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Abstract
Transportation demand prediction is of great importance to
urban governance and has become an essential function in
many online applications. While many efforts have been
made for regional transportation demand prediction, predict-
ing the diversified transportation demand for different com-
munities (e.g., the aged, the juveniles) remains an unexplored
problem. However, this task is challenging because of the
joint influence of spatio-temporal correlation among regions
and implicit correlation among different communities. To
this end, in this paper, we propose the Multi-task Spatio-
Temporal Network with Mutually-supervised Adaptive task
grouping (Ada-MSTNet) for community-aware transporta-
tion demand prediction. Specifically, we first construct a se-
quence of multi-view graphs from both spatial and commu-
nity perspectives, and devise a spatio-temporal neural net-
work to simultaneously capture the sophisticated correla-
tions between regions and communities, respectively. Then,
we propose an adaptively clustered multi-task learning mod-
ule, where the prediction of each region-community specific
transportation demand is regarded as distinct task. Moreover,
a mutually supervised adaptive task grouping strategy is in-
troduced to softly cluster each task into different task groups,
by leveraging the supervision signal from one another graph
view. In such a way, Ada-MSTNet is not only able to share
common knowledge among highly related communities and
regions, but also shield the noise from unrelated tasks in an
end-to-end fashion. Finally, extensive experiments on two
real-world datasets demonstrate the effectiveness of our ap-
proach compared with seven baselines.

Introduction
Urban transportation demand prediction aims at forecast-
ing the amount of crowd who intend to get in or leave
out of regions in a city in the next time period. Due to its
importance to urban governance and commercial applica-
tions (Moreira-Matias et al. 2013), many efforts have been
made for transportation demand prediction. However, after
analyzing real-world mobility data, we find the transporta-
tion demand of different communities is diversified yet cor-
related. For example, as shown in Figure 1(a), the commu-
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†Equal contribution.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sat Sun Mon Tue Wed Thu Fri
0.0

0.5

1.0

University
Vacational school
High school

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

(a) Transportation demand versus different education levels.
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(b) Transportation demand versus different age levels.

Figure 1: Real-world transportation demand patterns of rep-
resentative communities in a downtown area in Beijing,
ranged from June 22, 2019 to June 28, 2019.

nities in different education levels show different demand
patterns with a strong temporal periodicity. In particular,
we observe a highly synchronized demand pattern between
high school and vocational school communities, but a di-
verged demand pattern of University students. Similar ob-
servations can also be found between communities in dif-
ferent age level, as shown in Figure 1(b). Undoubtedly, pre-
dicting community level transportation demand is valuable
for fine-grained public service and business operation. For
example, it can help dynamically rebalancing shared-bikes
for students, dispatching taxis at midnight for females, and
pre-allocate more high-end vehicles to regions where high-
consumption communities have demands. In this work, we
study the problem of Community-Aware Transportation De-
mand Prediction (CATDP), where the regional transporta-
tion demands of different communities (e.g., the aged, the
juveniles) are predicted simultaneously.

However, three major challenges arise toward CATDP.
First, the transportation demand in different regions is both
spatially and temporally correlated. The transportation de-
mand of a region is not only influenced by its adjacent re-
gions but also correlated with its transportation demand in
past time periods. How to model the spatio-temporal au-
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tocorrelation is the first challenge. Second, the transporta-
tion demand of different communities is diversified but
correlated, as reported in Figure 1. Independently train-
ing existing transportation demand prediction models (Yao
et al. 2018) for different communities overlooks the inner-
connection among various communities. As a result, how
to incorporate the diversified but synchronized transporta-
tion demand relationship between communities for CATDP
is another challenge. Last, the relationships between dif-
ferent communities are also varying under different spatio-
temporal context. Simply regarding CATDP as a multivari-
ate time-series prediction task and seamlessly sharing in-
formation among all communities in different regions may
introduce unexpected noises and degenerate the prediction
performance (Yao, Cao, and Chen 2019). How to selec-
tively share knowledge between highly correlated region-
community specific sub-tasks is the third challenge.

In order to tackle the above challenges, we propose
the Multi-task Spatio-Temporal Network with Mutually-
supervised Adaptive task grouping (Ada-MSTNet) for
CATDP. First, to characterize community-aware spatio-
temporal correlations, we construct a sequence of multi-
view graphs from both the spatial perspective and the com-
munity perspective. Then we introduce a spatio-temporal
neural network, consisting of a Graph Neural Network
(GNN) block and a Recurrent Neural Network (RNN) block
for spatial dependency and temporal dependency modeling,
respectively. After that, we introduce a soft clustered multi-
task learning module, where the transportation demand pre-
diction of each community in different regions is regarded
as distinct task. Moreover, to selectively share information
among related tasks and prevent noise diffusion across un-
related tasks, we further propose an adaptive task group-
ing strategy to dynamically cluster tasks into different task
groups, which is supervised by the region or community rep-
resentation obtained from one another graph view. In such
a way, Ada-MSTNet is not only able to capture sophisti-
cated spatio-temporal and community correlations, but also
selectively share common knowledge among highly related
communities and regions for transportation demand predic-
tion. Finally, extensive experiments on real-world datasets
demonstrate the effectiveness of the proposed model com-
pared with state-of-the-art solutions.

Preliminaries
We first split the entire city into an a × b = n non-
overlapping grid map, which consist of a rows and b
columns, denoted by R = {r1, r2, . . . , rn}. Besides, we
split the whole time period (e.g., two months) into T equal-
length time intervals, denoted by T = {t1, t2, . . . , tT }.
Definition 1. Community. A community is defined as a
crowd of individuals sharing a common identity, such as age,
gender, and education level, etc.. Considering a set of iden-
tity attributes A = {a1, a2, . . . }, we can define m corre-
sponding communities, denoted by C = {c1, c2, . . . , cm}.

For each individual, we can derive identities based on
static user profiles or dynamic user interests. For example,
an individual can be attributed as a man or woman based on

gender. On the one hand, each individual may have numer-
ous attributes and therefore can belong to multiple commu-
nities. On the other hand, each community is often partially
overlapping, and the total sum of the crowd in each commu-
nity is greater than the overall population.

Definition 2. Query. A query is defined as a four-tuple q =
(u, o, d, t), where u is an individual, o is the origin region, d
is the destination region, and t is the departure time interval.

In online applications such as navigation tool or ride-
hailing platform, a query indicates a transportation demand
of u move from o to d at time t.

Definition 3. Transportation demand. Based on the move-
ment direction, the transportation demand can be either get
in or leave out. For a region ri and a community cj , the
inflow and outflow transportation demand at time interval
t are respectively defined as the query volume of cj origin
from ri and destination at ri, denoted by xtout,i,j and xtin,i,j .

At a specific time interval t, the transportation demand
can be denoted by a tensor Xt ∈ R2×N×M , in which
Xt
in ∈ RN×M and Xt

out ∈ RN×M correspond to inflow
and outflow demand, Xt

i ∈ R2×M is the demand of all com-
munities get in or leave out region ri, and Xt

j ∈ R2×N is
the demand of community cj get in or leave out all regions.
The demand of ri and cj is denoted by Xt

i,j , and we stipu-
late the first subscript indicates region index when both in-
dices occur. Note that at a specific time interval, the over-
all inflow demand equals the overall outflow demand, i.e.,∑N
i=1

∑M
j=1 X

t
in,i,j =

∑N
i=1

∑M
j=1 X

t
out,i,j .

Problem 1. Community-aware transportation demand
prediction (CATDP). Given T historical time intervals,
and observed historical transportation demands X =
{X1,X2, . . . ,XT }, our problem is to predict transportation
demands for next τ time intervals,

F(X )→ (XT+1,XT+2, . . . ,XT+τ ), (1)

where F(·) is the mapping function we aim to learn.

Framework Overview
Figure 2 shows an overview of Ada-MSTNet, which in-
cluding the following three major tasks: (1) the construc-
tion of time-dependent multi-view transportation demand
graphs; (2) the spatio-temporal and community correlation
modeling; and (3) the selective knowledge sharing between
highly correlated communities in different spatio-temporally
correlated regions. In the first task, we split the historical
transportation demands into a sequence of graph snapshots
over time, and construct time-dependent multi-view graphs
based on spatial adjacency (i.e., the region view) and his-
torical flow sequence similarity (i.e., the community view).
In the second task, we devise a spatio-temporal neural net-
work on both views to simultaneously capture the spatio-
temporal and community correlation. In the third task, the
city-wide community-aware transportation demand is ob-
tained via an adaptively clustered multi-task learning com-
ponent with mutually supervised adaptive task grouping for
end-to-end task group generation.
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Figure 2: The framework overview of Ada-MSTNet.

Transportation Demand Graphs Construction
We construct time-dependent multi-view graphs of city
transportation demand from two perspectives: (1) region
spatial adjacency, and (2) community demand similarity.

The region graph view. The region graph demonstrates
the geographical connectivity among regions according to
spatial adjacency. Specifically, we construct the region graph
Gr = (R, Er,Ar), where R is the set of regions, Er is the
the set of edges between regions, and Ar denotes the prox-
imity matrix of Gr which will be learned by our model au-
tomatically. For two regions ri and rj , we define their con-
nectivity as

ei,j =

{
1, adj(ri, rj)

0, otherwise
, (2)

where adj(·, ·) is the adjacency function equals to one if and
only if ri and rj are spatially bordered on each other.

The community graph view. The community graph
captures the similarity of transportation demand between
communities. We construct the community graph Gc =
(C, Ec,Ac), where C is the set of communities, Ec is the set
of edges between communities, andAc is the proximity ma-
trix of Gc which is decided by our model during training. For
two communities ci and cj , we define their connectivity as

ei,j =

{
1, pcc(ci, cj) ≥ ε
0, otherwise

, (3)

where pcc(·, ·) is the Pearson Correlation Coefficient
(PCC) (Benesty et al. 2009), which measures the strength
of the linear correlation between ci and cj . ε is a correlation
threshold. The PCC score between ci and cj is defined as

pcc(ci, cj) =
1
|R|
∑|R|
r=1

∑T
t=1(X

t
r,i−Xr,i)(X

t
r,j−Xr,j)√∑T

t=1(X
t
r,i−Xr,i)2

√∑T
t=1(X

t
r,j−Xr,j)2

, (4)

where Xr,i and Xr,j are averaged values of Xt
r,i and Xt

r,j
over T time steps, andR is the set of regions.

Note that each vertex’s contextual features in both re-
gion and community graphs are varying over time. For
each view, we construct sequence of time-dependent graphs,
[Gr,t1 ,Gr,t2 , . . . ,Gr,T ] and [Gc,t1 ,Gc,t2 , . . . ,Gc,T ], where
each graph is assigning with an individual A.

The Ada-MSTNet Model
Spatio-Temporal Neural Network
We first introduce the spatio-temporal neural network for si-
multaneous spatio-temporal dependency and community de-
pendency modeling. Specifically, we exploit the graph neu-
ral network (GNN) (Veličković et al. 2018) to capture the
structural correlation of spatial and community graphs, and
devise a recurrent neural network (RNN) (Mikolov et al.
2010) for temporal correlation modeling.

Structural correlation modeling. GNN is an effective
generalization of convolution neural networks for handling
non-Euclidean graph structures. By iteratively aggregating
one-hop neighbors and applying flexible transforming func-
tions, GNN updates node representations with implicit local
structural information preservation (Kipf and Welling 2017).
Take the region graph for example, considering a region
graph Gr,t at time step t, let xti denote the current representa-
tion of region ri, we define the graph convolution operation

xti
′
= σ(

∑
rj∈Ni

αti,jWc(x
t
j ||xti)), (5)

where σ is a non-linear activation function, Wc ∈ Rd×2d is
a learnable weighted matrix shared by all regions ri ∈ Gr,t
over all time steps, || is the concatenation operation, and Ni
is the set of regions connected with ri in Gr,t. αti,j ∈ At is
the time and edge specific proximity score derived by

αti,j =
exp(Attn(Wax

t
i,Wax

t
j))∑

rk∈Ni
exp(Attn(Waxti,Waxtk))

, (6)

where xti, x
t
j and xtk are current representations of corre-

sponding regions, Wa ∈ Rd×d is learnable matrix shared
by all edges in Gr,t, and Attn(·, ·) is an attention func-
tion (e.g., scaled dot-product, concatenation, etc.) (Vaswani
et al. 2017). Note that we learn different proximity matrixAt
for each time step t to model the time-varying spatial depen-
dency among regions. The spatial correlation of community
graphs is computed in the same way.
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Temporal correlation modeling. Based on the learned
representation of GNN, we adopt GRU (Cho et al. 2014),
an effective yet more efficient variant of RNN, for temporal
dependency modeling. Take the region graph again for ex-
ample, consider a sequence of representation of region ri in
previous T time steps (xt−Ti ,xt−T+1

i , . . . ,xti), our model
derives the status of ri at time step t by

hti = GRU(hti−1,x
t
i), (7)

where ht and ht−1i are respectively hidden states of ri at
time step t and t-1. Particularly, we initialize h0

i by zero.
In practice, we construct the input sequence from two per-

spectives, i.e., the closeness and periodic (Zhang, Zheng,
and Qi 2017), where the closeness sequence is the T consec-
utive time steps before the current time step, and the periodic
sequence retains the periodicity of transportation demands in
a certain time interval (i.e., 24 hours). Note that the temporal
dependency of vertices in region graphs and in community
graphs are modeled separately, as illustrated in Figure 2.

Adaptively Clustered Multi-Task Learning
Then, we present the Adaptively clustered multi-task learn-
ing for community-aware transportation demand prediction.

Soft clustered multi-task learning. Based on the spatio-
temporal neural network, we have latent representations hr,ti
of region ri ∈ R and hc,tj of community cj ∈ C. By regard-
ing the prediction of transportation demand of each com-
munities in different regions as a distinct task, we formu-
late CADTP as a multi-task learning problem. However, as
aforementioned in Figure 1, the transportation demand of
each community in each region is non-uniformly correlated.
Thus, we group tasks into multiple groups, where highly cor-
related tasks are clustered together. By enforcing tasks in
the same group to share a same feature transformation func-
tion (i.e., a same sub-network), common knowledge can be
more effectively shared only across highly correlated tasks.

Formally, given a set of tasks ti,j ∈ T , where ti,j corre-
sponds to the transportation demand of a community cj at a
specific region ri, suppose we have clustered tasks into K
groups, where K < |T |, the transportation demand of task
ti,j under clustered multi-task learning is derived by

(X̂t+1
i,j , X̂

t+2
i,j , · · · , X̂

t+τ
i,j ) = 1

K

∑K
k=1 fk(h

r,t
i ||h

c,t
j ,Mi,j � θk), (8)

where fk is the corresponding prediction network of task
cluster k, θk indicates parameters of fk, Mi,j is the K-
dimensional mask vector of task ti,j indicates which clus-
ter it belongs to, and � is element-wise product operation.
When we restrict Mi,j,k ∈ {0, 1}, the prediction network is
strictly clustered where each task belongs to one and only
one group. However, since less-correlated tasks still have
partially the same coarse-grained patterns (i.e., daily period-
icity), it would be potentially helpful for sharing such com-
monality. Hereby, we set 0 ≤Mi,j,k ≤ 1 with the constraint∑K
k=1 Mti,j ,k = 1, which enables probabilistic task cluster

assignment in a nonuniform way.

Mutually supervised adaptive task grouping. One inter-
mediate problem of soft clustered multi-task learning is how
to decide the group assignment probability (i.e., the mask
tensor M). Conventional approaches either statically decide
task groups by solving a partition problem (Kang, Grauman,
and Sha 2011) or simply regard each task as a linear com-
bination of other representative tasks (Yao, Cao, and Chen
2019). Different from existing studies, we propose a mutu-
ally supervised adaptive task grouping strategy to adaptively
cluster tasks into multiple task groups with soft assignment
weights. As defined in Equation (8), the hidden state of the
region ri is shared by m tasks, and each of which corre-
sponds to the transportation demand of a different commu-
nity in ri. The key insight of the mutually supervised strat-
egy is that the group of ri involved m tasks can be super-
vised by hidden states of each cj obtained from the one an-
other graph view, and vice versa.

Specifically, consider the community cj and the corre-
sponding hidden state hj , the assignment weights for K
groups of cj related tasks are derived by a Softmax clas-
sifier (Goodfellow, Bengio, and Courville 2016),

Mc
·,j = Softmax(W>

g h
′
j), (9)

where Mc
·,j is the K-dimensional mask vector of cj related

tasks, Wg ∈ Rd×K is the learnable weighted matrix. In par-
ticular, h′j = σ(Wfhj) is the transformed community rep-
resentation of cj , where σ is a non-linear activation function
and Wf ∈ Rd×d is the learnable parameter.

We introduce an extra self-supervised task to guarantee
the transformed community representation preserves salient
features of cj for task grouping, which is implemented by
optimizing ĉj = Wch

′
j , where ĉj is the estimated commu-

nity distribution h′j belongs to. Likewise, we derive Mr
·,i for

each region ri, which is optimized by corresponding self-
supervised tasks. Overall, the mask vector for task ti,j is a
combination from two graph views, Mi,j =

1
2 (M

r
·,i+Mc

·,j).
In such a way, all tasks can be assigned to K groups, guided
by hidden states mutually supervised from two graph views.
The mask tensor M is learned adaptively along with the
CATDP task in an end-to-end fashion rather than relaying
on any predefined clustering assumption.

Training and Optimization
Ada-MSTNet aims to minimize the mean absolute error
(MAE) between the predicted transportation demand and the
observed transportation demand in next τ time steps,

Om =
1

n×m

n∑
i=1

m∑
j=1

τ∑
k=1

|X̂t+k
i,j −Xt+k

i,j |. (10)

In addition, the loss of self-supervised task in community
view is defined as

Oc = −
1

m2

m∑
i

m∑
j

c
(i)
j log

exp(ĉ
(i)
j )∑m

k exp(ĉ
(k)
j )

, (11)

where c
(i)
j is the value of the i-th dimension of one-hot en-

coded community vector of cj . The loss of self-supervised
task in the region view Or is defined in the same way.
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Methods
BEIJING SHANGHAI

RMSE MAE RMSE MAE
τ = 1 τ = 2 τ = 3 τ = 1 τ = 2 τ = 3 τ = 1 τ = 2 τ = 3 τ = 1 τ = 2 τ = 3

HA 17.75 20.40 24.55 8.84 10.30 12.34 21.39 21.39 21.39 9.02 9.02 9.02
LR 14.08 17.55 21.07 7.87 9.41 11.14 16.14 20.93 25.78 7.95 9.57 11.46

GBDT 13.52 16.02 18.25 7.64 8.70 9.68 14.38 16.59 18.57 7.19 7.94 8.68
GRU 14.09 17.24 19.59 7.98 9.33 10.35 15.86 19.31 21.96 7.76 8.89 9.87

STGCN 13.51 15.68 17.08 7.31 8.50 9.30 20.57 24.73 28.83 8.48 9.67 11.15
CoST-Net 14.67 15.62 16.31 7.87 8.38 8.73 17.08 20.26 21.19 7.76 8.63 9.04
ST-ResNet 13.88 14.48 16.17 7.27 7.60 8.31 15.30 16.42 18.73 7.08 7.83 8.59

Ada-MSTNet 11.67 12.36 13.17 6.73 7.02 7.40 13.00 14.40 15.27 6.64 7.03 7.29

Table 1: Overall performance of Ada-MSTNet and baselines given by RMSE and MAE on BEIJING and SHANGHAI.

By considering the MAE loss and self-supervised losses,
our model aims to jointly minimize the following objective,

O = Om + α(Or +Oc), (12)

where α is the hyper-parameter controls the importance of
two self-supervised losses.

Experiments
Experimental Setup
Data description. We use two real-world datasets, Beijing
and Shanghai. All sensitive attributes such as user ID and
phone number are anonymized for privacy concern. Both
datasets are ranged from June 19, 2019 to July 26, 2019,
and contains 25 communities. All communities are gener-
ated based on 7 attributes, i.e., Age, Gender, Life stage,
Car owner, Education level, Income level and Consump-
tion level, which are either provided by user or mined from
data. By considering both inflow and outflow demand, there
are 50 tasks in total. Both datasets contain 784 adjacent
1 Km × 1 Km regions in the city center. In particular,
the Beijing dataset contains 125, 042, 989 queries issued
by 9, 776, 290 users, whereas the Shanghai dataset con-
tains 125, 423, 662 queries issued by 9, 311, 549 users. We
chronologically order each dataset, set one hour as the unit
time step, use the first 60% as the training set, the next 20%
as the validation set, and the last 20% for testing.

Evaluation metrics. We use Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), two widely used
metrics (Zhang, Zheng, and Qi 2017; Ye et al. 2019; Zhang
et al. 2020; Zhou and Tung 2015) for evaluation. To avoid
overlook minorities, the reported overall performance is
combined by all communities through averaged aggregation.

Baselines. We compare our model with three statistical
learning methods and four deep learning models.
•Historical Average (HA) predicts the transportation de-

mand by averaging the demand in the same periods, e.g., ex-
tracting all demand in 8:00-9:00 from all historical Mondays
to predict the demand of 8:00-9:00 in next Monday.
• Linear Regression (LR) is a classical machine learning

method for regression task. We concatenate previous T steps
historical demands as the input and predict each community
demand separately.
• Gradient Boost Regression Tree (GBRT) is a variant

of boosting model which is widely used in many data mining

tasks. We use the version in XGBoost (Chen and Guestrin
2016) and the input is same as LR.
• GRU (Cho et al. 2014) is an efficient variant of recur-

rent neural network. It captures the temporal dependency but
cannot handle spatial correlation.
• ST-ResNet (Zhang, Zheng, and Qi 2017) is another

deep learning approach for transportation demand predic-
tion. It captures spatial correlation with a deep residual net-
work, but also overlooks the community correlation.
• STGCN (Yu, Yin, and Zhu 2018) is a graph neural net-

work based model for traffic forecasting. It jointly models
spatial and temporal correlation, but overlooks the commu-
nity correlation.
• CoST-Net (Ye et al. 2019) is a co-prediction method

via a LSTM based auto-encoder. We modify CoST-Net to
simultaneously predict demands of multiple communities,
by analogizing communities as different transport tools.

Implementation details. For fair comparison, all hyper-
parameters of all baselines are carefully tuned. Besides, we
train separate statistical learning models for different com-
munities and train unified deep learning models for all com-
munities by regarding the transportation demand of different
communities as a multi-variate time series, since such for-
mulation achieves a relatively better performance. We opti-
mize the models by Adam (Kingma and Ba 2014). Specifi-
cally, we set the learning rate to 0.0001, hidden dimension
d = 512 and α = 0.5. We set input length L = 18 and
τ = 3 for prediction. The number of task groups is set to 4.
The activation function in GNN is LeakyReLU with slope
ratio 0.1. Follow exiting traffic prediction works (Yu, Yin,
and Zhu 2018; Li et al. 2018), we apply Z-score normaliza-
tion. All models run on a Linux server with Intel Xeon 5117
CPU, 128 GB Memory, and NVIDIA Tesla P40 GPU.

Overall Performance
Table 1 reports the overall performance of our model as
well as all baselines on BEIJING and SHANGHAI with re-
spect to RMSE and MAE. As can be seen, Ada-MSTNet
consistently outperforms all baselines in terms of both met-
rics when τ = 1, τ = 2 and τ = 3. Specifically, Ada-
MSTNet outperforms all baselines at least (15.77%, 17.15%,
22.78%) and (8.02%, 8.26%, 12.3%) on BEIJING for (1
hour, 2 hour, 3 hour) prediction. The improvements of Ada-
MSTNet on SHANGHAI are (10.62%, 14.03%, 21.61%)
and (6.63%, 11.38%, 17.83%), respectively. Generally, the
improvements of our model on further time steps are larger,
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Figure 3: Ablation study of Ada-MSTNet given by RMSE.

demonstrating the advantage of Ada-MSTNet on distant fu-
ture predictions. Looking further into the results of deep-
learning baselines, we observe ST-ResNet achieves the state-
of-the-art forecasting performance, which demonstrate its
effectiveness on modeling spatial dependencies via a deep
residual network. In addition, although CoST-Net jointly
predicts all communities, we observe its performance is
slightly worse than ST-ResNet. One possible reason is that
it simply shares a network architecture for all different
communities but does not model the nonuniform correla-
tion among different communities; therefore, it introduces
noises from less related community tasks. Lastly, we observe
GBDT, as the state-of-the-art statistical learning baseline, is
competitive with most deep-learning based baselines, which
validates the effectiveness of GBDT on handling non-linear
regression tasks.

Ablation Study
We further look into Ada-MSTNet to verify the effectiveness
of each component. Due to page limit, we only report the
results on BEIJING by using RMSE, the results on BEIJING
using MAE and on SHANGHAI are similar.

Effect of multi-view graphs. We first examine the ef-
fectiveness of multi-view graphs. Specifically, we evaluate
three variants of Ada-MSTNet, (1) rview only includes re-
gion view graphs, (2) cview only involves community view
graphs, and (3) rcview involves both graph views. As re-
ported in Figure 3(a), Ada-MSTNet achieves the best perfor-
mance by combing region view and community view, which
demonstrates the benefit of constructing multi-view trans-
portation demand graphs. Moreover, the RMSE of rview
is lower than cview, indicating that the spatial dependency
plays a more important role in CATDP.

Effect of spatio-temporal modeling. For spatio-
temporal neural network, we evaluate the following variants,
(1) msnet only involves GAT component, (2) mtnet only in-
volves GRU component, and (3) mstnet combines both GAT
and GRU component. As illustrated in Figure 3(b), jointly
applying GNN and RNN results in the best prediction per-
formance. We notice solely involving the GAT component
achieves better performance than solely involving the GRU
component. One possible reason is that we attach historical
demands as features with each vertex in msnet, which in-
cludes temporal information to some extent.

Effect of adaptive task grouping. For the adaptive task
grouping, we compare (1) no-group doesn’t apply task
grouping, (2) pre-group statically decides task grouping
based on PCC as defined in Equation (4), and (3) ada-group
apply adaptive task grouping. As shown in Figure 3(c),
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Figure 4: Parameter sensitivity on BEIJING.

no-group or pre-group cannot share useful knowledge for
CATDP, which further validates the necessity of adaptively
clustered multi-task learning. Besides, we observe no-group
performs slightly better than pre-group, which perhaps be-
cause of the inaccurate task grouping in pre-group intro-
duced noises to less related tasks.

Parameter Sensitivity

Then we investigate the parameter sensitivity of Ada-
MSTNet. We report the impact of input lengthL, the number
of task groups K, hidden dimension d, and task weight α on
BEIJING using RMSE. When we vary a parameter, we keep
the other parameters fixed as their default values.

First, we vary L from 6 to 18. The results are reported
in Figure 4(a). Ada-MSTNet achieves lowest errors when
L = 15. This illustrates a longer input sequence can provide
more information to improve the prediction accuracy, but the
information in distant previous steps are less useful.

Then, we vary K from 1 to 16. The results are illustrated
in Figure 4(b). Ada-MSTNet achieves state-of-the-art per-
formance whenK ≥ 4. Besides, we observe even clustering
tasks into two groups is significantly helpful to reduce the
prediction error. We chooseK = 4 in the overall evaluation.

After that, we vary d from 64 to 1024. The results are
demonstrated in Figure 4(c). By increasing d from 64 to 512,
we observe a performance improvement. However, the pre-
diction error becomes relatively stable when we further in-
crease d to 1024. For efficiency and memory concern, we
choose d = 512 in the overall evaluation.

Finally, to check the impact of self-supervised tasks, we
vary α from 0 to 1. The results are reported in Figure 4(d).
As can be seen, the influence of α is relatively small com-
pared with the rest parameters. When we increase α, the pre-
diction error of Ada-MSTNet first decreases then increases.
Ada-MSTNet performs best when α = 0.5. The above re-
sults illustrate that a moderately larger α can notably help
cluster tasks into proper groups.
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Figure 5: RMSE on representative communities.

Performance on Different Communities
To evaluate the robustness of Ada-MSTNet, we further look
into the prediction error in different communities. Figure 5
reports the prediction error and averaged transportation de-
mand of fifteen representative communities. Overall, we ob-
serve the prediction error of different communities is corre-
lated with the overall demand. One major reason perhaps is
for the same ratio of demand fluctuates, communities with
higher demand will result in higher RMSE. The above re-
sults suggest the future effort can be applied to these high
transportation demand regions and communities to improve
the overall performance.

Case Study
Finally, we qualitatively analyze the performance of Ada-
MSTNet. Figure 6 illustrates the normalized transporta-
tion demand as well as predicted transportation demand of
juveniles and the aged in one week from July 20, 2019
to July 26, 2019. Overall, our model successfully models
daily periodicity and accurately predicted transportation de-
mand. Impressively, our model accurately predicts the out-
lier peak of juveniles on Friday evening peak hours and
the daily evening peak hour for the aged. The above re-
sults demonstrate that Ada-MSTNet effectively captures the
characteristics of different communities and can be used for
downstream tasks such as public resource allocation and
community-aware advertisement.

Related Works
Traffic prediction. Previous studies on transportation de-
mand or flow prediction are focus on the demands of the
crowd collectively. For example, (Zhang, Zheng, and Qi
2017) adopted the convolution neural network for citywide
region flow prediction. Based on emerging graph neural net-
work techniques, (Li et al. 2018) and (Yu, Yin, and Zhu
2018) constructed road network graphs and apply GNN to
model spatial dependency among road segments for better
prediction. Moreover, (Yao et al. 2018) proposed a demand
prediction model by learning dependencies on multi-graphs
such as POI semantic correlation (Zhou et al. 2019). (Gu
et al. 2020) proposed an interpretable framework for bike
flow prediction. Recently, (Ye et al. 2019) investigated taxi
and shared bike demand joint prediction by using a collec-
tive recurrent auto-encoder. However, those methods are de-
signed for collective transportation demand or traffic flow
prediction, none of them investigates the diversified trans-
portation demand of different communities.
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(a) The observed and predicted demands of juveniles.
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(b) The observed and predicted demands of the aged.
Figure 6: Qualitative study of prediction results.

Multi-task learning. Multi-task learning (MTL) is a
learning paradigm that leverages shared information in re-
lated tasks to improve model generalization ability (Zhang
and Yang 2017). Recently, multi-task learning has been
widely adopted for spatio-temporal problems. For instance,
(Zheng and Ni 2013) proposed a multi-task regression
framework to capture the temporal dynamics of travel cost.
(Deng et al. 2017) leveraged the generalization capability of
MTL to make predictions under different traffic situations.
(Liu et al. 2021) proposed a hierarchical MTL model to de-
rive unified route representation learning for multi-modal
transportation recommendation (Liu et al. 2020). The above
works simply combine a few highly related tasks, but neglect
the nonuniform correlation among a large number of tasks.
In recent studies, (Kang, Grauman, and Sha 2011; Zhou and
Zhao 2015; Yao, Cao, and Chen 2019) proposed soft cluster-
ing strategies to improve task performance. However, theses
methods either require pre-computed group assignment or
only work on linear models. In this work, we leverage the
supervision signal from two different views to achieve end-
to-end soft task grouping.

Conclusion
In this paper, we proposed Ada-MSTNet, a soft clus-
tered multi-task spatio-temporal neural network for city-
wide community-aware transportation demand predic-
tion (CATDP). Specifically, we first constructed a sequence
of multi-view transportation demand graphs to characterize
the time-evolving spatial adjacency and community demand
similarity. After that, we devised a spatio-temporal network
for simultaneous spatio-temporal and community correla-
tion modeling. By regarding the transportation demand pre-
diction of each community in different regions as individual
tasks, we proposed an adaptively clustered multi-task learn-
ing module to selectively share common knowledge among
highly related tasks. In particular, a mutually supervised task
grouping strategy is proposed to decide task group assign-
ment by leveraging supervision signals from the one another
graph view in an end-to-end fashion. Finally, extensive ex-
perimental results demonstrated the effectiveness of Ada-
MSTNet on two real-world large-scale datasets.
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