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Abstract

We develop an auto-encoder-type nonlinear dimensionality
reduction algorithm to enable the construction of reduced
order models of systems governed by convection-dominated
nonlinear partial differential equations (PDEs), i.e. snapshots
of solutions with large Kolmogorov n-width. Although sev-
eral existing nonlinear manifold learning methods, such as
LLE, ISOMAP, MDS, etc., appear as compelling candidates
to reduce the dimensionality of such data, most are not ap-
plicable to reduced order modeling of PDEs, because: (i)
they typically lack a straightforward mapping from the la-
tent space to the high-dimensional physical space, and (ii)
the identified latent variables are often difficult to interpret.
In our proposed method, these limitations are overcome by
training a low-rank diffeomorphic spatio-temporal grid that
registers the output sequence of the PDEs on a non-uniform
parameter/time-varying grid, such that the Kolmogorov n-
width of the mapped data on the learned grid is minimized.
We demonstrate the efficacy and interpretability of our pro-
posed approach on several challenging manufactured com-
puter vision-inspired tasks and physical systems.

Introduction
Many physical phenomena of engineering interest are de-
scribed using partial differential equations (PDEs). High ac-
curacy simulations of these equations often require extensive
computational resources. Although cheaper and faster pro-
cessors, as well as highly parallel architectures, have made
many large-scale computations viable, reduced order mod-
els (ROMs) of these systems remain attractive, especially in
many-query simulations and real-time control.

The goal of reduced order modeling is to leverage the
vast amount of data generated from high accuracy simula-
tions to learn a low-dimensional model that can accurately
and efficiently approximate the underlying dynamical sys-
tem. For many of theses systems a low-rank linear combina-
tion of the bases can represent the solution (Li et al. 2020),
however, such low-rank reconstructions are especially in-
accurate for convection-dominated PDEs, where the Kol-
mogorov n-width of the snapshots of the solution is rela-
tively large, i.e. the solution cannot be effectively reduced
on a linear subspace. Such problems emerge frequently in
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a broad range of applications, from Navier-Stokes equa-
tions (fluid dynamics) to Schrödinger equation (quantum-
mechanical systems) (Mendible et al. 2020). In the ma-
chine learning community, the recognition of similar chal-
lenges dates back to the 1990s and attempts in classifica-
tion of handwritten digits (Hinton, Revow, and Dayan 1995),
where presence of simple transformations such as transla-
tions and rotations in the data-set is well known to dramat-
ically deteriorate the accuracy of linear methods such as
principle component analysis (PCA). Fundamentally, other
linear manifolds (subspaces) suffer from similar drawbacks,
examples include proper orthogonal decomposition (POD),
multidimensional scaling (MDS) (Cox and Cox 2008), fac-
tor analysis (Friedman, Hastie, and Tibshirani 2001) and
independent component analysis (ICA) (Friedman, Hastie,
and Tibshirani 2001). Therefore, the high dimensionality of
the data on any of these linear manifolds has incentivized
a slew of nonlinear manifold learning approaches, such as
Iso-map (Tenenbaum 1998), kernel PCA (Mika et al. 1999),
locally linear embedding (LLE) (Roweis 2000), Laplacian
eigenmaps (LEM) (Belkin and Niyogi 2003), semi-definite
embedding (SDE) (Weinberger, Sha, and Saul 2004), auto-
encoders (G.E and R.R 2006), t-SNE (Maaten and Hinton
2008), and diffeomorphic dimensionality reduction (Walder
and Schölkopf 2009).

Although many of the aforementioned nonlinear methods
provide the sought after low-dimensional manifold, only a
few provide a mapping from the learned low-dimensional
to the high-dimensional manifold, for a survey see (Lee
and Carlberg 2020). This is especially important in reduced
order modeling of PDEs, since the latent variables evolve
on a parameter/temporal space, followed by a mapping of
the latent variable from the low-dimensional to the high-
dimensional physical manifold. Auto-encoders (AE), specif-
ically convolutional auto-encoders (CAEs) (Masci et al.
2011) and deep convolutional generative adversarial net-
works (DCGANs) (Radford, Metz, and Chintala 2016), are
among the successful methods used in dimensionality re-
duction of PDEs (Lee and Carlberg 2020; Cheng et al.
2020). However, linear manifolds such as proper orthogo-
nal decomposition (POD) and dynamic mode decomposi-
tion (DMD) are still often preferred to the neural network-
based AEs, since they provide an interpretable framework
for analysis of the system, as well as controlling of the re-
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duced system. POD reveals the coherent structures in fluid
flows (Noack, Morzynski, and Tadmor 2011; Holmes et al.
2012), and DMD obtains a finite-dimensional, matrix ap-
proximations of the Koopman operator, which opens the
possibility of utilizing the estimation and control theories
developed for the linear systems (Kutz et al. 2016). In a more
recent effort, it is shown that deep AE architectures can be
trained to transform nonlinear PDEs into linear PDEs (Gin
et al. 2020). In this approach, although the transformation
is nonlinear, the latent variables lie on a linear subspace.
Finally, a similar approach that prioritizes the optimal re-
ducibility via a nonlinear manifold is lacking. Such an ap-
proach, by definition, results in a low-rank reduced order
model and motivates the present study.

In this paper – inspired by registration based manifold
learning approaches, e.g. (Walder and Schölkopf 2009; Tad-
dei 2020) – we develop a new manifold learning algorithm
to enable efficient construction of reduced order models
of convection-dominated physical systems. To this end, we
pose an unsupervised learning problem, that learns a spatio-
temporal grid on which the low-rank linear decomposition
of the solution of the PDE is optimal. The proposed method:
(i) provides a nonlinear map from the latent manifold to the
physical high dimensional space, which typically cannot be
achieved using standard nonlinear techniques such as LLE,
ISOMAP, MDS, etc., (ii) enables accurate predictive ex-
trapolatory simulations (forecasting) for a large and impor-
tant class of dynamical systems, i.e. hyperbolic/convection-
dominated problems, which other methods, including neural
network based auto-encoders, cannot achieve, and (iii) pro-
vides intuitive and interpretable manifolds for domain spe-
cific scientists/engineers.

Preliminaries
In approximation theory, Kolmogorov n-width is used to
measure how well the data – the solution of the PDEs in
the context of this paper – can be approximated on a linear
manifold, i.e. subspace. The connection between the Kol-
mogorov n-width and POD of the data is rigorously estab-
lished (Djouadi 2010), leading to a measure on the accu-
racy/feasibility of a low-rank ROM on a subspace.

Constructing the bases from snapshots in the spirit of the
POD method can be formulated as a low-rank matrix ap-
proximation problem as follows:
For a given snapshot matrix M ∈ RN×K , find a rank-k
matrix M̃ ∈ RN×K that solves the minimization problem

minimize
M̃

∥∥∥M − M̃
∥∥∥
F
,

subject to rank(M̃) = k,

(1)

where for an efficient reduction, k � N and k � K. A
snapshot matrix, M = [m1,m2, · · · ,mK ] ∈ RN×K , is
a matrix which its ith column, mi ∈ RN , contains the
states of the system/PDEs of interest at the ith system pa-
rameter, time, or the boundary/initial conditions, and M̃ =
[m̃1, m̃2, · · · , m̃K ] ∈ RN×K is the low-rank reconstruc-
tion/approximation of the snapshots matrix, and the error is
defined as the distance between M and M̃ .

In (1), the rank constraint can be taken care of by rep-
resenting the unknown matrix as M̃ = UV , where U ∈
RN×k and V ∈ Rk×K , so that problem (1) becomes

minimize
U ,V

‖M −UV ‖F . (2)

It is well known that the solution of the low-rank approxi-
mation problem of (2) is given by the singular value decom-
position (SVD) of M . Specifically, U = [u1, · · · ,uk] ∈
RN×k and V = Σ [v1, · · · ,vk] ∈ Rk×K , where
M = U∗Σ∗V ∗T, U∗ = [u1, · · · ,uk,uk+1, · · · ,uN ],
V ∗T = [v1, · · · ,vk,vk+1, · · · ,vK ], and Σ∗ =
diag (σ1, σ2, · · · , σr) is a diagonal rank-r matrix of sin-
gular values, where σ1 ≥ σ2 ≥ · · · ≥ σr, and Σ =
diag (σ1, σ2, · · · , σk). This decomposition has a very close
connotation to factor analysis (Friedman, Hastie, and Tib-
shirani 2001) and can be reproduced by artificial neural
networks with linear activations (Fyfe 1997). Although the
linearity of the learned manifold leads to inefficiencies
in convection-dominated PDEs with large Kolmogorov n-
width, the existence of a closed form solution, the abundance
of computationally efficient approaches such as (Holmes,
Gray, and Lee Isbell 2009), as well as its physical inter-
pretability (Holmes et al. 2012), has made POD a predom-
inately utilized approach in the reduced order modeling of
PDEs. Our goal is to extend the norm minimization problem
of (2) to an efficient and interpretable nonlinear manifold
learning problem.

Low-rank Registration Based Manifold
We generalize the linear manifold learning problem of (1),
as a nonlinear manifold learning as follows:
For a given high-dimensional data lying on a manifold learn
a map G−1 (.) and its corresponding manifold, on which
the mapped data can be accurately expressed by a low-rank
linear decomposition. The map from the high-dimensional
physical manifold to the learned manifold is denoted by G (.)
and its inverse by G−1 (.). In the case of finite-dimension
matrix space, G (.) : RN×K → RN×K and G−1 (.) :
RN×K → RN×K , the minimization has the following form:

minimize
G−1(.), M̃

∥∥∥M − G−1
(
M̃
)∥∥∥

F
,

subject to rank(M̃) = kr.

(3)

In this case, M̃ = UV ∈ RN×K is the low-rank linear
decomposition of the data on the learned manifold, where
U ∈ RN×kr and V ∈ Rkr×K . In principle, the compres-
sion of the data on the learned manifold is lossless. The pro-
posed minimization of (3) outperforms (1) if and only if for
a similar reconstruction/approximation error, kr � k.

Diffeomorphism and Interpolation
We impose diffeomorphism as a condition on the mapping
to and from the learned manifold. By definition, a map G (.)
is said to be diffeomorphic if G (.) and G−1 (.) are differen-
tiable (Modersitzki 2009). Bijectivity (i.e. one to oneness)
and smoothness guarantee diffeomorphism. Therefore, by

400



Algorithm 1 The map from the constant grid to the
parameter/time-varying grid, G (.)

Input: The constant grid (X = x0 � 1 ∈ RN×K),
The parameter/time-varying grid (X̃ ∈ RN×K),
The snapshots of the state variables on the constant grid

(M ∈ RN×K)
Output: The snapshots of the state variables on the
parameter/time-varying grid (M̃ ∈ RN×K)

1: for i = 1, 2, 3, · · · ,K do
2: m̃i ← interpolate mi stated on x0 to x̃i

// Using the interpolation scheme of choice
3: end for

enforcing the map to be diffeomorphic, we ensure existence
and uniqueness of M̃ given M , and vice versa. Bijectivity
is achieved by ensuring that volume of all the cells remain
strictly positive. A negative cell volume leads to the indeter-
minate derivative of the state parameter, which can be seen
as a “tear” in an image. Smoothness of the grid is maintained
by penalizing abrupt changes of the grid volume, both in
space and parameter/time via regularization terms.

To this point and to emphasize on the generality of
the proposed method, we have intentionally introduced
the idea of the mapping between the manifolds from
an abstract viewpoint. Hereon, we tie the definition of
the map between the manifold to any of the off-the-
shelf interpolation schemes, between the constant and
parameter/time-varying grid. The snapshot matrix of M =
[m1,m2, · · · ,mK ] ∈ RN×K is defined on a constant
grid X = x0 � 1 = [x0,x0, · · · ,x0] ∈ RN×K (in
physics: Eulerian framework) and we, by construct, asso-
ciate M̃ = [m̃1, m̃2, · · · , m̃K ] ∈ RN×K to the snap-
shots of latent variables on a parameter/time-varying grid
X̃ = [x̃1, x̃2, · · · , x̃K ] ∈ RN×K (in physics: arbitrary
Lagrangian Eulerian or ALE framework). In contrast to
most machine vision tasks dealing with images, the data
does not necessarily lie on a uniform Cartesian grid. This
distinction is important since many of the PDEs are dis-
cretized on unstructured computational grids. Any of the
off-the-shelf interpolation schemes, between the constant
and parameter/time-varying grid, can be utilized. A sim-
ple implementation of this procedure is elaborated in Alg. 1
and Alg. 2. Therefore, minimization problem of (3) can be
interpreted as a registration task, that minimizes the Kol-
mogorov n-width of the snapshots of the latent variables on
the learned parameter/time-varying grid.

Assumptions of Low-rank Grid for Convection
So far, we have tied the notion of the mapping between man-
ifolds to interpolation of the snapshots between the constant
and time/parameter-varying grids. In this section, we impose
a structure to the identified grid based on the known physics
of the convection-dominated PDEs.

There are two general approaches to formulate the grid
deformation in a registration problem. In the first class of
approaches, the grid nodes are controlled as the solution

Algorithm 2 The map from the parameter/time-varying grid
to the constant grid to , G−1 (.)

Input: The constant grid (X = x0 � 1 ∈ RN×K),
The parameter/time-varying grid (X̃ ∈ RN×K),
The snapshots of the state variables on the

parameter/time-varying grid (M̃ ∈ RN×K),
Output: The snapshots of the state variables on the constant
grid (M ∈ RN×K)

1: for i = 1, 2, 3, · · · ,K do
2: mi ← interpolate m̃i stated on x̃i to x0

// Using the interpolation scheme of choice
3: end for

of the a minimization problem and diffeomorphism is en-
forced by constraining the determinant of the deformation
gradient to be strictly positive for all grid cells. This ap-
proach leads to a high-dimensional optimization problem
which its nonlinearity and ill-posedness makes it computa-
tionally challenging (Mang et al. 2018). In the second class
of approaches, the mapping is the solution of a transport
equation, i.e. flow fields, as in diffeomorphic dimensional-
ity reduction (Walder and Schölkopf 2009). Interestingly, in
some special cases, a similar transport equation arises where
the frame of references is changed from the Eulerian to the
Lagrangian viewpoint, i.e. by solving the hyperbolic PDEs
on the corresponding characteristic lines. This change of the
reference is proven to be efficient in reduced order model-
ing of convection-dominated PDEs (Mojgani and Balajew-
icz 2017; Lu and Tartakovsky 2020). In the present paper, we
demonstrate the existence of a low-rank near-optimal grid
for many of the convection-dominated PDEs. We extend this
change of frame to arbitrary systems in a data-driven set-
ting. In our proposed method the coordinates of the low-rank
parameter/time-varying grid is defined as

X̃ := X + UxVx ∈ RN×K , (4)

where X is the constant grid, Ux ∈ RN×r and Vx ∈ Rr×K ,
therefore UxVx ∈ RN×K is a rank-r matrix. The latent vari-
ables can be interpreted as the evolution of the state parame-
ters on the low-rank approximation of the characteristic lines
of the hyperbolic PDEs, depicting the direction on which the
information travels. This physics-based assumption is one of
the key and differentiating elements of the proposed method,
(i) reducing the size of the optimization compared to the
existing registration-based methods, such as (Taddei 2020),
and (ii) resulting in unprecedented extrapolatory predictive
models, i.e. accurate models beyond the training range.

Implementation

In this section, we summarize the elements of the proposed
algorithm and clarify the implementation of the method. The
procedure is designed to learn a low-rank grid, X̃ , on which
the mapped snapshots, M̃ = G (M), is low-rank (Fig. 1).
The final dimensionality reduction problem, with the mini-

401



M ∈ RN×K
M̃ ∈ RN×K

G (M)

G−1
(
M̃
)

Figure 1: Illustration of the proposed manifold. The solution
of a convection-dominated PDE is given on a time-constant
grid, M ∈ RN×K expressed on X ∈ RN×K . The identified
manifold is defined by a time/parameter-varying grid, X̃ =
X + UxVx ∈ RN×K . The manifold is trained such that the
snapshot of the mapped states, M̃ = G (M), is low-rank.

mizer X̃ , has the following form:

minimize
U , V , Ux, Vx

J ,

subject to vn ≥ vmin, ∀n ∈ {1, . . . ,K} ,
x̃n|∂Ω = x|∂Ω, ∀n ∈ {1, . . . ,K} ,

(5)

where

J =
∥∥M − G−1 (UV )

∥∥
F

+ ‖Γ1Ux‖F + ...

+
∥∥∥VxΓ2

T
∥∥∥
F
,

(6)

and G−1 (.) interpolates the low-rank mapped snapshots,
UV , stated on a low-rank parameter/time-varying grid, X̃ ,
onto the constant grid, X , i.e. G−1 (.) : X̃ = X +UxVx →
X . The Tikhonov matrices, Γ1 ∈ RN×N and Γ2 ∈ RK×K ,
designed to promote grid smoothness, are calibrated using
well-known L-curve methods. Also vn is a vector of cell vol-
umes of the parameter/time-varying grid at the nth parame-
ter/time step, vmin is the minimum admissible cell volume,
and x̃n|∂Ω and x|∂Ω are boundary points of the learned grid
and the constant grid, respectively. The appropriate scaling
of Tikhonov matrices and the minimum cell volumes are
hyper-parameters and problem dependent.

Moreover, from a practical standpoint, a weak constraint
on the rank reduction is chosen. While (3) implies mini-
mizing over the rank of M̃ , in many cases, the solution of
the minimization for a preset size of the decomposition is
preferred. Therefore, in (5), we assume M̃ = UV , where
U ∈ RN×kr , V ∈ Rkr×K and kr � N , kr � K. Also, to
reduce the size of the optimization problem, Ux and Vx are
uniformly down-sampled/coarsened, however, the objective
(J ) is evaluated on the fine grid.
Remark 1: For Vx = 0 ∈ Rr×K leading to X̃ = X , the
minimization problem of (5) reduces to (2), and G−1 (.) acts
as an identity map.

Algorithm 3 Training of the proposed low-rank registration
based manifold
Input:
Hyper-parameters:

Γ1, Γ2,
Minimum admissible grid volume (vmin),

Reduction parameters:
Rank of the parameter/time-varying grid (r),
Rank of the low-dimensional representation (kr),

The snapshots matrix (M ∈ RN×K),
The constant grid (X = x0 � 1 ∈ RN×K),
Maximum number of iterations (jmax),
Output:
Low-rank parameter/time-varying grid X̃ = X + UxVx ∈
RN×K ,
The maps where G (.) : X → X̃ and G−1 (.) : X̃ →X

1: Initialize the time-varying grid, i.e. X̃(0) = X +

U
(0)
x V

(0)
x , with U

(0)
x ∈ RN×r and V

(0)
x ∈ Rr×K using

the SVD decomposition of the constant grid, X , plus a
small random perturbation

2: j ← 0
3: while j ≤ jmax do
4: M̃ ← G (M)

// Interpolate the snapshots, M , onto X̃(j)

5: UV ≈ M̃ s.t. rank(UV ) = kr
// Approximate M̃ using its SVD

6: J =
∥∥M − G−1 (UV )

∥∥
F

+
∥∥∥Γ1U

(j)
x

∥∥∥
F

+ · · ·

+
∥∥∥V (j)

x Γ2
T
∥∥∥
F

// Evaluate the objective where G−1 (UV ) in-
terpolates UV onto the constant grid

7: Update U
(j)
x and V

(j)
x minimizing J

// Update the grid bases via the rule of the opti-
mization

8: X̃(j+1) = X(j) + U
(j)
x V

(j)
x

// Update the grid using the grid bases
9: j ← j + 1

10: end while

Remark 2: To interpolate the snapshots between the two
sets of grid, we simply utilize a p-degree polynomial inter-
polation scheme in Alg. 1 and Alg. 2. This choice innately
incorporates a sparsity pattern into the mapping. The latent
space representation using a nearest-neighbor interpolation
only requires one data-point, and a p-degree polynomial in-
terpolation requires p − 1 entries of the input vector. This
choice, in principle, leads to a great reduction in the size the
optimization problem compared to the traditional neural net-
works, where there is no a priori assumption on the structure
of the connectivity between the nodes.

Finally, the proposed low-rank registration based mani-
fold (Alg. 3) can be utilized as an auto-encoder layer in a
broad range of system identification applications, e.g. arti-
ficial neural networks (Fig. 2), improving the accuracy and
training costs of machine learning architectures.

402



M ˜
M

(a) Traditional auto-encoder.

M G G (M ) ˜
M G−1 G−1

(
˜
M

)

(b) Proposed manifold as an auto-encoder layer.

Figure 2: The proposed low-rank registration based map,
G (.) and G−1 (.), as an auto-encoder layer in a deep learning
architecture.

Experiments
In this section, we discuss the reducibility/compression of
the snapshots and more importantly, leverage the interpreta-
tion in extrapolatory predictions of traveling features. We
resort to readily available optimization packages capable
of solving optimization with nonlinear constraints; such as
Sequential Least Squares Programming in scipy for the
Python implementation, or interior-point in fmincon for
the MATLAB implementation. Linear and bi-linear interpo-
lation schemes are used for one and two-dimensional prob-
lems. The implementations, data and the results are available
at https://github.com/rmojgani/PhysicsAwareAE.

Manifold for Rotated Character “A”
Consider a computer vision task of learning the nonlinear
transformation, rotation, given a data-set comprised of a ro-
tated character “A”. The image of character “A” is stored in
a 50 × 50 matrix and is rotated a total of 90 degrees with 3
degrees increments resulting in a snapshot matrix of dimen-
sion 2500× 31. A representative sample of the snapshots is
shown in Fig. 3a, and a single POD mode reconstruction is
illustrated in Fig. 3b. In this problem, Ux is down-sampled
to size of 7, i.e. the total of 49 control points. Moreover,
vmin = 0, Γ1 = 100Dxx and Γ2 = (100/π)Dθθ, where
Dxx and Dθθ are the second derivative matrices in the spa-
tial and parameter space, respectively. The boundary point
constraints are removed for this particular problem. The op-
timization problem of (5) approximates the rigid body rota-
tion as in Fig. 3c. In Fig. 3d, the snapshots are approximated
using a single basis (kr = 1) on the learned manifold of
r = 1. The reconstruction on the learned grid, using the pro-
posed approach, is remarkably more accurate compared to
the traditional POD. Figure 3e and 3f show the rank-2 grid
following the rigid body rotation in the snapshots and the

improvements in the accuracy (r = 2).

(a) The snapshots.

(b) The rank-1 reconstruction on the POD subspace.

(c) The parameter-varying rank-1 grid of the learned manifold.

(d) The rank-1 reconstruction on the learned rank-1 grid.

(e) The parameter-varying rank-2 grid of the learned manifold.

(f) The rank-1 reconstruction on the learned rank-2 grid.

Figure 3: 90 degrees rotation of character “A”.

Manifold of Two-Dimensional Hyperbolic Fluid
Flows
Consider the two-dimensional Riemann problem governed
by Euler equations of fluid dynamics, ∂

∂tq+ ∂
∂xfx+ ∂

∂yfy =

0, where q = [ρ, ρu, ρv, ρe], fx = [ρu, ρu2 +p, ρuv, ρuH ],
fy = [ρv, ρuv + p, ρv2 + p, ρvH], and H = e + p/ρ ,
p = ρ(γ − 1)(e − 0.5(u2 + v2)) in the domain (x, y, t) ∈
[0, 1] × [0, 1] × [0, tmax], with initial conditions of configu-
ration 3 and 12 as in (Lax and Liu 1998). The snapshots of
primitive variables are generated using a high-order artificial
viscosity scheme coupled with a 4th-order Runge-Kutta time
discretization with ∆t = 5×10−4 on a 150×150 grid. Snap-
shots are collected at δt = 0.016 and δt = 0.006 intervals
for simulation range of t ∈ [0, 0.80] and t ∈ [0, 0.25] for
configuration 3 and 12, respectively. The size of the snap-
shot matrices in both cases are 10000 × 50. A rank-2 time-
varying grid (r = 2) is learned via (5) setting kr = 4,
and γ1 = γ2 = 0.05, where Γ1 = γ1Dxx = γ1Dyy is
the second derivative matrix in the x and y directions and
Γ2 = γ2Dtt, where Dtt is the second derivative matrix in
time. Also, vmin = ∆xmin∆ymin, where ∆xmin = ∆ymin =
6.7×10−4. The low-dimensional representation of density is
compared on the constant grid and the proposed manifold in
Fig. 4. The identified grid follows the shock front and there-
fore the traveling shocks are conserved and the solution is
free of non-physical oscillations on the proposed manifold,
resulting in a higher accuracy of low-rank reconstruction.

Auto-encoder for Neural Network-Based Models
In this section, the proposed method acts as an auto-encoder
layer wrapped around a traditional neural network-based
machine learning architecture to decrease the loss in the
off-line compression phase and subsequently to improve the
predictive capabilities of a recurrent neural network mod-
eling the governing PDEs. We employ a long short-term
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(i) POD subspace.

(ii) Proposed manifold.

5 10 15 20
10−4

10−3

10−2

k, kr

ε

POD

Proposed

(iii) Error.

(a) Euler equation, config. 3.

(i) POD subspace.

(ii) Proposed manifold.

5 10 15 20
10−5

10−4

10−3

10−2

k, kr

ε

POD

Proposed

(iii) Error.

(b) Euler equation, config. 12.

Figure 4: The reconstruction of density of the two-
dimensional Riemann problem with (a) configuration 3 and
(b) configuration 12 at the last time step of the simulations
and the corresponding grid. The snapshots are of (i) k = 8
and (ii) kr = 8 on (i) POD subspace and (ii) the proposed
rank-2 manifold, respectively. The error convergence on the
POD subspace and the proposed manifold for configuration
3 and 12 are compared in a-(iii) and b-(iii), respectively.

memory (LSTM) to approximate the dynamics of the PDE
on the learned manifold, for the details see (Parish and
Carlberg 2020). To learn a low-dimensional manifold, a 3-
layer dense neural networkauto-encoder with linear activa-
tion functions are used. The densely connected auto-encoder
and the LSTM, implemented in Keras (Chollet et al. 2015
Accessed on 03/01/2021), are trained simultaneously on the
snapshot matrix of M ∈ RNx×Nt (Fig. 2a). In the proposed
architecture (Fig. 2b), the manifold and the neural network
are trained separately.

Consider the scalar, one-dimensional nonlinear
convection-diffusion equation, known as viscous Burg-
ers’ equation, ∂tw(x, t) +w∂xw(x, t) = (1/Re) ∂xxw(x, t)
in the domain (x, t) ∈ [xa, xb] × [0, T ], equipped
with initial conditions w(x, 0) = w0(x), and Dirichlet
boundary conditions at xa, and xb, where w(x, 0) =

0.8 + 0.5 e−(x−0.5)2/0.12

, w(xa, t) = w(xb, t) = 0, for
(x, t) ∈ [0, 2.5] × [0, 1]. An implicit second order time
discretization is used with ∆t = 8 × 10−3 and space

is uniformly discretized where ∆x = 1 × 10−2. In the
proposed architecture, the rank-1 time-varying grid (r = 1),
representing the low-rank auto-encoder, is learned as in (5)
with kr = 4. In this problem, vmin = 10−3, Γ1 = γ1Dxx

and Γ2 = γ2Dtt, where γ1 = γ2 = 1, and Dxx and Dtt are
second derivative matrices in space and time. Subsequently,
the LSTM is trained to approximate G (M). The contours
and error convergence of the methods are compared in
Fig. 5a-(i–iii), showing up to 3 orders of magnitude increase
in the accuracy at the most compact networks.
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Figure 5: LSTM approximation of the (a) Burgers’ and
(b) wave equations, on the AE with bottleneck of size 10 and
5. The error convergence of the traditional neural network
AE and the proposed AE for Burgers’ and wave equations
are compared in a-(iii) and b-(iii).

Also, consider the one-dimensional wave equation,
∂ttw(x, t) − ∂xxw(x, t) = 0, in the domain (x, t) ∈
[xa, xb] × [0, tmax], equipped with initial conditions
w(x, 0) = w0(x), and Dirichlet boundary conditions at
xa, and xb, where w(x, 0) = e−(x−0.5)2/0.12

, w(xa, t) =
w(xb, t) = 0, for (x, t) ∈ [0, 1]× [0, 1]. An implicit second-
order time-discretization is used with ∆t = 2.5× 10−3 and
space is uniformly discretized where ∆x = 10−2. The ar-
chitecture is set up similar to the Burgers’ equation, with
the following parameters: the time-varying grid is of rank-

404



2 (r = 2), the reconstruction on the learned manifold is of
rank-2 (kr = 2), vmin = 10−3, γ1 = γ2 = 10, and the
size of the grid bases, in both space and time, are down-
sampled to 15 control points. The solution and error is plot-
ted in Fig. 5b-(i–iii), showing the most increase in the accu-
racy for the most compact network.

Exploratory Prediction
The proposed low-rank manifold is applied to extrapola-
tory predictive regimes (forecasting), where the solution of
the PDEs does not lie on the manifold of the training data-
set. The task of extrapolatory prediction is often considered
as a disconcerting task in machine learning (ML) models
for PDEs. It is known that ML models are predictive only
within the range of the parameters used in the training phase
(interpolatory prediction). To address this limitation, some
physical properties of the system have to be explicitly incor-
porated (Brunton, Noack, and Koumoutsakos 2020). Fig. 6
demonstrates application of the proposed low-rank registra-
tion in such extrapolatory predictive regimes. In these cases
the models/reconstructions are built based on the snapshots
collected in t ∈ [0, 1] and t ∈ [0, 0.1], and evolved in time
for t ∈ [0, 1.5] and t ∈ [0, 0.25], respectively for the pre-
viously discussed Burgers’ and the two-dimensional Rie-
mann (config. 12). As expected, neither the linear POD sub-
space nor the nonlinear neural network AE can predict the
traveling features outside the training range, Fig. 6a-(i) and
Fig. 6b-(i). The low-rank manifold is extended on the lin-
ear extrapolation of Vx, following the characteristic lines of
the underlying hyperbolic problems, and therefore enabling
both POD subspace and LSTM network to track the travel-
ing shock, Fig. 6a-(ii) and Fig. 6b-(ii). The transient error
for the two-dimensional Riemann is plotted in Fig. 6a-(iii),
depicting a rapid increase of the error past the training range
on the POD subspace and an accurate prediction on the pro-
posed manifold, emphasizing that while POD fails to predict
the traveling shock, while the proposed manifold captures it.
Similar behavior is apparent in the neural network model of
the Burgers’ equations. The error, ε, for LSTM of different
dimensions are plotted in Fig. 6b-(iii). The neural network
AE and nonlinear LSTM alone do not capture the travel-
ing features/convection past the training range, regardless of
their dimensions.

Conclusion
Efficient data-driven modeling of convection-dominated
partial differential equations (PDEs) is challenging due to
the large Kolmogorov n-width typically exhibited by their
solutions. For example, it is well known that most exist-
ing neural network-based approaches fail to provide reason-
able accuracy in the extrapolatory predictive (i.e. forecast-
ing) regimes when trained on data-sets containing solutions
of convection-dominated PDEs. In this paper, we propose an
auto-encoder-type dimensionality reduction algorithm that
significantly improved the predictive qualities of neural net-
work models while, simultaneously, lowering the required
training costs. In low-rank registration-based manifold, solu-
tion snapshots are mapped onto a low-rank parameter/time-
varying grid, such that the Kolmogorov n-width of the latent
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Figure 6: The extrapolatory prediction of the (a) two-
dimensional Riemann (Config. 12), and (b) Burgers’ equa-
tion. (a) Two-dimensional Riemann (Config. 12): The mod-
els are trained in t ∈ [0, 0.1] and the rank-2 reconstruc-
tions are plotted at t = 0.25 on the (i) POD subspace, and
(ii) the proposed manifold. The transient error is plotted in
(iii), where blue line: POD subspace, black line: proposed
manifold. (b) Burgers’ equation: The models are trained in
t ∈ [0, 1.0] and LSTM solutions are plotted for t ∈ [0, 1.5]
on the (i) NN auto-encoder, and (ii) the proposed auto-
encoder. The transient error and error convergence for con-
fig. 12 and Burgers’ equation are plotted in a-(iii) and b-(iii).

snapshots is minimized. We have successfully demonstrated
this approach on several challenging engineering problems:
(i) a computer vision task (reconstruction of images under
nonlinear transformation), (ii) a neural network-based re-
duced order model of nonlinear convection-dominated flows
(Burgers’ and wave equations), and (iii) dimensionality re-
duction of nonlinear two-dimensional fluid flows (Riemann
problem governed by the Euler equations). The proposed ap-
proach is general, in that: a) it is, in principle, applicable to
PDEs of arbitrary spatial dimensions, and b) is also appli-
cable to a broad range of other reduced-order modeling ap-
proaches, including physics-based and gray-box modeling
approaches such as projection-based approaches.
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