Traffic Flow Prediction with Vehicle Trajectories

Authors

  • Mingqian Li Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore Alibaba Group
  • Panrong Tong Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore School of Computer Science and Engineering, Nanyang Technological University, Singapore
  • Mo Li Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore School of Computer Science and Engineering, Nanyang Technological University, Singapore
  • Zhongming Jin Alibaba Group
  • Jianqiang Huang Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore Alibaba Group
  • Xian-Sheng Hua Alibaba Group

Keywords:

Transportation, Mining of Spatial, Temporal or Spatio-Temporal Da, Graph-based Machine Learning

Abstract

This paper proposes a spatiotemporal deep learning framework, Trajectory-based Graph Neural Network (TrGNN), that mines the underlying causality of flows from historical vehicle trajectories and incorporates that into road traffic prediction. The vehicle trajectory transition patterns are studied to explicitly model the spatial traffic demand via graph propagation along the road network; an attention mechanism is designed to learn the temporal dependencies based on neighborhood traffic status; and finally, a fusion of multi-step prediction is integrated into the graph neural network design. The proposed approach is evaluated with a real-world trajectory dataset. Experiment results show that the proposed TrGNN model achieves over 5% error reduction when compared with the state-of-the-art approaches across all metrics for normal traffic, and up to 14% for atypical traffic during peak hours or abnormal events. The advantage of trajectory transitions especially manifest itself in inferring high fluctuation of flows as well as non-recurrent flow patterns.

Downloads

Published

2021-05-18

How to Cite

Li, M., Tong, P., Li, M., Jin, Z., Huang, J., & Hua, X.-S. (2021). Traffic Flow Prediction with Vehicle Trajectories. Proceedings of the AAAI Conference on Artificial Intelligence, 35(1), 294-302. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/16104

Issue

Section

AAAI Technical Track on Application Domains