracy upon USPTO-50k dataset.

Graph-truncated attention When GTA is applied to
plain USPTO-50k dataset, overall top-k performance in-
creases at least +2.6% point compared to our reproduced
vanilla Transformer. As the same in reproduced results, ap-
plying 2P2R s augmentation gives top-1 accuracy above
50%, surpassing all other template-free models ever re-
ported.

Although the latent model benefited top-10 accuracy, it
sacrificed top-1 accuracy a lot, the worst among reported
value. In contrast, GTA equally increases all of top-k ac-
curacies without sacrifice. Finally, our result successfully
achieves the state-of-the-art template-free result in overall
top-k accuracy, which implies GTA is more accurate and
diverse than previous retrosynthesis models. GTA records
80.1% and 81.6% in top-10 accuracy without and with data
augmentation, respectively, and no decreasing performance
in top-1 accuracy: 47.3% and 51.1% without and with data
augmentation, respectively.

USPTO-full Results
We validated GTA with the more scalable data USPTO-
full dataset, which contains 800k, 100k, and 100k of train,
validation, and test data, respectively. As mentioned above,
USPTO-50k is a refined dataset among 630k reactions that
relies on atom-mapping consistency between two different
mapping algorithms in USPTO-full; USPTO-50k represents
exceptional cases of its superset. Although USPTO-50k may
not reflect the correct character of USPTO-full, none of
the previous experimental results from template-free mod-
els were based on USPTO-full.

The GTA model trained on USPTO-full achieved excel-
lent top-1 and top-10 exact match accuracies of 46.0% and
70.0%, respectively, which were 5.7% higher than those of
the template-based GLN with USPTO-full. Table 2 shows
that the scalability of the template-free GTA is better than
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GTA GTA Plain 2P2R s

-self -cross Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

- - 45.0±0.29 63.6±0.30 69.2±0.41 73.3±0.53 49.6±0.31 65.9±0.22 72.1±0.38 77.8±0.47

- X 45.9±0.28 64.8±0.28 70.5±0.40 74.7±0.45 49.7±0.46 66.3±0.29 72.9±0.36 78.6±0.37

X - 46.8±0.40 65.2±0.19 70.5±0.29 74.9±0.32 51.1±0.32 65.8±0.17 71.9±0.07 77.1±0.33

X X 47.3±0.28 66.7±0.49 72.3±0.30 76.5±0.30 51.1±0.29 67.0±0.29 73.1±0.38 78.4±0.25

Table 3: Ablation study of GTA method. Standard error with 95% confidence interval written after ± symbol.

that of the template-based GLN. Our results clearly indi-
cate that USPTO-full is more appropriate for benchmarking
retrosynthesis tasks. Moreover, models that depend signifi-
cantly on atom-mapping can exploit USPTO-50k because,
unlike USPTO-full, it exhibits atom-mapping consistency.
In other words, USPTO-50k is more accessible for mapping
reactions than the others. The template-based GLN perfor-
mance degradation was 13.2% in terms of top-1 accuracy
on the USPTO-50k and USPTO-full datasets, whereas it
was only 5.1% in the template-free GTA, i.e., less than half
of the GLN degradation when the dataset was expanded to
USPTO-full. Hence, we herein reemphasize the generaliza-
tion of the template-free model.

Ablation Study
Following ablation study is designed to explore the effect of
each GTA-self and GTA-cross modules. Results are shown
in Table 3 with top-k exact match accuracy evaluated using
beam search with beam size of 10 and top-10 predictions
(We note again that beam size of 10 and top-50 predictions
was used for our best performance in Table 1).

Graph-truncated self-attention (GTA-self) When only
GTA-self is applied to Transformer, it gives +1.4% point
margins at least, +1.6% point on average. In particular, its
effect on top-1 accuracy is greatest among the others. On
both of plain and augmented dataset, GTA-self alone results
very close to our best model for top-1 accuracy, showing
only −0.5% or under point of difference. This result im-
plies that encouraging the atom on its sequence domain to
look the atom nearby on its graph domain takes most part
in improvement, supporting that the point of entry of graph-
sequence duality was indeed effective. This extends to two
important points; first, our model is not heavily relying on
the atom-mapping, which are known to require more exper-
tise than FMCS algorithm, and second, the performance has
a room for improvements with advanced mapping algorithm.

Graph-truncated cross-attention (GTA-cross) GTA-
cross alone, likewise, shows marginal but clear gain for
all the case from top-1 to -10 accuracy on plain dataset.
It shows smaller margin of increment (+0.9% point) than
GTA-self (+1.6% point) when they are trained solely on this
plain dataset. Interestingly, GTA-cross shows superior per-
formance gain (+0.7% point) than GTA-self (+0.1% point),
except for top-1, when trained on the augmented dataset.

The result of showing the high capacity of GTA-cross es-
pecially on larger dataset gives us a presumption that the
imperfectness of atom-mapping (derived from FMCS algo-
rithm; trading-off for) could be sufficiently compensated by
large number of data points. Consequently, we now take ben-
efits of low computing cost for not generating near-perfect
atom-mapping while retaining the highest prediction ca-
pacity among all. Lastly, unlike GTA-self which shows a
gradual decrease in margin of improvement from top-1 to
-10 accuracy, GTA-cross behaves exactly reversely, show-
ing its highest margin of improvement in its top-10 accuracy
(+1.3%). GTA-cross and GTA-self behaves in mutual com-
plementary manner, watching each other’s back in retrosyn-
thesis prediction.

Conclusion
We herein proposed a method to solve retrosynthetic anal-
ysis by combining the features of a molecule as both the
SMILES sequence and a graph known as graph-truncated
attention (GTA). This type of sequence-graph duality was
previously overlooked when addressing molecules in deep
learning.

We revisited the transformer architecture as a graph neu-
ral network and identified the entry points of chemical graph
information. Subsequently, we used the distance matrix of
a molecular graph and atom-mapping matrix between the
product and set of reactants as a mask and guide for self-
and cross-attention. In addition, we re-evaluated the perfor-
mance of vanilla transformers, which were underestimated
because of poor optimization. In addition, the GTA demon-
strated the best overall top-k accuracy among the reported
results, i.e., a top-1 accuracy exceeding 50% for the first
time in a template-free model on the UPSTO-50k dataset.

Finally, on the USPTO-full scalable dataset, the GTA out-
performed the template-based GLN by 5.7% and 6.3% in
terms of the top-1 and top-10 accuracies, respectively. This
was attributable to manner in which USPTO-50k was con-
structed. USPTO-50k was built upon reactions that had full
atom mapping without conflict in the algorithms. This condi-
tion benefits models that utilize full atom mapping, although
47% of USPTO-full does not belong to this category.

We anticipate further performance gains using other mod-
els because our method can be combined with other reported
retrosynthesis studies pertaining to attention mechanisms
without conflict. Moreover, other data with graph-sequence
duality might benefit from GTA.
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Ethical Impact
Our model herein was validated against the USPTO dataset,
which included reactions on organic molecules, and we be-
lieve our model is generally applicable to pharmaceutical or
other chemical reaction datasets where chemicals are in the
SMILES or similar sequence-based representations. Deep
learning models for reaction and/or retrosynthesis predic-
tions emphasize both the time and cost effectiveness of using
well trained and automated models instead of relying solely
on human expertise and experiments, as in the past. The mar-
ketplace is supportive of the automation of synthesis pro-
cesses and the establishment of autonomous environments
that strive for a one-click system from discovering the tar-
get product with specified properties for identifying reactant
candidates, optimizing synthetic paths, and testing stability
without or minimal human intervention.

However, these models do not consider the “chemical sta-
bility” and “overall safety” as sufficient related data have not
been collected to be trained or made available to the pub-
lic. Even though we possess updated data, new safety haz-
ards and stability problems can become reactions and/or ret-
rosynthesis models may be used to manage new chemicals
and unseen synthetic paths. Therefore, relevant researchers
and their groups in academia, industries, and elsewhere must
begin to discuss and investigate the screening for the safety
level of the subsequent procedures of “synthesizing pre-
dicted reactants” and “testing stability.”
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