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Abstract

Alzheimer’s Disease (AD) is a chronic neurodegenerative
disease that causes severe problems in patients’ thinking,
memory, and behavior. An early diagnosis is crucial to pre-
vent AD progression; to this end, many algorithmic ap-
proaches have recently been proposed to predict cognitive
decline. However, these predictive models often fail to in-
tegrate heterogeneous genetic and neuroimaging biomarkers
and struggle to handle missing data. In this work we propose
a novel objective function and an associated optimization al-
gorithm to identify cognitive decline related to AD. Our ap-
proach is designed to incorporate dynamic neuroimaging data
by way of a participant-specific augmentation combined with
multimodal data integration aligned via a regression task. Our
approach, in order to incorporate additional side-information,
utilizes structured regularization techniques popularized in
recent AD literature. Armed with the fixed-length vector rep-
resentation learned from the multimodal dynamic and static
modalities, conventional machine learning methods can be
used to predict the clinical outcomes associated with AD.
Our experimental results show that the proposed augmenta-
tion model improves the prediction performance on cognitive
assessment scores for a collection of popular machine learn-
ing algorithms. The results of our approach are interpreted to
validate existing genetic and neuroimaging biomarkers that
have been shown to be predictive of cognitive decline.

Introduction
Alzheimer’s Disease (AD) is a serious neurodegenerative
condition that destroys brain cells and causes progressive
decline in the behavioral and social skills necessary for in-
dependent function. A 2017 report (World Health Organi-
zation 2017) from the World Health Organization (WHO)
estimates that 47 million people suffered from some form of
dementia, of which approximately 60-70% is caused by AD.
The WHO projects that by 2030, the number of individuals
suffering from AD-related dementia will increase to 75 mil-
lion people. In order to combat this public health crisis it is
important that the greater research community develop tools
that can (1) predict the cognitive decline in it’s early stage to
prevent the progression of AD and (2) identify risk factors
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of AD to assist in the development of treatments that can be
used to provide relief for patients suffering from the disease.

Public-private partnerships such as the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (Petersen et al. 2010)
have provided a comprehensive dataset consisting of ge-
netic (e.g., static) biomarkers, such as Single Nucleotide
Polymorphisms (SNPs), and neuroimaging (e.g., dynamic)
biomarkers derived from brain imaging modalities. Recent
algorithmic improvements (Wang et al. 2012d; Brand et al.
2020a) have shown promise in identifying AD from phe-
notypic changes. Although effective, they have modeled the
longitudinal biomarkers as tensors, which inevitably compli-
cates the problem. Other recent works (Lu et al. 2018; Brand
et al. 2019), have leveraged longitudinal modalities to iden-
tify temporal relationships across the modalities. However,
these approaches can only utilize longitudinal data that is
consistent across all participants. This reliance on complete
data is a major limitation and well-known critique (Caruana
et al. 2015) of longitudinal studies. Thus, incorporating mul-
timodal longitudinal data, especially when the participants
have incomplete records, is a critical challenge.

In this work, we propose a novel framework to predict the
cognitive outcomes of participants within the ADNI cohort.
The design of our objective function is motivated by the fol-
lowing four key points. First, we aim to handle the partici-
pants within the ADNI that contain a varying number brain
scans; we handle this through a per-participant application
of principal component analysis (PCA) (Jolliffe 2011) which
is used to augment the most recent available data. Second,
we employ a multimodal factorization approach to combine
the dynamic and static modalities. Third, to guide the mul-
timodal factorization, with any available labeled data, we
align the factorization task with a multitask regression to
predict the cognitive assessment scores of ADNI partici-
pants. Finally, we incorporate structured regularizations to
capture the inter-modality relationships across the dynamic
modalities and intra-modality relationships within the static
modalities. In summary, the primary contributions of this
work are:
• A dynamic-static augmentation approach that integrates

the most recent neuroimaging data to generate a fixed-
length representation, which can be readily fed into
conventional machine learning models. This allows our
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method to utilize all available dynamic data with an in-
consistent number of records.

• A novel objective function based on joint factorization
and regression to link the augmented neuroimaging data
with genetic data and available cognitive scores.

• We derive an efficient solution based on the smoothed it-
eratively reweighted method to optimize the proposed ob-
jective.

• In our experiments, we apply our augmentation to identify
genetic and neuroimaging biomarkers that are predictive
of cognitive decline.

Notations and Problem Formalization
Throughout this paper, we write matrices as bold uppercase
letters and vectors as bold lowercase letters. The i-th row
vector, j-th column vector, and the element at the i-th row
and the j-th column of matrix M are denoted as mi, mj ,
and mi

j respectively. For a matrix M =
[
mi
j

]
, its trace is

defined as tr(M) =
∑
im

i
i and its Frobenius norm is de-

fined as ‖M‖F =
√∑n

i=1

∑m
j=1 |mi

j |2. The trace norm of

M is defined as ‖M‖∗ =
∑min{n,m}
i=1 σi, where σi is the

i-th singular value of M.
For a given longitudinal imaging genetic dataset, phe-

notypic measurements are usually described by biomark-
ers extracted from brain scans. Mathematically, the medical
records of the i-th participant in a studied cohort can be de-
noted as Xi = {Xi,xi}, where i = 1, 2, · · · , n indicates
the index of the participant. Here, Xi = [xi1, · · · ,xini ] ∈
<d×ni collects the available medical records of the i-th par-
ticipant from the baseline (the first time point) to the second
last visit, such that the total number of the medical records of
the i-th participant is ni+1. We note that ni varies across the
dataset due to inconsistent/missing temporal records of the
participants. We use xi ∈ <d to denote the medical record
of the i-th participant at the last (most recent) time point
and use XMR = [x1, · · · ,xn] to summarize these records
of all the participants in the studied cohort. Multiple types
of biomarkers can be extracted from the brain scans, such
as voxel-based morphometry (VBM) and FreeSurfer (FS)
markers. To characterize the data in multiple modalities, we
concatenate the vector representations of these biomarkers
as the phenotypic vector of a participant, i.e., in our study we
write xi = [xV BMi ,xFSi ] and xij = [xV BMij ,xFSij ], where
1 ≤ i ≤ n, 1 ≤ j ≤ ni. Because {xij}ni+1

j=1 describe the
temporal changes of the phenotypes of the i-th participant
over time, Xi is a summarization of the dynamic measure-
ments of the i-th participant. These dynamic measurements
are known broadly as longitudinal data in the literature of
medical image computing and imaging genetic studies.

In addition to the phenotypic measurements of the par-
ticipants of a neuroimaging data set, genotypes of the same
cohort are usually available as well. The SNPs for all partic-
ipants are represented by XSNP = [xSNP1 , . . . ,xSNPn ] ∈
<dSNP×n, where xSNPi is the vector representation of the
SNP profile of the i-th participant. Here we note that XSNP

is static that does not vary over time.

Besides the input phenotypic (dynamic) and genetic
(static) data, our approach aims to predict the cognitive sta-
tus of participants in the ADNI. In a regression on cognitive
scores derived from cognitive tests, we use Yl ∈ <c×l to list
the clinical scores of the first l participants at their last visit,
where c is the number of clinical scores in our study. Here,
without loss of generality, we consider the first l (l ≤ n)
samples as the labeled data for training. Our task is to learn a
projection tensorW = {W1,W2, · · · ,Wn} ∈ <d×r1×n,
by which we can compute the fixed-length biomarker repre-
sentationsWT ⊗XMR = [WT

1 x1,W
T
2 x2, · · · ,WT

nxn] ∈
<r0×n by projecting the most recent medical records of
XMR for all participants.

Our Objective
In this section we describe our objective to learn the
participant-specific projections fi : <d 7→ <r0 , which
can be implemented as a linear projection by computing
zi = WT

i xi.

Learning Group-Structured Representations for
Static Genetic Data
Recent advances in high-throughput genotyping techniques
enable new approaches to study the influence of genetic
variation on brain structure and function. Traditional asso-
ciation studies typically employ independent and pairwise
univariate analysis, which consider SNPs as isolated units
and ignores important underlying interacting relationships
between the units (Wu et al. 2010). However, certain SNPs
are naturally connected via different pathways. For example,
multiple SNPs from one gene often carry out genetic func-
tionalities together. Moreover, linkage disequilibrium (LD)
(Wu et al. 2010) describes the non-random association be-
tween alleles at different loci, through which the SNPs in
high LD are linked together in meiosis. Thus, instead of
treating SNPs in an isolated manner, it is beneficial to ex-
ploit the group structure among SNPs (Wang et al. 2012a;
Yan et al. 2015). To utilize the group structure of the SNP
data, we propose to learn an inherent representation of the
input genetic data by minimizing the following objective:

J0(H0,G0) = ‖XSNP −H0G0‖2,1 + α ‖H0‖G2,1
,

s.t. HT
0 H0 = I.

(1)

The first term in Eq. (1) uses matrix factorization to de-
couple the input SNP data matrix XSNP, which is equiva-
lent to perform K-means clustering on XSNP (Ding and He
2004; Ding, Li, and Jordan 2008). As a result, H0 can be
viewed as a condensed view of the SNP features and G0

can be viewed as the new representations of the n partic-
ipants in the subspace spanned by H0 (Ding, Li, and Jor-
dan 2008; Wang et al. 2011; Wang, Nie, and Huang 2015).
Here we choose to use the `2,1-norm distances for improved
robustness of our model against outliers (Wang, Nie, and
Huang 2012; Nie et al. 2013; Liu et al. 2019a,b). Moti-
vated by the earlier works (Wang et al. 2012a; Yan et al.
2015), we can integrate the group structure between SNPs
by applying a group `2,1-norm (G2,1-norm) regularization
to H0. Here, the G2,1-norm of a matrix M is defined as
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‖M‖G2,1 =
∑K
k=1

∥∥Mk
∥∥
2,1

(Wang et al. 2012a), where
M = [M1; M2; · · · ; MK ] consists of K groups. These
groups can capture LD correlations between SNPs (Wang
et al. 2012a) or leverage additional genetic side-information
(Yan et al. 2015).

Learning Temporally Augmented Representations
for Dynamic Imaging Data
While the SNPs describe the genetic profiles of the partici-
pants of a studied cohorts that remain constant over time, the
structures and functions of the brains of the participants vary
during the development of AD. As a result, the longitudinal
imaging records and the measurements of biomarkers ex-
tracted from these brain scans are dynamic and change over
time. Most importantly, because different participants may
take brain scans at different times, the total number of brain
scans per participant are not same in general. As a result, it
is difficult to directly use the dynamic imaging data to build
machine learning models. To address this difficulty, we pro-
pose to learn a novel temporally augmented representation
with a fixed length for every participant learned from their
dynamic imaging data (Lu et al. 2019, 2020a,b).

First, to summarize the brain variations of every partic-
ipant individually, we learn to map Xi = {Xi,xi} that
resides in the high d-dimensional space into a lower r0-
dimensional subspace via a projection by computing zi =
WT

i xi, where Wi is learned from Xi to preserve as much
information of Xi as possible by minimizing the objective
of PCA (Jolliffe 2011) as following:

J1(Wi) =
∥∥Xi −WiW

T
i Xi

∥∥
2,1
,

s.t. WT
i Wi = I.

(2)

Here again we choose to use the `2,1-norm in the PCA for-
mulation for its improved robustness against outlying sam-
ples that are inevitable when the dataset grows (Wang, Nie,
and Huang 2012; Nie et al. 2013; Liu et al. 2019a,b). Now
we learn the projections for all the participants altogether to
minimize the following objective:

J2(W) =

n∑
i=1

∥∥Xi −WiW
T
i Xi

∥∥
2,1

+ α
∥∥W(1)

∥∥
∗ + β

∥∥W(2)

∥∥
∗ ,

s.t. WT
i Wi = I, for i = 1, 2, · · · , n,

(3)

where W = {W1,W2, · · · ,Wn} is the tensor of the
n projection matrices, one for each participant. Here, to
maximize the consistency across all the learned projection
matrices for the same cohort of participants (Wang et al.
2012d,c; Brand et al. 2018, 2019, 2020a), we use the trace
norm regularization of

∥∥W(1)

∥∥
∗ and

∥∥W(2)

∥∥
∗ in our ob-

jective, where W(1) = [W1,W2, · · · ,Wn] ∈ <d×r1n and
W(2) =

[
WT

1 ,W
T
2 , · · · ,WT

n

]
∈ <r1×dn are the two un-

folded matrices ofW .

Integrating Static and Multi-Modal Dynamic Data
Using Genotype-Phenotype Augmentations
Because multiple types of imaging biomarkers can be ex-
tracted from brain scans, the phenotypic measurements

can be naturally formulated as multi-modal data (Wang
et al. 2012b; Brand et al. 2018, 2019; Lu et al. 2020a;
Brand et al. 2020b). Suppose a total of K types of
biomarkers are extracted from the brain scans, we have
xi = [(x1

i )
T , (x2

i )
T , . . . , (xKi )T ]T ∈ <d and Xk

MR =

[xk1 ,x
k
2 , · · · ,xkn] ∈ <dk×n, where

∑K
k=1 dk = d. Using the

temporal augmentation, we can write the augmented pheno-
typic measurements in every modality as:

(Wk)T⊗Xk
MR = [(Wk

1)Txk1 , (W
k
2)Txk2 , · · · , (Wk

n)Txkn],
(4)

where Wi = [W1
i ; W

2
i ; · · · ; WK

i ] ∈ <d×r. Then using
Eq. (1), we can integrate the static and multi-modal dynamic
data by minimizing:

J3(W,H,G) = γ1

n∑
i=1

∥∥Xi −WiW
T
i Xi

∥∥
2,1

+ γ2

K∑
k=1

∥∥(Wk)T ⊗Xk
MR −HkGk

∥∥
2,1

+ γ3 ‖XSNP −H0G0‖2,1

+ γ4

K∑
k=0

‖G−Gk‖2,1

+ γ6
∥∥H(1)

∥∥
G1

+ γ7 ‖H0‖G2,1

+ γ8
∥∥W(1)

∥∥
∗ + γ9

∥∥W(2)

∥∥
∗ ,

s.t. WT
i Wi = I, HT

kHk = I,

for i = 1, 2, · · · , n, and k = 0, 1, · · · ,K, (5)

where we write H = {H0,H1, · · · ,HK} and G =
{G,G0,G1, · · · ,GK}. In the above objective in Eq. (5),
we consider the SNP data as one additional modality be-
yond the K imaging modalities. As a result, Gk are the
representations of the k-th modality of all the participants
in the studied cohort, where k = 0 indicates the static ge-
netic modality and k > 0 indicates a dynamic phenotypic
modality. These new representations in the K + 1 modali-
ties are integrated by the group `1-norm (G1-norm) (Wang
et al. 2012b; Wang, Nie, and Huang 2013; Wang et al. 2013),
which is defined as ‖M‖G1

=
∑m
j=1

∑K
k=1

∥∥mk
j

∥∥
2
, where

M = [M1; M2; · · · ; MK ].

Learning Semi-Supervised Temporal
Augmentations
Besides the input data described by the genetic and pheno-
typic measures, we are often supplied with scores assessed
from cognitive tests for clinical diagnoses of a subset of the
participants, which can be considered as the labeled data for
training a machine learning model. Without loss of gener-
ality, we suppose that the clinical scores from c cognitive
assessments are known for the first l (l ≤ n) participants
in a studied cohort and we write G = [Gl,Gu]. Then we
can use a support vector regression (SVR) model to asso-
ciate the augmented genotype-phenotype representations Gl

to the known cognitive scores of Yl by minimizing the fol-
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lowing objective:

J (W,H,G, α) = γ1

n∑
i=1

∥∥Xi −WiW
T
i Xi

∥∥
2,1

+ γ2

K∑
k=1

∥∥(Wk)T ⊗Xk
MR −HkGk

∥∥
2,1

+ γ3 ‖XSNP −H0G0‖2,1 + γ4

K∑
k=0

‖G−Gk‖2,1

+ γ5

c∑
o=1

svr(yol ,Gl,αααo −ααα∗o)

+ γ6 ‖H‖G1
+ γ7 ‖H0‖G2,1

+ γ8
∥∥W(1)

∥∥
∗ + γ9

∥∥W(2)

∥∥
∗ ,

s.t. WT
i Wi = I, HT

kHk = I,

for i = 1, 2, · · · , n, and k = 0, 1, · · · ,K, (6)

where αααo, ααα∗o ∈ α are the dual variables of SVR.

The Solution Algorithm
Although our objective in Eq. (6) has been clearly motivated,
it is difficult efficiently solve in general, because it is non-
smooth. Thus we drive the efficient solution of our objective
in this section. Using the optimization framework in the ear-
lier works (Liu et al. 2017; Yang et al. 2019) that introduced
the iterative reweighted method to solve non-smooth objec-
tives, we can solve Eq. (6) by an iterative procedure in which
the key step is to minimize the following objective:

J smooth(W,H,G, α) =

γ1

n∑
i=1

tr
(
(Xi −WiW

T
i Xi)

TD1,i(Xi −WiW
T
i Xi)

)
+ γ2

K∑
k=1

tr
(
((Wk)T ⊗Xk

MR −HkGk)TD2,k

((Wk)T ⊗Xk
MR −HkGk)

)
+ γ3 tr

(
(XSNP −H0G0)TD3(XSNP −H0G0)

)
+ γ4

K∑
k=0

tr
(
(G−Gk)TD4,k(G−Gk)

)
+ γ5

c∑
o=1

svr(yol ,Gl,αααo −ααα∗o)

+ γ6

K∑
k=1

tr
(
HkD6,kH

T
k

)
+ γ7 tr(HT

0 D7H0)

+ γ8 tr(WT
(1)D8W(1)) + γ9 tr(WT

(2)D9W(2))

s.t. WT
i Wi = I, HT

kHk = I,

for i = 1, 2, · · · , n, and k = 0, 1, · · · ,K,
(7)

where j-th diagonal element of diagonal matrices
D1,i,D2,k,D3,D4,k,D6,k is defined as:

1

2
√
‖xj

i−w
j
iW

T
i Xi‖2

2
+δ
, 1

2
√
‖(Wk,j)T⊗Xk

MR−h
j
kGk‖2

2
+δ
,

1

2
√
‖xj

SNP−h
j
0G0‖2

2
+δ
, 1

2
√
‖gj−gj

g‖2
2
+δ
, 1

2
√
‖hk,j‖22+δ

,

D8 = 1
2 (W(1)W

T
(1)+δI)−

1
2 ,D9 = 1

2 (W(2)W
T
(2)+δI)−

1
2 ,

and D7 is a block diagonal matrix, whose s-th block is
1

2

√
‖Hs

0‖22,2+δ
Is. Here Is ∈ <ds×ds is the identity ma-

trix, and ds denotes the number of rows of s-th block
of H0 = [H1

0; H2
0; · · · ; HS

0 ], for the groups of SNPs.
(Wk,j)T ⊗Xk

MR is defined as j-th row of (Wk)T ⊗Xk
MR.

The dimensions of D∗ are: D1,i ∈ <d×d, D2,k ∈
<r0×r0 , D3 ∈ <dSNP×dSNP , D4,k ∈ <r1×r1 , D6,k ∈
<r1×r1 , D7 ∈ <dSNP×dSNP , D8 ∈ <d×d, D9 ∈ <r0×r0 .

To minimize the smoothed objective in Eq. (7), we use the
alternating direction method of multipliers (ADMM) pro-
posed by (Bertsekas 2014; Boyd et al. 2011). The ADMM
breaks the complex problem into smaller sub-problems that
are easier to solve. Following the ADMM we rewrite the
objective in Eq. (7) as an equivalent objective in Eq. (8),
by introducing two additional constraints Wi = Bi (⇒
W(1) = B(1) and W(2) = B(2) and W = B) and
Hk = Ak (⇒ H = A) to decouple the Wi and Hk, for
i = 1, 2, · · · , n and k = 0, 1, · · · ,K:

J ADMM (W,H,G, α,B,A) =

γ1

n∑
i=1

tr
(
(Xi −WiW

T
i Xi)

TD1,i(Xi −BiB
T
i Xi)

)
+ γ2

K∑
k=1

tr
(
((Wk)T ⊗Xk

MR −HkGk)TD2,k

((Wk)T ⊗Xk
MR −AkGk)

)
+ γ3 tr

(
(XSNP −H0G0)TD3(XSNP −A0G0)

)
+ γ4

K∑
k=0

tr
(
(G−Gk)TD4,k(G−Gk)

)
+ γ5

c∑
o=1

svr(yol ,Gl,αααo −ααα∗o)

+ γ6

K∑
k=1

tr
(
HkD6,kA

T
k

)
+ γ7 tr

(
HT

0 D7A0

)
+ γ8 tr(WT

(1)D8B(1)) + γ9 tr(WT
(2)D9B(2))

+
n∑
i=1

µ1,i

2

∥∥∥∥WT
i Bi − I +

1

µ1,i
ΛΛΛ1,i

∥∥∥∥2
F

+
n∑
i=1

µ2,i

2

∥∥∥∥Bi −Wi +
1

µ2,i
ΛΛΛ2,i

∥∥∥∥2
F

+
K∑
k=0

µ3,k

2

∥∥∥∥HT
kAk − I +

1

µ3,k
ΛΛΛ3,k

∥∥∥∥2
F

+
K∑
k=0

µ4,k

2

∥∥∥∥Ak −Hk +
1

µ4,k
ΛΛΛ4,k

∥∥∥∥2
F

,

(8)
where Λ1,i,Λ2,i,Λ3,k,Λ4,k are the Lagrange multipliers
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Algorithm 1: Solve the minimization problem in Eq. (8)
Input: XMR, Xi, XSNP , Yl, for 1 ≤ i ≤ n;
Initialization:W, Bi, Hk, Ak, Gk, αααo −ααα∗o, ΛΛΛ1,i, ΛΛΛ2,i, ΛΛΛ3,k, ΛΛΛ4,k

1 < ρ1,i, ρ2,i, ρ3,k, ρ4,k < 2,
µ1,i, µ2,i, µ3,k, µ4,k > 0,
γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9 > 0,
for 1 ≤ i ≤ n and 0 ≤ k ≤ K and 1 ≤ o ≤ c;
while not converge do

1. Update D1,i,D2,k, · · · ,D9 as defined in Eq. (7);
2. Update Hk (1 ≤ k ≤ K) by Hk =
(µ3,kAkA

T
k +µ4,kI)−1(γ2D2,k((Wk)T ⊗XMR−AkGk)GT

k −Ak(γ6D6,k +ΛΛΛT3,k) + (µ3,k +µ4,k)Ak +ΛΛΛ4,k);
3. Update H0 by
H0 = (µ3,0A0A

T
0 + µ4,0I)−1(γ3D3(XSNP −A0G0)GT

0 + ((µ4,0 + µ3,0)I− γ7D7)A0 −A0ΛΛΛ
T
3,0 + ΛΛΛ4,0);

4. Update Ak (1 ≤ k ≤ K) by Ak =
(µ3,kHkH

T
k +µ4,kI)−1(γ2D2,k((Wk)T ⊗XMR−HkGk)GT

k −γ6HkD6,k+(µ3,k+µ4,k)Hk−HkΛΛΛ3,k−ΛΛΛ4,k);
5. Update A0 by
A0 = (µ3,0H0H

T
0 + µ4,0I)−1(γ3D3(XSNP −H0G0)GT

0 − γ7D7H0 + (µ4,0 + µ3,0)H0 −H0ΛΛΛ3,0 −ΛΛΛ4,0);
6. Update Gk (1 ≤ k ≤ K) by
Gk = (γ22 (HT

kD2,kAk + AT
kD2,kHk) + γ4D4,k)−1(γ4D4,kG + γ2

2 (HT
k + AT

k )D2,k((Wk)T ⊗Xk
MR));

7. Update G0 by G0 = (γ32 (HT
0 D3A0 + AT

0 D3H0) + γ4D4,0)−1(γ32 (HT
0 + AT

0 )D3XSNP + γ4D4,0G);
8. Update αααo −ααα∗o (1 ≤ o ≤ c) by solving Support Vector Regression problem;
9. Update Gl by the root of equation:
2γ4

∑K
k=0 D4,k(Gl −Gk,l) + 4γ5

∑c
o=1

(
Gl

(
k′
(
s(Gl)

)
◦
(
(αααo −ααα∗o)(αααo −ααα∗o)T

))
−GlD

α
o

)
= 0;

For Gk,r, the right submatrix from l-th column of Gk, update Gr by Gr = (
∑K
k=0 D4,k)−1

∑K
k=0(D4,kGk,r);

10. Update Bi (1 ≤ i ≤ n) by Bi = (−γ1(D1,i(Xi −WiW
T
i Xi)X

T
i + (D1,i(Xi −WiW

T
i Xi)X

T
i )T ) +

µ1,iWiW
T
i + µ2,iI)−1(−γ8D8Wi − γ9WiD9 + (µ1,i + µ2,i)Wi −WiΛΛΛ1,i −ΛΛΛ2,i);

11. Update wi,q (1 ≤ i ≤ n and 1 ≤ q ≤ r0) by
wi,q = (−γ1

(
(XiX

T
i (I−BiB

T
i )D1,i) + (XiX

T
i (I−BiB

T
i )D1,i)

T
)

+ 2γ2D
w
i,q + µ1,iBiB

T
i +

µ2,iI)−1(γ2x
w
i,q − γ8D8bi,q − γ9Bid9,q + µ1,ibi,q −Bi(λλλ

q
1,i)

T + µ2,ibi,q + λλλ2,i,q);
12. Update ΛΛΛ1,i (1 ≤ i ≤ n) by ΛΛΛ1,i = ΛΛΛ1,i + µ1,i(W

T
i Bi − I);

13. Update ΛΛΛ2,i (1 ≤ i ≤ n) by ΛΛΛ2,i = ΛΛΛ2,i + µ2,i(Bi −Wi);
14. Update ΛΛΛ3,k (0 ≤ k ≤ K) by ΛΛΛ3,k = ΛΛΛ3,k + µ3,k(HT

kAk − I);
15. Update ΛΛΛ4,k (0 ≤ k ≤ K) by ΛΛΛ4,k = ΛΛΛ4,k + µ4,k(Ak −Hk);
16. Update µ1,i, µ2,i, µ3,k, µ4,k (1 ≤ i ≤ n and 0 ≤ k ≤ K) by
µ1,i = ρ1,iµ1,i; µ2,i = ρ2,iµ2,i; µ3,k = ρ3,kµ3,k; µ4,k = ρ4,kµ4,k;

end
Output:Wi (1 ≤ i ≤ n)

for the constraints WT
i Wi = I, Wi = Bi, HT

kHk =
I, Hk = Ak. The detailed algorithm to minimize the
smoothed ADMM objective in Eq. (8) is presented in Al-
gorithm 1. In step 9 of Algorithm 1, Dα

o ∈ <l×l is de-
fined as a diagonal matrix whose q-th diagonal element
is
∑r1
p=1 gpl s

o
l,q , where sol,q is q-th column of k′ (s(Gl)) ◦(

(αααo −ααα∗o)(αααo −ααα∗o)T
)
. In step 11, Dw

i,q ∈ <d×d is defined
as block-diagonal matrix whose k-th block is dq2,k,qx

k
i (xki )T

and all other elements are zeros, and xwi,q ∈ <d is de-
fined as xwi,q = [(dq2,1(H1 + A1)g1,i)x

1
i ; (dq2,2(H2 +

A2)g2,i)x
2
i ; · · · ; (dq2,K(HK + AK)gK,i)x

K
i ]. The time

complexity of Algorithm 1 is O(nr0d
2(n + d)) for each it-

eration, where step 11 of Algorithm 1 is the most dominant.
Due to the space limitation, the derivation details for Algo-
rithm 1 will be supplied in the extended journal version of

this paper.

Experiments
In this section, we compare the regression performance on
the cognitive scores prediction task between the augmented
and original representations; this is intended to showcase
how the proposed augmentation method improves the final
predictive capacity. In addition, we analyze the AD-relevant
biomarkers identified by the proposed augmentation.

Dataset Description The data used in the follow-
ing experiments are obtained from the ADNI database
(adni.loni.usc.edu). We download the magnetic resonance
imaging (MRI) scans, SNP genotypes, and demographic in-
formation of 821 ADNI-1 participants. We perform VBM
and FS automated parcellation on the MRI data follow-
ing (Risacher et al. 2010) and extracted mean modulated
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gray matter (GM) measures for 90 target regions of interest
(ROI), and follow the SNP quality control steps discussed
in Shen et al. 2010. We build the dataset Xi and XMR

from 342 participants who have complete records at Month
0/Month 6/Month 12/Month 24. In order to test the robust-
ness of our augmentation to the missing records, we inten-
tionally discard Month 24 scans with 50% probability. To
construct the target label matrix Y, we use the longitudi-
nal cognitive scores of Rey’s Auditory Verbal Learning Test
(RAVLT TOT, RAVLT 30, RAVLT RECOG), Fluency Test
(FLU VEG, FLU ANIM), and Alzheimer’s Disease Assess-
ment Scale (ADAS) at the most recent time point. The input
features and cognitive scores in the resulting dataset are nor-
malized and are randomly shuffled at the beginning of each
experiment to ensure representative results.

Experiment Settings We split the dataset into a training
and test set with a proportion of 80% and 20%, such that
the number of participants is l = 274 in the training set
and n − l = 68 in the testing set. During the data aug-
mentation step, our model learns a projection Wi for each
participant i = 1, 2, · · · , n from the cognitive scores in
the training set, and the available SNPs and MRI images
in both the training and testing sets. Once the Wi’s have
been learned, we predict the cognitive scores in the test set
with the original representation xi and the augmented rep-
resentation WT

i xi, and compare root mean squared errors
(RMSE) of the two predictions. After augmentation, we use
the following prediction models: Least Absolute Shrinkage
and Selection Operator (LASSO), Ridge linear Regression
(RR), Convolutional Neural Network (CNN), and Support
Vector Regression (SVR). We use a 5-fold cross-validation
within the training set to identify the best hyperparameters.
The validation set in this inner cross-validation is chosen to
be 20% of the training set. Due to space limitation, the re-
port for fine tuning the hyperparameters will be supplied in
the extended journal version of this paper.

Original vs Augmented, Prediction Error
In Table 1, we report the RMSE values of predictions with
the original representation versus augmented representation.
Following the results in Table 1 with SNPs + FS + VBM
modalities, we can see that the prediction error of the aug-
mented representation is decreased by 9.68% on average,
when compared to the original representation.

Brain Imaging Identification
In addition to the regression analysis, we identify the AD
relevant biomarkers by analyzing the weights of the learned
projections Wi over each biomarker. Conceptually, because
each feature of the augmented representation is an weighted
summation over the biomarkers of the original representa-
tion, higher weights indicate that those biomarkers are em-
phasized by the proposed augmentation. In order to investi-
gate the emphasized neuroimaging biomarkers, we plot the
absolute values of the weights over the FS and VBM ROIs
averaged across all participants. In Figure 1 we report the
brain biomarkers identified by our method; some of these
have been shown in the literature to be related to AD. For

example, studies (Carmichael et al. 2007; Jack et al. 2004)
have shown that ventricular volume, and its rate of change,
is related to the vulnerability to cognitive decline and de-
mentia. Specifically, Carmichael et al. have identified that
larger ventricles in healthy participants increase the risk of a
dementia-related disease in the future.

SNPs Identification
We also analyze the weights over the AlzGene groups of
SNPs to identify the AD relevant groups of SNPs. The
AlzGene groups have been constructed by the multiple
genome-wide association studies listed on the AlzGene web-
site (http://www.alzgene.org/). In Fig. 2, we identify the
two AlzGene groups; encoding angiotensin I converting en-
zyme (ACE), and apolipoprotein E (APOE). These AlzGene
groups have been shown to be related with cognitive decline.
From previous AD studies (Miners et al. 2009), ACE genes
are able to reduce the amyloid Beta peptide or Aβ in brain,
and the accumulation of Aβ is commonly observed in the
progress of AD (Chen et al. 2017). The amyloid hypothe-
sis suggests a reasonable mechanism for how the accumu-
lation of Aβ can result neuronal malfunction (Hardy and
Selkoe 2002). On the other hand, APOE genes are strongly
related to Aβ (Näslund et al. 1995) this aligned with previ-
ous findings that indicate that APOE isoforms are involved
with Aβ aggregation and clearance (Kim, Basak, and Holtz-
man 2009). An experiment (Bales et al. 1997) reveals that
the mice with APOE removed shows the decreased cerebral
Aβ level in their descendants. The ε4 allele of the APOE
gene, also identified by our approach, has been associated
with early onset AD (Corder et al. 1993).

Conclusion
In this work, we propose an augmentation model to learn a
fixed length vector summarizing the measurements of each
participant from both static and dynamic modalities. We
consider the inter and intra-modality group structures, tasks
correlations between different cognitive measures, and con-
sistency across the temporal records with the varying num-
ber of records. Our experiment shows that the proposed aug-
mentation improves the accuracy of predictions on cognitive
scores from the longitudinal data of different combination of
modalities. We also observe that our approach successfully
identifies AD-relevant biomarkers among the brain regions
and SNPs, further verifying the correctness and utility of our
approach.
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Modalities Target Label Representation LASSO SVR RR CNN

SNP + FS + VBM

RAVLT TOT Original 0.1832 0.1756 0.1821 0.1705
Augmented 0.1732 0.1543 0.1328 0.1632

RAVLT 30 Original 0.2725 0.2525 0.2452 0.3440
Augmented 0.2609 0.2242 0.2204 0.3069

RAVLT RECOG Original 0.2815 0.2562 0.2458 0.2856
Augmented 0.2560 0.2443 0.2223 0.2531

ADAS Original 0.3258 0.3314 0.3056 0.3282
Augmented 0.3158 0.3150 0.2703 0.2660

FLU ANIM Original 0.2568 0.2547 0.2568 0.2435
Augmented 0.2388 0.2369 0.2272 0.2097

FLU VEG Original 0.2568 0.2258 0.2147 0.2058
Augmented 0.2310 0.2100 0.1832 0.1948

Table 1: RMSE of predictions with augmented or original representation. The most accurate prediction is denoted as bold font.

Figure 1: We plot the projections weights over the brain regions. The top five important regions are identified in FS: Right
Caudate, Left Lateral Ventricle, Right Lateral Ventricle, Left Caudate, and Left Thalamus. VBM: Left Thalamus, Left Hip-
pocampus, Right Occipital Mid, Left Amygdala, and Right Temporal Inf.

Figure 2: The averaged weights of SNPs on each AlzGene
group. We denote the number of SNPs in each group as the
number next to AlzGene group name, and the standard de-
viation as the line at the head of each bar.
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