The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

RNA Secondary Structure Representation Network for RNA-proteins Binding
Prediction

Ziyi Liu,' Fulin Luo,’* Bo Du'’

! National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence, School of Computer
Science, and Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, China
2 State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, China
ziyiliu@whu.edu.cn, luoflyn@ 163.com, dubo@whu.edu.cn

Abstract

RNA-binding proteins (RBPs) play a significant part in sev-
eral biological processes in the living cell, such as gene reg-
ulation and mRNA localization. Several deep learning meth-
ods, especially the model based on convolutional neural net-
work (CNN), have been used to predict the binding sites.
However, previous methods fail to represent RNA secondary
structure features. The traditional deep learning methods gen-
erally transform the RNA secondary structure to a regular
matrix that cannot reveal the topological structure informa-
tion of RNA. To effectively extract the structure features of
RNA, we propose an RNA secondary structure representation
network (RNASSR-Net) based on graph convolutional neural
network (GCN) and convolution neural network (CNN) for
RBP binding prediction. RNASSR-Net constructs the graph
model derived from the RNA secondary structure to learn the
topological properties of RNA. Then, it obtains the spatial im-
portance of each base in RNA with CNN to guide the repre-
sentation of the RNA secondary structure. Finally, RNASSR-
Net combines the structure and sequence features to predict
the binding sites. Experimental results demonstrate the pro-
posed method outperforms a few state-of-the-art methods on
the benchmark datasets and gets a higher improvement on the
small-size data. Besides, the proposed RNASSR-Net is also
used to detect the accurate motifs compared with the experi-
mentally verified motifs, which reveals the binding region lo-
cation and RNA structure interpretation for some biological
guidance in the future.

Introduction

RNAs and proteins are important components in life, which
are involved in biochemical reaction in living cells(Ule and
Rinn 2014). RNA-binding proteins are the proteins that
binds to the RNAS to regulate the gene expression and con-
trol RNA processes and translation within the cells(Van Nos-
trand et al. 2016). The gene regulation comprises a huge
number of co- and post-transcriptional gene expression in
living organisms, including polyadenylation, RNA splic-
ing, modification, capping, localization, translation and
turnover(Ray et al. 2013). The dysfunctions of certain RNA-
binding proteins (RBPs) may cause some serious diseases,
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such as neurodegenerative disorders, cancers and cardiovas-
cular diseases(Musunuru 2003; Lukong et al. 2008).

RBPs also have a great influence on the viral RNA tran-
scription and replication. The outbreak of coronavirus dis-
ease 2019 (COVID-19) is a disease caused by a novel
coronavirus. The coronavirus(CoV) N proteins inside the
coronavirus construct helical ribonucleoproteins during the
packaging of the viral RNA genome, regulating viral RNA
synthesis in replication/transcription, and modulating in-
fected cell metabolism(Nelson, Stohlman, and Tahara 2000;
Stohlman et al. 1988; Cong et al. 2020). Therefore, the study
of RBPs benefits to the understanding of gene regulation and
the treatment of some genetic diseases and infectious dis-
eases.

To investigate how the RBPs affect the RNA processing,
the RNA substrates that each RBP interacts with have been
analyzed(Ule et al. 2003). The binding sites of these RNA
substrates are highly related to the function of RBPs. Both
RNA sequences and RNA structures determine the RBPs
binding intensities (Buckanovich and Darnell 1997; Hack-
ermiiller et al. 2005). The RNA sequences reflect the base
distribution information and the RNA structures reflect the
topological information. In previous works, the RNA se-
quences are widely used to get the RNA binding predic-
tion(Zhang et al. 2016; Kazan et al. 2010a). However, the
missing of RNA structures won’t guarantee the model to
get the optimal prediction. For example, hairpin loop con-
taining “UGGC” has been shown to bind Vtslp-SAM with
high affinity(Aviv et al. 2006). Thus, the topological infor-
mation extracted by RNA structures also contributes to the
RNA binding prediction.

To analyze the binding of RNA, biologist uses the RBPs
to obtain the binding information of RNA by biological ex-
periments. However, the experimental way is very time- and
material- consuming. To reduce the cost, high-throughput
technologies have been widely used in genome-wise study
of RNA-protein interactions, such as the cross-linking im-
munoprecipitation coupled with high- throughput sequenc-
ing (CLIP-seq)(Anders et al. 2011; Ferre, Colantoni, and
Helmer-Citterich 2015) and RNAcompete(Ray et al. 2013).
These high-throughput technologies provide a considerable
amount of available data, which make it possible for tradi-
tional machine learning and deep learning methods to train
an accurate model for binding prediction.
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Figure 1: Network architecture of RNASSR-Net. The RNA sequences and structures are processed by GCN and CNN respec-
tively. Different colored nodes in the RNA graph represent nucleotides of different structural categories. For the nucleotide base
importance, GCN focuses on the some sub-structures that are critical to the binding classification.

As we known, the RNA data are considered as sequences,
which neglects the topological structures of RNA. The struc-
ture data, which benefits for the research of RBPs binding
can be directly obtained by some computational software
(Gruber et al. 2008). For RNA secondary structure, it is rep-
resented as simple strings with dot and bracket. These dot-
bracket strings make it very hard for models, such as convo-
lutional neural network(CNN) and long short-term memo-
ries(LSTMs), to learn the binding pattern. Some approaches
transform the dot-bracket strings to the one-hot matrix ac-
cording to nucleotide categories of RNA secondary struc-
ture. However, the transformation will cause irreversible in-
formation loss of RNA structure. Therefore, it is very ur-
gent to develop a method for the analysis of RNA secondary
structure.

Therefore, we propose a RNA secondary structure rep-
resentation network (RNASSR-Net) based on graph convo-
lutional neural network (GCN) and convolution neural net-
work (CNN) for RBPs binding prediction. RNASSR-Net
simultaneously uses the sequences and the structure data
to learn the topological and binding properties of RNA, as
shown in Figure 1. Our source code is available at https:/
github.com/ziniBRC/RNASSR-Net. The main contributions
of this paper include the following:

* The proposed RNASSR-Net model uses GCN to repre-
sent the secondary structures of RNA and CNN to learn
the sequence features of RNA. This method simultane-
ously considers the topological and sequence properties
of RNA to achieve the complementarity of different in-
formation and improve the prediction accuracy of RNA
binding.

* We use CNN to learn the base weights which reveal
the spatial importance of RNA. The weights can guide
GCN to learn the secondary structures of RNA. The base
weights corresponds to the node in the graph of RNA
structure. Under the similar receptive field, we share the
base weights to make GCN focus on some important nu-
cleotide bases.
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* We fuse the structure and sequence features to predict the
RBP binding. The proposed method outperforms other
baselines on the benchmark dataset. We detect accurate
motifs that are consistent with the experimentally verified
motifs. Besides, we analyze the response value of each
nucleotide base to extract the importance region and struc-
ture mutation information.

Related Work

A lot of traditional machine learning methods have been
proposed to address the RNA binding prediction problems.
Traditional methods focus on how to extract the important
features manually. These machine learning algorithms and
computational tools analyze different aspects of features to
predict RBP binding sites and generate the motifs(StraZar
et al. 2016). BioBayesNet is the first tool that uses the
structural features to perform the target recognition problem
for the transcription factor binding sites(Pudimat, Schukat-
Talamazzini, and Backofen 2005). RNAContext is a motif
binding method to achieve the relative binding preferences
of RBPs for RNA sequences and structures(Kazan et al.
2010b). RCK developed a new model, which is from the ex-
tension of RNAcontext, to obtain the k-mer sequence and
structure preferences of RNA-binding proteins(Orenstein,
Wang, and Berger 2016). GraphProt extracts a very large
number of features from sequence and structure information
by graph encoding and uses the Support Vector Machine
(SVM) family to predict the RNA binding sites(Maticzka
et al. 2014).

For the complexity of RNA sequences, it is hard to extract
important latent features through traditional machine learn-
ing methods. To address this problem, deep learning has
been introduced into the fields of bioinformatics and com-
putational biology, such as protein location(Almagro Ar-
menteros et al. 2017), protein structure prediction(Heffernan
et al. 2015), RNA prediction(Alipanahi et al. 2015) and
chemoinformatics(Lusci, Pollastri, and Baldi 2013). Re-
cently, several deep learning methods have been developed
to analyze RNA binding prediction and detect candidate mo-



tifs automatically. DeepBind(Alipanahi et al. 2015) firstly
introduced the CNN model to predict RNA binding sites and
structures. In DeepBind, Position weight matrices(PWM),
which are composed of one layer of convolution and pooling
followed by a fully connected layer, are embedded into the
CNN model to show the probability distribution of binding
sites. Deepnet-rbp(Zhang et al. 2016) uses deep belief net-
work (DBN) to predict RBP binding sites from sequence,
secondary and tertiary structural features. iDeepE(Pan and
Shen 2018) integrates the multi-channel local and global se-
quence information for predicting RBP binding sites and
motifs. Another similar work iDeepS trains two individual
CNNs and a LSTM to get the binding prediction. Although
these methods are effective and accurate, they mainly fo-
cus on the RNA sequence features using CNN model. The
features of RNA structures are converted to position weight
matrix according to the categories of RNA structures, which
are processed by CNN models. The topological information
of RNA structure isn’t fully used because the link informa-
tion of RNA bases is missing after the conversion.

In recent years, graph neural network(GNN) has been
developed to learn the topological information of data,
which is widely used in the fields of social sci-
ences(Kipf and Welling 2017; Monti et al. 2019), knowl-
edge graphs(Schlichtkrull et al. 2018; Chami et al. 2020),
chemistry(Duvenaud et al. 2015; Gilmer et al. 2017). In or-
der to process irregular data format, recursive neural net-
work is used to build the graph neural networks(Gori, Mon-
fardini, and Scarselli 2005; Scarselli et al. 2008), which
aims to deal with a general class of graphs. In the case of
fixed-size graphs, a series of convolutional neural networks
based on the spectral representation of the graphs have been
applied on the node classification and graph classification.
Specifically, Kipf & Welling(Kipf and Welling 2017) pro-
posed a simplified spectral neural network using 1-hop fil-
ters to address overfitting problem and minimize the num-
ber of operations. As we known, few graph neural networks
have been applied in the analysis of RNA structures. Re-
cently, RNA-protein interactions network (RPI-Net) based
GNN was used to learn and exploit a graph representation
of RNA molecules(Yan, Hamilton, and Blanchette 2020).

Methodology

Sequence Coding

RNA is composed of four kinds of nucleotides, which can be
distinguished by different bases of nucleotides. The bases
that are denoted as ‘A’,‘C’,°G’,’U’ respectively represent
different kinds of nucleotides in our model. The lengths
of RNA sequences in the datasets are different. However,
the input features of convolutional neural networks must
have the same fixed size. We pad RNA sequences to a
fixed window size using an identifier ‘N’. Given an RNA
sequence s as {s1, S2, 83, Sn+ With n nucleotides (s; €
‘ALC’L‘G’,U’,N”), we encode the RNA sequence data as
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one-hot matrix:

(025 025 0.25 0.25] ifs;_pi1is ‘N’
[1.00 0.00 0.00 0.00] if $;_py is ‘A
M;, =14 [0.00 1.00 0.00 0.00] if s;_pqis ‘C’
(0.00 0.00 1.00 0.00] if 8;_poy is ‘G’
(0.00 0.00 0.00 1.00] if $;_piis U’

1
where i is the location of nucleotides in the RNA sequences.
In our study, we suppose that 4 different nucleotides obey
an average distribution at the start and end of the sequences.
Therefore, we use [0.25, 0.25, 0.25, 0.25] for the padded
nucleotides and ‘N’ in the one-hot matrix. ‘N’ denotes the
unknown base in RNA sequences.

Graph Construction

The one-hot matrix reflects the composition of nucleotide
sequences. However, the structures of RNA take an im-
portant part in RNA function. One-hot matrix of RNA se-
quences can’t reflect the nucleotide structure information. To
better extract the intrinsic properties of RNA, the RNA struc-
tures should be considered in the model. In this paper, we
use RNAfold to abstract certain structural details. RNAfold
can sample all possible structures and retain highly proba-
ble candidates. In several previous methods, the secondary
structures are used in the model. The nucleotides in the sec-
ondary structure can be classified to six categories, which
are denoted as stems (S), multiloops (M), hairpins (H), in-
ternal loops (I), bulges (B) and external regions (E). Same as
the RNA sequences, the nucleotides of these six categories
can be transferred to one-hot matrix in the previous meth-
ods. Nevertheless, the one-hot matrix neglects the structure
relationships of RNA, which may lose some structure infor-
mation. Therefore, we use the graph model to represent the
structural information of RNA.

According to the RNAfold abstracted results, some struc-
tures may have the link between two nucleotides i and j ,
but others may not. In this approach, we denote the prob-
ability of a secondary structure s associated with sequence
x as p(s|x). The construction of graph is also used in (Yan,
Hamilton, and Blanchette 2020). The probability p(s|z) is
defined as:

1, -68(.2)

p(slr) = . 2

where Z is a normalization constant and E(s, x) is the free
energy of x under structure s. The base-pairing probability
for nucleotides i and j is defined as:

p(lidllz) = ) pls | )

[i,j]€s

3)

After running RNAplfold, we obtain a probabilistic adja-
cency matrix Ay xn, where A; ; = p([i, j]|x). For graphs
constructed by different RNA sequences, the node numbers
of graphs are also different. We pad the graphs using the
empty nodes, which aren’t linked to other nodes. The node
numbers of the padded graphs are the same as the length of
the padded RNA sequences.



Network Architecture

For RNA data, the structures and sequences can be denoted
as graph data and one-hot matrix. Because the previous
CNN-based methods aren’t used for the graph data, we pro-
pose a novel network based on GNN and CNN to learn the
structure and sequence features of RNA. This network in-
tegrates the node information in graph and the spatial in-
formation in one-hot matrix for RNA binding prediction. In
the network, the graph data and the one-hot matrix are in-
putted into GNN and CNN, respectively. GNN and CNN
both have two convolution layers and two pool layers. For
graph data and one-hot matrix, one nucleotide corresponds
to one node in the graph and a location in the one-hot ma-
trix. Thus, the nodes in the RNA graph and the nucleotide
bases in the RNA sequence should have shared some similar
information. Under the similar receptive field, the spatial im-
portance extracted from CNN is passed to GCN to guide the
training process of GCN. Finally, the features extracted by
GCN and CNN are flattened, which are concatenated with
each other. Then, the features are inputted into fully con-
nected layers to get the RNA binding prediction.

Convolutional Neural Network

The convolutional neural network(CNN) can help extract
the non-linear intrinsic features of inputs, including convo-
lution, max-pool, and fully connected layers. Any convolu-
tional neural network contains at least one convolution op-
eration. And the pointwise product between input one-hot
matrix and filters are outputted after convolution operation.
The output of convolution operation x; j, is the score of fil-
ter k aligned to the nucleotide ¢ in the padded sequence s.

In this study, filters are stored in the matrix F', where the

)

element F,Sl j.c 18 the coefficient of kth filter at the position

j and channel c in the [*" layer. The output of convolution

®

operation x, ;. can be defined as:

20

o) =xm 2O 0, B

i—F+j,c ke

“

where () is the output of the I*" layer, i is the index of

)

features, F,g is the coefficients of the filter % in the [ layer,

m is the size of the filters, C(® is the channel number of the
input in the {*" layer. In the convolution operation of the
first layer, the input of convolution operation is the one-hot
matrix M and the channel of M is the base of nucleotide.
So the first convolution filters are called as motifs detectors,
which can learn the pattern of base distribution.

The activation function of convolution operation is recti-
fied linear unit (ReLLU). The positive scores that are greater
than O are passed to next layer, while the negative scores are
assigned to 0. The ReLU activation operation is defined as:

0 ifz<0
x  otherwise

ReLU(x) — { 5)

In CNN, convolution operation is followed by max-pool
or average-pool layers. After the convolution layers, the size
of the output feature map remains almost unchanged. Pool
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layers can reduce the dimensionality and preserve some im-
portant features by selecting the maximum or average values
inside a certain window. Max-pool layers can be denoted as:

El plzrr k) € [0,]) - 1]
(6)

where X is the output after convolution and ReLLU layer, p is
( )

!
Maxpool (X)) : ! ,l

= Imax (
7‘7

the length of pool kernel, x;

gzk Y which will be 1nputted into next convolutional layer

or fully connected layer.

is the output of max-pooling

Graph Neural Network

Graph neural network(GNN) is an end-to-end network that
learns hierarchical graph representation and graph node em-
bedding. In this paper, we use GNN to learn the adjacent
node information and node embedding features to analyze
the RNA structure. For previous methods, the one-hot matrix
of RNA structures is constructed and inputted into convolu-
tional neural networks to get prediction. However, the pro-
cess of converting RNA structures into one-hot matrix will
lose some important information. Besides, one-hot matrixes
can only analyze the node features and the adjacent node re-
lationship is often missed. While GNN can directly process
the structure data. The adjacent matrix is inputted into the
GNN model to extract the adjacent node information.

Given a graph G = (V, E, A), where V is a finite set of
|V| = n nodes, F is a set of edges and A € R™*" is an
adjacency matrix encoding the connection weight between
two nodes. For comprehension, we consider the graph con-
volution following general “message-passing” architecture:

HO = Gh (4, 507D;00) (7)
where H® € R"*? are the node embeddings after [ steps
of graph convolution operation, Gh(-) is the graph convolu-
tion operation which is known as the message propagation
function, H(~1) is the output of last convolution operation,
6® is the trainable parameters. The initial H(%) is the node
features of RNA secondary structures.

Many implementations of message propagation function
have been proposed to get the output of the graph convo-
lution operation. A popular methods is the graph convolu-
tion network, which is implemented by linear transforma-
tions and ReLU non-linearities:

HO —ReLU( D3 AD- 3 x(- 1>W<”) (8)

where A = A + Iy, D” =3 A” and W(Z) 1s a trainable

matrix. D is the degree matrix of A. D=2 AD~% is a renor-
malization trick which is introduced to alleviate the numeri-
cal instability and exploding/vanishing gradient problem.
Although GCN has been applied into many research
fields, GCN doesn’t results in very good prediction perfor-
mance. In this paper, we introduce a new method to help
GCN perform better by the features of CNN. In graph learn-
ing representation of RNA structure, each base in the RNA
sequence corresponds to a node in graph. Under the similar
receptive field, the base importance weight learned by CNN



can guide the training process of GCN . For one graph con-
volutional layer, the node integrates the information of the
neighbor nodes, which could be understood as the 3*1 filters
in CNN. For regular data, 4 graph convolutional layers have
the similar receptive field compared to 9*1 filters in CNN.
Thus, we extract the base importance weights from the first
CNN layer to guide the training process of GCN. The base
importance weights are defined as:

C
weight = sigmoid (BN (é > x(lk)>> )

k=1

where xglk) is the output of the first CNN layer, BN is the
operation of batch normalization. This importance weight is
multiplied by the graph features obtained by GCN, which is
calculated as follows:

H® = H® @ weight (10)

where H®) is the ouptuts of the 4 GCN layer, ® is the
Hadamard product.

Loss Function

In our work, the outputs of our model are used to predict
the binding labels of the RNA data. To obtain the optimal
parameters, we use the binary cross-entropy loss function:

N
L(0) = =) yilog (§:) + (1 —yi)log (1 — ;)  (11)
=1

where y; is the true label, §; is the predicted labels of the
trained model.

Motifs Detection

In our study, we will adopt MEME (Bailey et al. 2009) to
accomplish the visualization of our results. In this study,
we investigate the convolutional outputs of CNN and GCN
in our model. The convolutional filters can be considered
as the “motifs detector”. If the filters have the same base
distribution of motifs, the outputs of these filters reflect the
binding intensities. We convert the outputs of the filters into
position weight matrices(PWM) using the same strategy in
DeepBind and Basset (Alipanahi et al. 2015). We calculate
the average value of the outputs of the first convolution in
CNN and the outputs of the last graph convolution in GCN.
If the average output value at position i is larger than 0.75
maximum value across this set of sequence, k-mer sequence

{Si7%78i7%+17'.. +
the probability of each base at corresponding location of mo-
tifs.

28,4 ke } will be selected to calculate
2

Experiments
Baseline

There are a lot of computational methods that have been
developed to predict the binding sites and motif structure
from sequence datasets. In this study, we will compare our
method with four other state-of-the-art methods, and the per-
formance is measured by the area under the receiver operat-
ing characteristic curve (AUROC).
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* GraphProt(Maticzka et al. 2014): It used a graph kernel
that can represent a sequence feature and the potential
secondary structure of potential motifs. These graph ker-
nel features are fed into support vector machine (SVM) to
classify bound sites from unbound sites.

¢ Deepnet-rbp(Zhang et al. 2016): It constructs the features
by fusing the RNA primary sequence, secondary and ter-
tiary structural features together and inputs the feature
into a DBN to predict RBP binding sites.

¢ iDeepE(Pan and Shen 2018): On the one hand, it uses
two-layer local multi-channel CNNs to convolve the mul-
tiple subsequences of RNA sequence in parallel to get the
local outputs. On the other hand, it uses two-layer global
1-channel for padded RNA sequences to get the global
outputs. Lastly, it takes the average of local and global
outputs as the final output.

* RPI-Net(Yan, Hamilton, and Blanchette 2020): A gated
GNN based model is proposed to learning the graph rep-
resentation of the RNA secondary structures. It uses a
LSTM that treats the node embedding as a hidden state
and the messages coming to each node as input.

Datasets

We compare the performance of our method with other base-
lines on the benchmark RBP binding dataset in GraphProt
originally created by (Maticzka et al. 2014). This dataset
consists of 24 sets of HITS-CLIP-, PAR-CLIP- and iCLIP-
derived binding sites, where 23 sets were derived from do-
RiNA (Anders et al. 2011) and PTB HITS-CLIP binding
sites was taken from (Xue et al. 2009). For this dataset,
the region identified in the CLIP-seq experiment are flanked
by 150 nucleotides on both ends. According to the positive
sites, the ”viewpoint” region in each RNA positive sequence
is identified by experiment. The positive sites are subse-
quence anchored at the peak center, which are derived from
CLIP-seq processed in doRiNA. The negative RNA samples
are generated by choosing at random viewpoint-sized por-
tions of human transcripts, where there is no supportive evi-
dence of existing binding sites.

According to the CLIP-Seq protocol, including PAR-
CLIP (Hafner et al. 2010) and HITS-CLIP (Licatalosi et al.
2008), the RNA regions that contain RBP binding sites are
separated from the original transcript using particular RNA
cleavage enzymes such as RNase T1. The borders of the
RNA regions have the same base distribution because of
the same cleavage enzymes, which may misguide the model
to learn the information of the cleavage enzymes. To avoid
the borders misleading problem, dataset is debiased through
randomizing the borders of the RNA regions using the four
kinds of nucleotides.

In this paper, we still focus on the original binding dataset.
However, RPI-Net doesn’t provide the results on the original
dataset. Thus, we conduct some extended experiments on the
debiased dataset to compare RNASSR-Net with RPI-Net.

Parameters Setting

To investigate the performance of our model, we randomly
select 90% of origin training set from RBP-24 as the training



RBP GraphProt Deepnet-rbp iDeepE  Ours

ALKBHS5 68.0% 71.4% 75.8% 77.1%
C170RF85 80.0% 82.0% 83.0% 88.9%
C220RF28 75.1% 79.2% 83.7%  86.5%
CAPRINI 85.5% 83.4% 89.3% 92.4%
Ago2 76.5% 80.9% 88.4% 89.0%
ELAVLIH 95.5% 96.6% 97.9%  98.3%
SFRS1 89.8% 93.1% 94.6% 95.3%
HNRNPC 95.2% 96.2% 97.6% 98.0%
TDP43 87.4% 87.6% 94.5%  95.2%
TIAI 86.1% 89.1% 93.7%  94.8%
TIAL1 83.3% 87.0% 934% 94.6%
Agol-4 89.5% 88.1% 91.5% 93.7%
ELAVLIB 93.5% 96.1% 97.1%  98.0%
ELAVLIA 95.9% 96.6% 96.4%  97.7%
EWSRI1 93.5% 96.6% 96.9% 97.0%
FUS 96.8% 98.0% 98.5% 98.6%
ELAVLIC 99.1% 99.4% 98.8%  99.1%
IGF2BP1-3 88.9% 87.9% 94.7%  97.0%
MOV10 86.3% 85.4% 91.6% 94.0%
PUM2 95.4% 97.1% 96.7%  97.9%
QKI 95.7% 98.3% 97.0%  98.1%
TAF15 97.0% 98.3% 97.6% 98.4%
PTB 93.7% 98.3% 94.4%  94.9%
ZC3H7B 82.0% 79.6% 90.7%  91.7%
Mean 88.7% 90.2% 93.1% 94.4%

Table 1: Performance of our method and other baseline
methods across 24 experiments on original dataset. The bold
font indicates the best AUC among compared methods.

set and the remaining 10% as the validation set. We train our
model for a maximum of 100 epochs using Adam (Kingma
and Ba 2015). For each epoch, we set the size of batched
training data as 128. For the learning rate parameters, we
set the initial learning rate as 0.001 and the learning rate re-
duce factor as 0.5. The learning rate will decrease by learn-
ing rate reduce factor if the validation loss does not decrease
for 10 consecutive epochs. When the learning rate is equal
to le-5, the training procedure will stop. We save the model
when the model gets the highest AUC on the validation data.
Small change of the other parameters did not change the re-
sults much. We set the weight decay and dropout as 0.01 and
0.25 respectively. For baseline models, we set the parameters
same as their original papers.

We run our experiments on a Ubuntu server with NVIDIA
GTX 2080Ti GPU with memory 12 GB. The initial weights
and bias use default setting in PyTorch. We construct the
graph using DGL, which is known as an open source frame-
work for graph neural networks.

Binding Prediction Results on the Original Dataset

We compare our method with other baseline methods on the
24 proteins sub-datasets. The detailed results are listed in the
Table 1. In general, our method performs better than other
baseline methods on almost all the proteins, which proves
that our method can perform better in the task of predicting
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RNA binding sites.

As shown in Table 1, our method yields the best mean
AUC 94.4% on the 24 sub-datasets, which is better than
GraphProt by 5.7%, deepnet-rbp by 4.2%, ideepE by 1.3%.
GraphProt and deepenet-rbp are sequence-structure-profile
methods, whereas iDeepE and our method are PWM-profile
models. iDeepE and our method can better learn the po-
tential motifs from the convolutional kernel in the neural
network automatically. iDeepE only extracts the RNA fea-
tures from sequence data, while our method integrates the
RNA structure features using GCN. The introduction of
RNA structure improves the binding prediction a lot. In ad-
dition, GraphProt performs worse than the other approaches.
Support vector machine (SVM), which is a traditional ma-
chine learning method, is used in GraphProt to predict the
occurrence of the binding sites. Although GraphProt uses
the graph kernel to represent the RNA structure, the graph
kernel cannot adequately represent structural information
for prediction. From the results, deep learning methods can
show obvious advantages over traditional machine learning
methods. Deepnet-rbp extracted the RNA secondary struc-
ture and tertiary structure features using DBNs, However,
the higher dimension is, the less accuracy of RNA struc-
ture is. Deepnet-rbp codes the RNA structure data, which
means information missing. Our method selects the original
RNA structure denoted as graph data for prediction to ex-
tract valuable information as much as possible. Our method
yields the best AUC on 21 proteins among the 4 methods.
For another three protein datasets, deepnet-rbp obtains the
best AUC than the other methods, while our method has very
similar AUCs as deepnet-rbp.

Besides our method significantly improves the perfor-
mance on the small-size sub-datasets. Our method increases
ALKBHS by 1.3%, C170RF85 by 5.9%, C220RF28 by
2.8% and CAPRIN1 by 3.4% compared to the best baseline
AUC.

Binding Prediction Results on the Debiased Dataset

For the debiased dataset, the border of the “viewpoint™ re-
gion in the positive samples are randomized. From the pre-
vious research, the performance of the CNN based meth-
ods will decrease because of the lost of enzyme cleave in-
formation. To make sure that our method is able to learn
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Figure 2: Comparison of AUC between our method and RPI-
Net on the debiased dataset. The red dotted lines correspond
to a 1% difference.
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Figure 3: Samples of detected motifs compared to the liter-
ature motifs.

the prediction pattern without the enzyme cleave informa-
tion, we conduct some comparative experiments on the 19
debiased sub-datasets. Specifically, our method outperforms
other baseline methods on the debiased dataset. Our method
yields the best mean AUC 93.6% on the 19 debiased sub-
datasets, which is better than GraphProt by 7.3%, deepnet-
rbp by 3.9%, ideepE by 5.8% and RPI-Net by 1.9%.

RPI-Net gets better performance than other baseline
methods on the debiased datasets. Thus, we show the com-
parison between our method and RPI-Net in Figure 2. Our
method outperforms the RPI-Net generally, because the inte-
gration features of the secondary structure and sequence can
improve the performance of RNA binding prediction. Our
mehtod on several RBPs(ALKBHS5, C170RF85, CAPRINI,
SFRS1, ELAVLI1 and ZC3H7B) achieves the AUCs exceed-
ing 1% compared with RPI-Net, which indicates the impor-
tance of secondary structure features.

Identified Motifs

As the other deep learning methods for RBPs, our method
can automatically identify the binding sequence motifs from
the learned parameters of the first convolution filters in the
model. After several experiments, we get the candidate mo-
tifs for RBPs in RBP-24 dataset. We sample some identified
motifs to show the motifs detection ability of RNASSR-Net
in the Figure 3. With the knowledge of the current CISBP-
RNA and some other research, we calculate the frequency of
candidate motifs in the sequences and show the known mo-
tifs and the detected motifs of our method using TOMTOM.
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Figure 4: Nucleotide base response curves of CNN and
GCN. The sequence under the curve corresponds to the se-
quence category and structure category of bases. Red re-
gions indicate the “viewpoint” region.

However, there are many proteins that don’t have corre-
sponding verified motifs in current CISBP-RNA. So we con-
duct the enrichment analysis to show the most possible mo-
tifs for these RBPs. We compare these detected motifs with
some data from literature. FUS, TAF15 and EWSR1 show
preference for AU-rich sites (Hoell et al. 2011).

Response Analysis of RNA

We novelly extract the response value of each nucleotide
in the RNA from the features of CNN and GCN in Fig-
ure 4. The peak areas are the predicted “viewpoint” in the
sequence, which contributes to the binding prediction. The
sequence under the curve corresponds to the sequence cate-
gory and structure category of bases. Specially, the structure
in the GCN result that has the minimum free energy is pre-
dicted by RNAfold. From Figure 4, the peak areas are con-
sistent with the real “viewpoint” region, which shows that
RNASSR-Net has a good ability of identifying motifs re-
gions.

The nucleotide base response curves of GCN can reflect
the structure mutation. In Figure 4(b), the left border of the
“viewpoint” region is the transition of ‘S’ to ‘H’, where ex-
ists a trough of the curve. In the peak area, a trough exists be-
tween the first and the second high peak, which corresponds
to the “SSBBSSS” in the structure. The mutation of ‘B’ re-
sults in fluctuation between two peaks.

Conclusion

In this study, we develop a novel deep learning model based
on CNN and GCN to predict the RBP binding sites from the
data derived from CLIP-seq. To guide the GCN training pro-
cess, we introduce the base weights extracted by CNN to the
nodes of RNA graph. We conduct several experiments on
the original dataset and the debiased dataset. From the ex-
periment results, our method yields better performance than
the other state-of-the-art methods. The integration of GCN
and CNN improves deep learning models on both the orig-
inal dataset and the debiased dataset. Besides, our method
can detect accurate binding motifs automatically. We nov-
elly analyze the response curve of CNN and GCN to inter-
pret the focused region and structure mutation of RNA for
binding prediction.
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