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Abstract 
A rare disease is any disease that affects a very small percent-
age (1 in 1,500) of population. It is estimated that there are 
nearly 7,000 rare disease affecting 30 million patients in the 
U. S. alone. Most of the patients suffering from rare diseases 
experience multiple misdiagnoses and may never be diag-
nosed correctly. This is largely driven by the low prevalence 
of the disease that results in a lack of awareness among 
healthcare providers. There have been efforts from machine 
learning researchers to develop predictive models to help di-
agnose patients using healthcare datasets such as electronic 
health records and administrative claims. Most recently, 
transformer models have been applied to predict diseases 
BEHRT, G-BERT and Med-BERT. However, these have 
been developed specifically for electronic health records 
(EHR) and have not been designed to address rare disease 
challenges such as class imbalance, partial longitudinal data 
capture, and noisy labels. As a result, they deliver poor per-
formance in predicting rare diseases compared with base-
lines. Besides, EHR datasets are generally confined to the 
hospital systems using them and do not capture a wider sam-
ple of patients thus limiting the availability of sufficient rare 
disease patients in the dataset. To address these challenges, 
we introduced an extension of the BERT model tailored for 
rare disease diagnosis called RareBERT which has been 
trained on administrative claims datasets. RareBERT extends 
Med-BERT by including context embedding and temporal 
reference embedding. Moreover, we introduced a novel adap-
tive loss function to handle the class imbalance. In this paper, 
we show our experiments on diagnosing X-Linked Hypo-
phosphatemia (XLH), a genetic rare disease. While Rare-
BERT performs significantly better than the baseline models 
(79.9% AUPRC versus 30% AUPRC for Med-BERT), owing 
to the transformer architecture, it also shows its robustness in 
partial longitudinal data capture caused by poor capture of 
claims with a drop in performance of only 1.35% AUPRC, 
compared with 12% for Med-BERT and 33.0% for LSTM 
and 67.4% for boosting trees based baseline. † 
 

                                                 
Copyright © 2021, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

Introduction 
Identifying the right patients at the right time has always 
been a primary goal of the life science industry, to improve 
healthcare services. Individually rare diseases are uncom-
mon; however, there are approximately 8,000 described rare 
diseases mostly with onset in childhood (Elliott et al. 2015 
and Zurynski et al. 2017) affecting approximately 30 mil-
lion of US population and 350 million globally worldwide 
(Colbaugh and Glass 2020). Identifying these patients is a 
challenging task as patients go undiagnosed or mis-diag-
nosed for years and move across multiple physicians (Rafi, 
2016 and Zurynski Y, et al. 2017) 

In the health care domain, with an increase in capture of 
patients’ longitudinal history via administrative claims and 
electronic health records (EHR) enables healthcare indus-
tries to understand patient progression or patient identifica-
tion use cases such as onset of a condition, disease progres-
sion or treatment drop-off which in-turn helps to maximize 
patient care and experience. Researchers are using machine 
learning based approaches to address patient progression 
and patient identification related problem. However, owing 
to the richness of the data; mining this high dimension se-
quential data is a challenging task.  

The current research focuses on rare disease patient iden-
tification using administrative claims data. The problem in-
volves many challenges related to data and modelling which 
includes: 1) Class-imbalance; 2) Unlabeled patients (nega-
tive class is not present); 3) Noisy labelled patients; 4) Di-
agnosis codes for rare condition are not present; and 5) Sen-
sitivity analysis of model due to over-fitting on low positive 
classes.  The current paper focuses on addressing the class 
imbalance and unlabeled patients challenge. Here, unlabeled 
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patients are also referred as eligible patients and are ones 
who have shown presence of comorbidities associated with 
target disease area such as X-linked hypophosphatemia 
(XLH) however cannot be classified either as positive or 
negative class due to missing confirmatory test leading to 
absence of negative class in dataset. Additionally, impact of 
noisy scenarios are evaluated on performance of the models.  

The current paper proposes a novel RareBERT architec-
ture for feature representation. The proposed architecture 
extends the Med-BERT architecture to address highly im-
balanced class in rare conditions and make improvements in 
architecture by including context-based embedding, tem-
poral reference embedding and adaptive loss function for 
faster convergence.  Feature representation from Rare-
BERT is integrated with positive unlabeled (PU) learning 
based architecture also referred as one-class classification 
for patient identification (Denis et al. 2004). The PU learn-
ing algorithm trains a classifier on positive and unlabeled 
data and, estimates the propensity of being a positive class 
among unlabeled datasets using an adjusted threshold. The 
efficacy of proposed approach is validated through X-linked 
hypophosphatemia (XLH) rare condition case study. The 
experimentation shows significant improvement and robust-
ness of RareBERT with baseline methods.   

Rest of the paper is organized as follows: Section 2 presents 
related prior work; Section 3 describes RareBERT architec-
ture and positive unlabeled (PU)-learning based approach 
for patient identification; and Section 4 presents the perfor-
mance of RareBERT using XLH rare condition as a case study, 
followed by conclusions and proposed  next  s teps in  
Section 5.  

Related Prior Work 
Most of the previous work has been focused on solving the 
following challenges: 

1) Lack of specific diagnosis codes to identify patients 
with the rare disease, thus making the identification 
harder (no gold standard definition to identify posi-
tive patients) (Colbaugh, R et al. 2018) 

2) Lack of markers to identify true negative patients as 
a lot of patients are either misdiagnosed or remain un-
diagnosed for a long time (Yu. K., et al. 2019, Garg 
et al. 2016) 

3) Low prevalence of positive classes thus leaving a low 
sample size to learn the patterns from as well as cre-
ating a high data imbalance problem (Li W et al. 
2018, Dai and Hua 2016, Hu et al. 2019).  

Multiple approaches have been suggested to handle the 
low positive samples, patients ranging from performing a 
random under sampling (Dai and Hua 2016) to using Gen-
erative Adversarial Networks (GAN) on image representa-
tions of patients (Li W et al. 2018). For handling the lack of 

markers challenge Yu. K., et al. (2019) suggests using a Se-
quence Modeling with Generative Adversarial Networks 
that will help identify potential patients from the unlabeled 
/ undiagnosed patient pool. However, here the assumption is 
that true negatives can be identified by applying certain 
rules. In general, such rules are most likely not available for 
rare diseases specifically. 

Recently, BERT (Bidirectional Encoder Representations 
from Transformers) has been proposed for language repre-
sentation model for obtaining text embeddings (Vaswani et 
al. 2017). The BERT architecture is proved to be very useful 
in multiclass and pairwise text classification using transfer 
learning of pre-trained embeddings. Researchers in life sci-
ences are trying to utilize the BERT architecture on sequen-
tial patient journeys to solve problem related to diagnosis 
code prediction, medication code prediction etc. Architec-
tures such as BEHRT (Li Y., Rao et al. 2020), G-BERT 
(Shang et al. 2019) and Med-BERT (Rasmy et al. 2020) are 
being proposed. BEHRT focused on imputing medical 
codes within Visit. G-BERT integrated graph neural net-
work (GNN) with BERT architecture with modified masked 
language to predict medication code prediction using single 
visit samples which is a limitation. Med-BERT has further 
extended the architecture to create generalized embedding 
using bigger vocabulary and used it to optimize two objec-
tives disease prediction and length of stay in hospital. Ra-
smy et al. (2020) has compared different architectures of 
BEHRT, G-BERT and Med-BERT used for diagnosis and 
medication tasks. Most of the above architectures are unable 
to generalize the embeddings when datasets become highly 
imbalanced. Madabushi et al. 2020 has observed imbalance 
issues in NLP application of propaganda detection and pro-
posed Cost-Sensitive BERT architecture by increasing the 
weight of incorrect labels.    

The feature representation from RareBERT is used for pa-
tient identification using the PU learning-based approach. 
There are a few different PU approaches that have been pro-
posed (Denis et al. (2004), Elkan et al. (2008), Plessis et al. 
(2015)). Most of these approaches involve isolating a set of 
so-called true negatives (TNs) from the unlabeled data set. 
The proposed paper uses biased learning-based approach as 
proposed by Bekker and Davis (2018) which isolate the neg-
ative classes at each iteration.  

The next Section presents detailed approach for patient 
identification using patient administrative claim data. 

Approach 
The current section presents RareBERT architecture which 
helps with feature representation. The learned features are 
passed through PU-learning based semi-supervised classi-
fier to identify patients with high likelihood of having rare 
condition. The RareBERT architecture helps to deal with 
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high dimensional sequential data with highly imbalanced 
classes. The RareBERT architecture enhances Med-BERT 
architecture by including: 1) adaptive loss to balance loss 
between classification and mask event prediction task; 2) 
type embedding to capture event context such as is it diag-
nosis, procedure, treatment; and 3) temporal reference em-
bedding to capture event position with respect to defined in-
dex dates. The next sub-section provides data set-up for 
RareBERT.  

Rare-BERT 
The proposed RareBERT set-up uses patient longitudinal 
claims data. Patient level claims data is right aligned to an-
chor date and mapped to a Clinical Classification Software 
(CCS) bucket to roll-up the granular data to a higher resolu-
tion as shown in Figure 1. 

Figure 1: Illustration of patient journey 

The patient input sequence is passed through the Rare-
BERT architecture as shown in Fig. 2. The RareBERT de-
termines embeddings from sequence at multiple levels in-
cluding token, type of event, visit information and temporal 
reference from anchor events. 

Figure 2: RareBERT architecture 

Token embedding captures token level information or 
event information. Type embedding captures the event type 
information such as diagnosis, procedure or treatment.  Visit 
embeddings capture patient visits or claims as patients could 
have many events within a visit. Temporal embedding cap-
tures time reference for an event from defined anchor date. 

An example of RareBERT embedding encoding is presented 
in Figure 3 based on patient journey shown in Figure 1. 

Figure 3: Illustration of input data for RareBERT 

The RareBERT utilize only [CLS] token, while [SEP] to-
ken is ignored (Rasmy et al. 2020). RareBERT optimizes 
two loss function functions: (i) Masked event modelling; 
and (ii) event classification. The masked event modelling in 
sequence learning is an event fill-in-the blank task, where a 
model uses the event surrounding a mask token to predict 
the masked event which in turn helps in embedding gener-
alization for different patient paths. The loss function 
weights for masked event modelling and event classification 
are updated adaptively to enhance the convergence. 

Let   𝑢 = {𝒖𝟎, 𝒖𝟏, 𝒖𝟐, …𝒖𝒏−𝟏}  represent input event to-
kens with n number of tokens. The RareBERT mask 15% of 
event token randomly with indices m and masked events are 
represented as 𝒆 and non-masked event are represented as 
𝒆′. The mask event is replaced by a special token [MASK], 
random event from vocabulary, or unchanged with a proba-
bility of 80%, 10% and 10%, respectively. Let’s 𝒗 =
{𝑣𝟎, 𝑣𝟏, 𝑣𝟐, … 𝑣𝒎−𝟏}  represent predicted events and h repre-
sents final hidden state of the first token [CLS] from Rare-
BERT denote embedding for the whole sequence. The pre-
diction for masked event modelling is optimized by mini-
mizing negative log-likelihood (NLL) as shown below: 

𝐿𝑀𝐸𝑀 = −𝐸(𝒖,𝒗)~𝑻 log 𝑃𝑟(𝑒
′|𝒉) …    (1) 

where, (𝒖, 𝒗) are pairs in the training dataset T. The 𝑃(𝑒′|𝒉) 
is computed as 

𝑃(𝑒′|𝒉) = 𝐿𝑜𝑔𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑸𝒉) … (2) 
where, Q is linear layer weight matrix. Similarly, the event 
classification module also utilizes the negative log-likeli-
hood loss function as shown below 

𝑳𝑬𝑪 = −𝑬(𝒖,𝒗)~𝑻 𝐥𝐨𝐠𝑷𝒓(𝒄 == 𝟏|𝒉) … (3) 
where, 𝒄 ∈ {𝟎, 𝟏} with 1 representing positive class. 
The loss in RareBERT weighted combination of Eq. (1) and 
Eq. (3) and at ith epoch is represented as  
𝑳𝒊 = 𝜶𝒊𝑳𝑬𝑪,𝒊 + 𝑳𝑴𝑬𝑴,𝒊 
where, 𝜶𝒊 is weight at ith epoch and is computed as  

𝜶𝒊 = 𝒎𝒊𝒏(𝜽, 𝑳𝑴𝑬𝑴,𝒊−𝟏/(𝑳𝑬𝑪,𝒊−𝟏 + 𝜺))   
where, 𝜽 and 𝜺 are constant factor to control max bound 

of weights and correct for infinity scenarios. In this paper 
rare-patient identification set-up 𝜽 is set based on class im-
balance and  𝜺 is set to 10-6 close to handle any zero-division 
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error. Once RareBERT is trained embedding h is extracted 
and used within the PU-learning semi-supervised set-up for 
patient identification. 

PU-Learning  
RareBERT is used to learn the feature representation h 
which is used within the PU learning algorithm for patient 
identification. PU learning is a variation of the traditional set 
up where the training data consists of only positive and un-
labeled examples where unlabeled examples include both 
positive and negative classes.  

Let 𝐏 ⊂ 𝐓 represent training set containing only positives 
patients and U⊂ 𝐓 represents unlabeled classes where T is a 
universal set with all patients. The p and u are cardinality of 
P and U, respectively. The pseudo code for proposed PU 
learning based approach for patient identification is shown 
in Fig. 4.  

Figure 4: Pseudo code for PU learning 

The PU learning is stopped based on two stopping crite-
ria’s: 1) recall threshold 𝜸 which represents the number of 
positives patients captured by classifier; and 2) True Nega-
tive (TN) threshold 𝝉 which captures the minimum true neg-
ative identified during iteration.   

Case Study 
To illustrate the performance of RareBERT, X-linked hypo-
phosphatemia (XLH) patients’ identification is performed. 
XLH, is a condition that affects bones, muscles, and teeth 
due to the excessive loss of phosphate. Phosphate is lost 
through the urine, which causes low levels of phosphorus in 
the blood, a condition called phosphate wasting or hypo-
phosphatemia. The XLH condition is selected due to: 1) 
high imbalance; 2) High proportion of un-diagnose patients 

                                                 
‡Symphony Health, Integrated Dataverse (IDV)®, Sep. 1, 2019 – Dec. 31, 
2019, unprojected de-identified patient Rx and medical claims, Jan 2020  

with approximate prevalence of 1 in 20K patients in US; and 
3) high disease burden (Skrinar et al. 2019).  

Data Set-up 
The analysis is performed using patient-level claims data 
with approximately 3.5 years of patient history from propri-
etary Symphony Health’s IDV®‡. Patients with XLH and 
other comorbid conditions such as disorder of phosphorus 
metabolism, rickets, muscle weakness and, bone spurs were 
considered for further analysis.   

In order to assure continuous patients' activity, standard 
eligibility criteria were applied. Eligibility criteria discard 
the patients who do not have a claim for a year. On top of it, 
a lookback period of two years was examined. Lookback 
was anchored on the first diagnosis of X-linked hypophos-
phatemia for XLH patients and on the last day of 2019 for 
patients with other comorbid conditions.  

After applying comorbid condition, eligibility and look-
back criteria, the final patient’s cohort consists of 3,670 
XLH patients and 263,187 unlabeled patients. The class im-
balance between XLH and unlabeled patients is 1.37%. 

Model Set-up and Feature Representation 
For further modelling stratified sampling is performed to 
create a train (60%), validation (15%) and test (25%) da-
taset. Multiple approaches such as XGB with binary-based 
features, Long Short-Term Memory (LSTM), Med-BERT 
and RareBERT are developed for benchmarking. The first 
set of models are developed with classification set-up with 
unlabeled patient is treated as negative class. The hyper-pa-
rameter of XGB model is optimized using Bayesian optimi-
zation (Ruben, 2014). The LSTM model is set-up based on 
Kezi et al. (2019). The Kezi et al. 2019 takes LSTM embed-
ding as input to GAN for further enrichment for patient iden-
tification. The Kezi et al. 2019 approach uses Word2Vec to 
encode event and pass to LSTM. The LSTM is set-up with 
300 embedding size using word2vec, two layers and 256 
hidden dimensions. Based on the initial set-up, AUPRC is 
compared across a set-up of models. The test performance 
for different models are reported in Table 1. 

S. No. Model Test AUPRC 

1 XGB (Binary-based feature) 43.0% 

2 LSTM (Kezi et al. 2019) 43.3% 

3 Med-BERT (Rasmy et al. 2020) 30.0% 

4 RareBERT (w/ adaptive loss) 79.9% 

5 RareBERT (w/o adaptive loss) 80.1% 

Table 1: Performance on sequence dataset 

Construct P and U by assigning   =  is      𝑎  𝑢  𝑎 𝑒 𝑒  𝑒𝑥𝑎𝑚  𝑒
While True:

j=1  

Subset    e    where    ⊂ 𝑷 𝑎     <  
Assign   =  where j ⊂   
Train classifier to determine Pr(  =1 | f (h)) treating U as negative class. 
Evaluate Pr(  =1 | f (h)) for all observations
Identify True Negative (TNj) where 𝑻  ⊂  where   (   1      ( ))   
Update U = U – 𝑻  
j = j+1    

# Stopping criteria
if Recall > 𝜸 or 𝑻  - 𝑻  − <𝝉 :

break

    represents min spies probability
## LGBM (Ke et al. 2017) is used as classifier for training.
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Based on results from Table 1, XGB (with binary fea-
tures) and LSTM are performing at an approximately 43% 
AUPRC. Med-BERT is performing worse, compared with 
the XGB (Binary-based feature) and LSTM for rare event 
scenarios. The RareBERT has shown an approximately 75% 
uplift in AUPRC performance, as compared with Med-
BERT. The RareBERT shows similar performance with and 
without adaptive loss. The 𝜃 parameter for RareBERT (w/ 
adaptive loss) is set to 70 based on class imbalance observed 
in positive and unlabeled class.  

Based on the above results, the RareBERT shows a strong 
feature representation capability to distinguish XLH and 
non-XLH patients. Additionally, the number of iteration and 
compute effort across models are compared and shown in 
Table 2.   Adaptive loss has helped reduce compute effort 
by 66% as compared to without (w/o) an adaptive loss set-
up of RareBERT. 

S. No. Model 
# of Itera-

tions 
Time 
(hr) 

1 XGB (Binary-based feature) 
1700 3.25 

2 LSTM (Kezi et al. 2019) 
30 5.32 

3 Med-BERT 
56 22.32 

4 RareBERT (w/o adaptive loss) 
72 15.06 

5 RareBERT (with adaptive loss) 
29 5.15 

Table 2: Med-BERT and RareBERT parameters 

RareBERT and LSTM computation is performed on 2 
GPU machine with 16 core and 2.5 GHz processor. The 
Med-BERT is computed on 4 GPU machine with 48 cores 
and 3.5 GHz processor. Although, Med-BERT is using 
higher configuration, it’s more expensive than Rare-BERT 
with lower performance. The detailed set-up differences be-
tween Med-BERT and RareBERT is shown in Table 3. 

Parameter Med-BERT RareBERT 

Type of input 
code  

ICD-9 + ICD-10 event 
CCS code 

ICD-9 + ICD-10 event CCS 
code 

Embeddings 
Code + visit + Seriali-
zation  

Code + code type + Visit 
+ Temporal reference 

Layer 6 2 

Attention 6 6 

Vector 32 16 

Embedding size 192 96 

classification loss NLL NLL 

Masked event 
loss NLL NLL 

Loss  Sum Adaptive Weighted Sum 

Event Prediction  

Feed-forward Layer 
on averaged se-
quence  CLS Token 

Table 3: Med-BERT and RareBERT parameters 

Ablation study is performed on RareBERT architecture 
for key contribution of determine impact of individual com-
ponent on final performance. The summary of ablation 
study is shown in Table 4. Check (✓) in Table 4 represent 
component that is considered for experimentation.  

S. No. Temporal Type CLS Visit Token AUPRC 
 

∆ from 
base 

1* ✓ ✓ ✓ ✓ ✓ 79.9%  

2  ✓ ✓ ✓ ✓ 70.4% 9.5% 

3 ✓  ✓ ✓ ✓ 64.4% 14.9% 

4  ✓  ✓ ✓ 56.0% 23.9% 

5    ✓ ✓ 42.3% 37.6% 
* Base experiment 
**All experiments are performed with Adaptive loss 
***For experiment 4 & 5, CLS is replaced with feedforward layer 

Table 4: Ablation study summary of RareBERT 

Based on Table 4, all Temporal, Type and CLS are sig-
nificantly improving the performance of RareBERT archi-
tecture. Also, Adaptive loss helps to improve compute by 
~66% based on Table 2. The next sub-section focuses on 
patient identification. 

Patient Identification 
The patients with a rare condition are identified using semi-
supervised learning-based approach such as positive unla-
beled (PU) learning. The PU learning framework as de-
scribed in Fig. 4 is used with light gradient boosting machine 
(LGBM) as base classifier. The recall curves obtained from 
different models is shown in Fig. 5. 
Based on Fig. 4, RareBERT shows a very high recall on test 
dataset with PU further boosting the recall performance with 
improved AUPRC to 79.8%. To further compare the perfor-
mance of the model with semi-supervised learning where 
negative class is unknown pseudo F-1 score (Lee and Liu, 
2003) is used. The pseudo F-1 score is defined as 

𝑃 𝑢𝑒 𝑜 𝐹1 −  𝑐𝑜𝑟𝑒 =  
𝑅𝑒𝑐𝑎  2

P r(𝑐 == 1)
 

Figure 5: Recall across different models 
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The 𝑃 𝑢𝑒 𝑜 𝐹1 −  𝑐𝑜𝑟𝑒 captures the performance of the 
current model with respect to the random baseline at defined 
threshold.  Based on the above metric 𝑃 𝑢𝑒 𝑜 𝐹1 −  𝑐𝑜𝑟𝑒 for 
all models are reported below: 

Figure 6: Psuedo-F1 score across different models 

Based on Fig. 6, PU-BERT has shown an improvement 
of 4.4% in capturing unlabeled patients with rare conditions, 
compared with RareBERT. The max pseudo F1-score for a 
different model is reported in Table 5. 

  S. No. Model  Max Pseudo F1 
1 

RareBERT 
 

47.5 

2 
Med-BERT 

 
9.5 

3 
Binary + XGB 

 
23.2 

4 
LSTM 

 
22.5 

5 
PU + RareBERT 

 
49.6 

Table 5: Max Pseudo F1-score to evaluate model lift 

To understand the events driving the performance of 
RareBERT performance attention weights are extracted 
across different attention heads. Top 5 events leaning to-
wards positive patient based on highest attention weights 
across different heads were the use of: 1) Vitamin D supple-
ment; 2) Acidifying Agents (K-phos); 3) Opiate Agonists; 
4) Anticonvulsants; 5) Beta-blocking agents. 

Vitamin D and phosphate supplements are clinically rec-
ommended therapies for treating XLH and its symptoms 
(Dieter et al. 2019), thus correctly representing XLH pa-
tients. Similarly, Opiate Agonist is generally used as a pain 
killer. Skrinar et al. (2019) reported 97% of adults and 80% 
of children reported bone or joint pain/stiffness. Thus, the 
use of pain killer drugs might also be a proxy indicating pain 
related diagnosis for patients. Imel et al. (2012) report sei-
zures as one of the symptoms for severe XLH patients which 
suggest the use of Anticonvulsants by XLH patients. The 
Beta-blocking agents are used in cardio conditions. There 
has been some research on the association of XLH and car-
dio vascular symptoms but not very concrete. However, 
model does suggest the usage of cardiovascular related 

drugs as one of the top indicators in identifying XLH and 
non-XLH patients. 

Similarly, top events for negative patients were Chronic 
kidney disease, Deficiency and other anemia, Office visits 
for - interview, evaluation, consultation, Laboratory - 
Chemistry and Hematology procedures. Research suggests 
that patients with Chronic kidney disease and anemia also 
have low phosphorous levels, however, post dialysis most 
of the patients get their phosphorous levels back to normal 
(Nielsen et al. 2019) – this generally results in many cases 
where patients have got misdiagnosed as XLH or vice versa. 
However, RareBERT seems to have identified the differen-
tiation between Chronic Kidney Disease and XLH patients. 
The top events associated with XLH and non-XLH patients, 
RareBERT seems to have picked the right signals thus 
boosting the confidence in the predictions of the model. 

Model Sensitivity Analysis 
One of the issues with claims dataset is noisy data coverage 
due to missing and wrong code capture (Tsang, 2020). 
Tsang (2020) summarized the drastic implications of noisy 
claims data on analysis. The current paper simulates the im-
pact of missing claims through adversarial attack on the 
model. Simulation performed with 15% of events are ran-
domly removed from patient journey and pre-trained model 
performance are re-evaluated on patient journey. The simu-
lation is performed for 10 iteration; the average drop in 
AUPRC is reported in Figure 7. 

 Figure 7: Percentage Drop in AUPRC 

Based on Figure 7, RareBERT performance is quite stable 
even after 15% missing event noise induced in the dataset. 
Additionally, the impact on False Negative is more critical 
for patient identification, where we are tagging XLH patient 
as non-XLH. Results for False Negative (FN), i.e., XLH pa-
tient is classified as non-XLH patient is shown in Figure 8. 

Figure 8: Percentage Increase in False Negative (FNs) 
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The above changes are evaluated with base model with 
precision set to 10%. The default output with 10% precision 
is reported below: 

Model Base 
AUPRC 

 TN FP FN TP Recall 
(%) 

XGB (Binary-
based feature) 

43.0%  61040 4770 398 530 
57.1 

LSTM 43.3%  60725 5085 363 565 60.9 

Med-BERT 30.0%  61931 3879 497 431 46.4 

RareBERT 
(with adaptive loss) 

79.9%  58502 7308 116 812 87.5 

Table 6: Max Pseudo F1-score to evaluate model lift 

The RareBERT has 87.5% recall with 10% precision to 
identify patients with rare-condition. Based on Table 5 
RareBERT reports almost double potential patients with 
87.5% recall as compared to Med-BERT. 

To further evaluate consistency of the proposed Rare-
BERT approach is also tested on Exocrine Pancreatic Insuf-
ficiency (EPI) rare condition. EPI is a condition in which the 
pancreas is not able to produce and/or transport enough di-
gestive enzymes to break down food in the intestine.  

There are two main challenges associated in identifying 
EPI patients within real world claims data are: 1) There is 
no specific ICD 9 diagnosis code for EPI, thus there is no 
direct way to identify patients who got diagnosed with EPI 
prior to October 2015 (ICD coding systems changed from 
ICD 9 to ICD 10 post October 2015); and 2) There are a 
good amount of patients who are misdiagnosed with a simi-
lar condition such as Abdominal pain, Chronic pancreatitis 
(CP), etc. These criteria are more aligned with the nuances 
associated with other rare disease conditions thus making it 
a non-trivial problem to solve. 

The patients with relevant comorbid conditions are clas-
sified into EPI positive, negative and unlabeled are defined 
based on definition from Pyenson et al. 2019 as defined be-
low: 

▪ Positive class: patients are classified into EPI 
positive if patient have filled minimum three 
prescription of PERT 

▪ Negative class: Patients are classified as EPI if 
fecal elastase-1 test is observed but PERT pre-
scription is not filled 

▪ Unlabeled class:  patients with any of the rele-
vant comorbid conditions. 

After applying comorbid condition, eligibility and look-
back criteria, the final patient’s cohort consists of 15,045 
EPI patients with 74,978 Negative patients. The dataset con-
sists of 1.13 MM unlabeled patients with class imbalance 
between EPI positive and negative cases as 16.71%. The 
performance of models benchmarked against EPI dataset is 
shown in Table 7. 

The results obtained are consistent with observed in XLH 
use case with RareBERT having 96.8% AUPRC. The XGB 
and LSTM based model shown a test AUPRC of 79% and 
80.1%, respectively and MedBERT is unable to perform in 
highly imbalance scenarios.  

S. No. Model Test AUPRC 

1 XGB 79.0% 

2 LSTM (Kezi et. al. 2019) 80.1% 

3 Med-BERT (Rasmy et. al. 2020) 67.6% 

4 Rare-BERT (w/ adaptive loss) 96.8% 

5 Rare-BERT (w/o adaptive loss) 96.2% 

Table 7: Performance on sequence dataset 

Conclusion and Future Work 
The paper presents a novel RareBERT architecture for fea-
ture representation in highly imbalanced longitudinal da-
taset. The learned feature representation is used with Posi-
tive Unlabeled (PU)-learning based approach for patient 
identification using patient administrative claims. The pro-
posed PU learning algorithm utilizes positive class labels to 
identification potential patients with rare condition. The en-
hancement made in RareBERT helps it to learn representa-
tion better and converge faster based on adaptive loss.  

Additionally, model sensitivity analysis is performed on 
the dataset to simulate partial data capture scenarios which 
is very prevalent across industries in transactional dataset. 
The simulations revealed that tree-based boosting is most 
susceptible to performance drop due to partial data capture. 
The performance drop within LSTM is also significant but 
significantly less as compared to tree-based bosting ap-
proach. The transformers-based model such as Med-BERT 
and RareBERT are using adversarial loss which helped them 
to generalize the feature representation better and have 
shown significantly more robust performance.  

The RareBERT comes out to be most robust method. The 
robustness can be attributed to better generalization of tem-
poral aspect for events and [CLS] token which is utilized for 
classification as compared to positional embedding and 
feed-forward layer used in Med-BERT. 

The current experiment on RareBERT did not included 
any contextual information such as physical specialty or any 
patient related demographic information. The future experi-
ments include bringing contextual information within the 
RareBERT architecture. This also includes developing a ro-
bust approach to handle differential Rx/Mx capture or inte-
grating imputation mechanism to further strengthen the 
model performance in an unseen environment.    
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