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Abstract
In survival analysis, deep learning approaches have been pro-
posed for estimating an individual’s probability of survival
over some time horizon. Such approaches can capture com-
plex non-linear relationships, without relying on restrictive
assumptions regarding the relationship between an individ-
ual’s characteristics and their underlying survival process. To
date, however, these methods have focused primarily on op-
timizing discriminative performance and have ignored model
calibration. Well-calibrated survival curves present realistic
and meaningful probabilistic estimates of the true underly-
ing survival process for an individual. However, due to the
lack of ground-truth regarding the underlying stochastic pro-
cess of survival for an individual, optimizing and measur-
ing calibration in survival analysis is an inherently difficult
task. In this work, we i) highlight the shortcomings of exist-
ing approaches in terms of calibration and ii) propose a new
training scheme for optimizing deep survival analysis models
that maximizes discriminative performance, subject to good
calibration. Compared to state-of-the-art approaches across
two publicly available datasets, our proposed training scheme
leads to significant improvements in calibration, while main-
taining good discriminative performance.

Introduction
In survival analysis, one aims to learn the relationship be-
tween an individual’s covariates and the underlying stochas-
tic process of some event (e.g., disease onset). Beyond dis-
criminative performance (i.e., how the relative predictions
between individuals match the observed outcomes), to be
useful for real-world applications, survival models must be
well calibrated (Gneiting and Katzfuss 2014). In clinical set-
tings, making decisions at a patient-level requires survival
estimates that are accurate with respect to the ground-truth
survival probability. Poor calibration can lead to misleading
predictions, resulting in potentially clinically harmful mod-
els (Van Calster and Vickers 2015; Van Calster et al. 2019;
Shah, Steyerberg, and Kent 2018; Steyerberg et al. 2019).
Accurate estimates of survival at different time-points can
help augment clinical decision making at a per-patient level.

We define a calibrated model as one that consistently pro-
duces estimates of survival that match the underlying sur-
vival probabilities for each individual (Haider et al. 2020).
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To better understand what these individualized underlying
survival probabilities represent, consider building an esti-
mate of survival for an entire population using a simple
counting-based Kaplan-Meier estimate (Kaplan and Meier
1958). Differences among individuals will lead to events at
different time-points, resulting in a decreasing estimate of
population-level survival over time. This estimate reflects
the variation in the time-to-event distribution. Now consider
a set of individuals with identical or near-identical covari-
ates. Despite the similarity among individuals, we might still
expect the time-to-event distribution for this homogeneous
population to exhibit some variation due to the stochasticity
in nature, resulting in a gradually decreasing survival curve
for these individuals. Along these lines, the underlying sur-
vival curve for an individual should reflect such variation.

Figure 1 illustrates potential differences in discrimina-
tive performance and calibration performance via a hypo-
thetical example. The solid curves represent the true under-
lying survival distributions, and the dashed lines represent
hypothetical estimates for three different individuals. With
respect to the observed event times, all three sets of esti-
mated survival curves correctly rank the individuals, and
hence, have good discriminative performance. However, the
first two sets of survival curves (a and b) consistently un-
derestimate or overestimate the survivival probabilities with
respect to the true survival curve. Hence, these estimates are
miscalibrated. Meanwhile, the third set of estimated survival
curves (c) is well calibrated, since it aligns with the true sur-
vival probabilities. These calibrated estimates provide an ac-
curate probabilistic interpretation of survival for an individ-
ual throughout the time horizon.

Deep survival models have achieved state-of-the-art dis-
criminative performance by relaxing any distributional as-
sumptions and directly estimating the underlying process
(Lee et al. 2018; Ren et al. 2019). However, to date, such
models are trained by optimizing for discriminative perfor-
mance and have not been evaluated in terms of calibration.
Though useful for ranking individuals, the resulting survival
curves may consistently overestimate or underestimate an
individual’s probability of survival, as in Figure 1.

In light of these issues, we focus on approaches for train-
ing and evaluating deep survival analysis models that ac-
count for both calibration and discriminative performance.
Our contributions include:
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Figure 1: Hypothetical Example. Three hypothetical sets of estimated survival curves for three individuals (dashed) and their
corresponding true underlying survival distributions (solid), where the triangles represent the observed event times. All three
sets of estimated curves correctly rank the individuals (i.e., have good discriminative performance). However, the first two sets
of estimated survival curves consistently overestimate or underestimate the true survival probability at various points throughout
the time horizon. Meanwhile, the third set of estimated survival curves closely aligns with the true survival curves. Hence, the
estimated survival curves more accurately reflect the probability of survival. The first two sets of estimated survival curves are
miscalibrated, while this third set of estimated survival curves are well-calibrated.

• we highlight the shortcomings of existing methods for
training and evaluating in terms of calibration,

• we propose a novel training scheme for deep survival anal-
ysis models and provide theoretical justification for why
this training scheme should result in well-calibrated sur-
vival estimates, and

• we empirically demonstrate that the proposed training
scheme leads to well-calibrated models, while remaining
competitive in terms of discriminative performance
We present a framework for training and evaluating deep

survival models that focuses on calibration. Through a series
of experiments on two publicly available datasets, we com-
pare our approach to state-of-the-art approaches in survival
analysis, demonstrating the proposed approach’s ability to
maximize discrimination subject to good calibration.

Background and Related Work
Here, we formalize the core survival analysis problem and
introduce notation. We then survey training schemes in deep
survival analysis that have achieved state-of-the-art perfor-
mance, while not relying on specific assumptions regarding
the distributional form of the relationship between an indi-
vidual’s covariates and their survival probability.

Problem Setup and Notation
Survival analysis aims to learn a time-to-event model using
data of the form D = {(xi, zi, ci)}ni=1, where n is the to-
tal number of individuals. Each (xi, zi, ci) ∈ D represents
information for one individual, where xi ∈ Rd represents
the individual’s covariates, zi denotes the observed time of
the event, or time of censoring, and ci denotes the individ-
ual’s censoring status. In this work, we only consider right-
censoring, the most common scenario in survival analysis
(Cox 1972; Kaplan and Meier 1958; Shivaswamy, Chu, and
Jansche 2007; Wang, Li, and Reddy 2019). An individual i
is said to be right-censored (ci = 1) if the event did not occur
at time zi, but instead, the individual was lost to follow-up
(i.e., censored) after this time.

In this work, we aim to accurately estimate individual-
ized survival probabilities over some discrete time horizon
(Haider et al. 2020; Lee et al. 2018). Given data from D,
our goal is to learn a model f that maps covariates for in-
dividual i xi to individualized estimates of P (Z = t|xi)
for t ∈ {0, 1, ..., τ}, where time is binned into τ intervals
(Lee et al. 2018; Ren et al. 2019). From these estimates, we
can estimate the survival curves S(t|xi) = P (Z > t|xi) =∑
j>t P (Z = j|xi) and the cumulative incidence function

(CIF) F (t|xi) = P (t ≤ Z|xi) =
∑
j≤t P (Z = j|xi)

Achieving good discriminative performance means accu-
rately rank at-risk individuals. Formally, for any two individ-
uals with covariates x1 and x2, assume individual 1 has the
event at time z1, at which individual 2 has not had the event
nor have they been censored (i.e., z2 > z1, c1 = 0, c2 ∈
{0, 1}). Then, we would expect individual 1 to be at greater
risk than individual 2 at time z1, or F̂ (z1|x1) > F̂ (z1|x2).
This is often measured through the C-index, which cal-
culates the proportion of unique pairs of individuals (that
match the criteria above) for which this ranking is correct
(Antolini, Boracchi, and Biganzoli 2005; Lee et al. 2018).

Well-calibrated models should produce survival esti-
mates Ŝ(·|xi) that match the underlying survival distri-
bution S(·|xi). The Brier score, defined at time t as
1
n

∑n
i=1(1t≤zi − Ŝ(t|xi))2, is often used to measure cali-

bration (Murphy 1973; Lee et al. 2019; Kvamme, Borgan,
and Scheel 2019). However, the Brier score measures how
well a prediction matches the observed outcome for different
individuals, which differs from the definition of calibration
considered here. In particular, a discontinuous heaviside step
function that equals 0 at and after the observed event time
could qualify as perfectly calibrated as it perfectly matches
the observed outcome (i.e., average Brier score = 0), despite
no meaningful probabilistic interpretation (i.e., it does not
correctly reflect the variation in the probability estimate due
to stochasticity in nature). Moreover, the Brier score over
the full survival curve is heavily influenced by the choice of
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Figure 2: Each loss function provides a different kind of su-
pervision throughout the time horizon (shaded region), but
none explicitly focuses on calibration.

time-horizon. Accordingly, the Brier score is insufficient as
an evaluation metric in our setting. In this work, we explore
other ways to measure calibration that fit our definition, such
as D-Calibration (Andres et al. 2018; Haider et al. 2020).

Deep Survival Analysis Training Schemes
The choice of the training scheme used to optimize a deep
survival analysis model defines its success in terms of both
discriminative performance and calibration. Common objec-
tive functions include:

• Llog = −
∑n
i=1(1 − ci) · log(P̂ (Z = zi|xi)) + ci ·

log(Ŝ(zi|xi))
• Lend = −

∑n
i=1(1− ci) · log(1− Ŝ(τ |xi))

• Lkernel =
∑
i6=j Ai,j · exp(

−(Ŝ(zi|xj)−Ŝ(zi|xi))
σ ), where

Ai,j = 1ci=cj=0,zi<zj

Llog , often termed the logarithmic loss, maximizes the
estimated probability of the event occurring at the time of
observation, while maximizing the estimated survival prob-
ability at the time of censoring for censored individuals (Lee
et al. 2018; Ren et al. 2019). Lend, often used in conjunction
withLlog , adds supervision after the observed event time, by
forcing the survival probability to zero at the final timestep
for uncensored individuals (Ren et al. 2019). Lastly, Lkernel
penalizes incorrectly ordering two uncensored individuals
(Lee et al. 2018). Figure 2 shows where these different loss
functions provide supervision over the time horizon. Most
deep survival models use Llog during training (Miscouridou
et al. 2018; Lee et al. 2018; Ren et al. 2019). Lkernel was
explored in early deep survival analysis works as a method
for increasing discriminative performance, but has been less
explored recently (Lee et al. 2018). Recent state-of-the-art
has shown strong discriminative performance when training
using a composite of Llog and Lend (Ren et al. 2019).

Though the logarithmic loss corresponds to a proper scor-
ing rule, it is sensitive to extreme cases and outliers (Gneit-
ing and Raftery 2007; Gneiting and Katzfuss 2014). This
sensitivity results in a larger trade-off between making ac-
curate predictions and maintaining calibration compared to
other proper scoring rules, such as the continuous-rank prob-
ability score (CRPS). These methods have not been evalu-
ated for their calibration performance. We hypothesize that

the models trained to minimize Llog could result in mis-
calibrated survival estimates. In light of this observation,
we consider loss functions that build off of proper scor-
ing rules without this limitation. In particular, our pro-
posed approach builds on the CRPS, which is defined as∫∞
−∞(F̂ (t|xi) − 1z≤t)2dt, which has been explored in sur-

vival analysis (Avati et al. 2020). However, this objective
function relies on an infinite integral and thus requires spe-
cific distributional assumptions during training. In contrast,
our discrete approximation avoids relying on any distribu-
tional assumptions. Moreover, we consider how this discrete
approximation can be incorporated into a training scheme
with other loss functions to elicit calibrated and accurate sur-
vival estimates. Finally, we consider a comprehensive evalu-
ation framework for properly measuring the efficacy of sur-
vival models for both their discriminative performance and
calibration. Concurrent work to ours proposed directly opti-
mizing for a variant of a calibration metric we use for eval-
uation (Goldstein et al. 2020). Future work might consider
how the two proposed training schemes could be combined
for further improvements.

Methods
In this section, we present our proposed training scheme and
our comprehensive evaluation metrics. We begin by propos-
ing a new loss function and theoretically justifying why it
should elicit survival models with good discriminative per-
formance and good calibration. We continue by discussing
and justifying our proposed training scheme, which consists
of combining this new loss function with Lkernel. We ex-
plain why this combination should improve both overall per-
formance. We conclude with a discussion on how to evaluate
models for both discriminative performance and calibration.

Proposed Training Scheme
We propose minimizing the rank probability score (RPS),
LRPS , defined as:

n∑
i=1

(1− ci) ·
τ∑
t=1

(Ŝ(t|xi)− 1t<zi)
2 + ci ·

zi∑
t=1

(Ŝ(t|xi)− 1)2

LRPS focuses on the relevant portions of the full time-
horizon, rather than just the specific event-time. For uncen-
sored individuals (ci = 0), LRPS pushes the survival prob-
ability at times before an individual has an event to 1, and
shrinks the survival probability to 0 at times after the event
has occurred. For uncensored individuals, LRPS is averaged
over the full time horizon τ , as we have access to the sur-
vival status for the full time interval. For censored individ-
uals (ci = 1), LRPS pushes the survival probability to 1
before the individual is censored, and is averaged over the
available time horizon for censored individuals zi, as we do
not know their survival status after this time.

Claim. Training deep survival models using LRPS will
result in well-calibrated estimates of survival.

Proof. Consider n individuals with identical or near-
identical covariates with observed event times {zi}ni=1. De-
fine the counting-based Kaplain-Meier estimate for these
individuals at time t as KMn

t = 1
n

∑n
i=1 1t<zi , where
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limn→∞KMn
t is the underlying survival probability at time

t for these n individuals.
A survival model will estimate one survival probabil-

ity for these n individuals at time t. Define this value
as p̂t. A well-calibrated survival model will output a p̂t
that closely aligns with the underlying survival probability
limn→∞KMn

t . Consider the optimization problem of find-
ing p̂t which will minimize LRPS . This problem can for-
mally be set-up as argminp̂t

∑n
i=1(p̂t − 1t<zi)

2.
First, this optimization problem is strictly convex and has

a unique minimum, as the second derivative is positive ev-
erywhere (see Supplementary Material).

To find the value of p̂t that minimizes this objective func-
tion (p̂∗t ), we set the derivative equal to zero.

∂

∂p̂∗t

(
n∑
i=1

(p̂∗t − 1t<zi)
2

)
= 0

2p̂∗t −
2

n

n∑
i=1

1t<zi = 0

p̂∗t =
1

n

n∑
i=1

1t<zi

The unique estimated survival probability that minimizes
the objective function is equivalent to the average survival
status for all n individuals at time t. This unique minimum
is equal to KMn

t which, as n gets large, is equal to the true
underlying survival probability for these individuals at time
t. Hence, training a survival model to minimize LRPS will
result in estimated survival probabilities that align well with
the true survival probabilities. �

A model that minimizes LRPS will theoretically result
in well-calibrated survival estimates that align well with the
true survival curves. However, due to the inherent noise in
the training process of deep models and the inability to
guarantee a global solution, training using just LRPS as a
loss function might be insufficient. In particular, combining
LRPS with a loss function that can scale survival probabil-
ities and encourages good discriminative ability would im-
prove overall performance.

Hypothesis. Training deep survival models using a com-
posite loss function LRPS + λLkernel, yields an accurate,
yet calibrated survival model when the value of σ in Lkernel
is appropriately tuned.

Justification. Remember that Lkernel is defined as
Lkernel =

∑
i6=j Ai,j ·exp(

−(Ŝ(zi|xj)−Ŝ(zi|xi))
σ ). In this loss

function, σ controls the scale of the differences between sur-
vival probabilities for different individuals. When σ is small
(i.e. σ ≤ .1) and individuals are correctly ranked, small or
large differences between two individual’s survival probabil-
ities (numerator) minimize Lkernel. In contrast, when σ is
large (i.e. σ ≥ 10) and individuals are correctly ranked, only
large differences between individual’s survival probabilities
can minimize Lkernel. Hence, the value of σ can directly af-
fect how the variation of different individuals survival curves
over the interval [0, 1]. In particular, we expect that training
a model to minimize Lkernel with a small σ value will result
in survival curves that are not well-spread out, while training

a model to minimize Lkernel with a large σ value will scale
the survival curves in order to spread them out sufficiently.
The value of σ should be tuned based on a validation set.

The ability to control the variation of individual’s survival
curves can also be thought of as rescaling survival curves
in order to best minimize Lkernel. If LRPS overestimates
or underestimates the survival probability for individuals
at certain times, using Lkernel with an appropriately tuned
value of σ can scale these estimates to more accurately esti-
mate the true underlying survival probabilities. At the same
time, as Lkernel aims to correctly rank individuals, it will
still maximize discriminative performance. Thus, we expect
that the combination of Lkernel and LRPS will encourage
good calibration without sacrificing discrimination.

The value of λ helps control the trade-off between the two
loss functions in the composite loss. As setting λ to 0 trans-
lates to simply the LRPS loss function, and setting λ too
high translates to the Lkernel loss function, we hypothesize
that an intermediate value of λ will result the best trade-off
between the theoretical guarantees of correctly estimating
the underlying survival probability obtained by minimizing
LRPS and the scaling ability of Lkernel.

In summary, we introduced a novel loss function LRPS ,
which we hypothesize will result in increased calibration
performance when used to train survival analysis models.
Moreover, we proposed a new training scheme that involves
minimizing a composite loss of LRPS and Lkernel.

Evaluating Model Performance
We evaluate model performance in terms of both discrim-
ination and calibration. We evaluate discriminative perfor-
mance, in terms of the aforementioned C-index, which
calculates the proportion of individuals who are correctly
ranked by the estimated models. To measure calibration,
we consider the average Brier score (i.e., mean-square-error
over the survival curve) and D-Calibration (Haider et al.
2020; Andres et al. 2018). Brier score measures how well
a prediction matches the observed outcome for different in-
dividuals, and hence, does not fully capture our definition of
calibration. D-Calibration bins the estimated survival proba-
bilities at the true event times into ten equal-width intervals
between 0 and 1, and performs a chi-squared test to deter-
mine if the distribution is uniform. This more closely aligns
with our definition of calibration; however, the test assumes
the model is well-calibrated, placing the burden on disprov-
ing the null hypothesis.

In light of these shortcomings, we also consider the dis-
tributional divergence for calibration (DDC). DDC does
not rely on a statistical test and produces a continuous score
that allows for comparisons of different models. Given a
set of estimated survival probabilities for each individual at
their observed event times {Ŝ(zi|xi)}ni=1, we compute DDC
as the Kullback-Leibler (KL) Divergence DKL(P ||Q) be-
tween a binned distribution P = B({Ŝ(zi|xi)}ni=1) and the
uniform distribution Q, where B is a function that maps a
set of probabilities into a probability distribution overX , ten
equal-width bins covering the unit interval (Lin 1991). Due
to the discrete nature of the binning operation, we change the
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base of the logarithm when calculating DDC to ensure that
it ranges between 0 and 1. DDC measures the distance be-
tween the empirical distribution of estimated probability of
survival at the time of the events P and the uniform distri-
bution Q. Lower is better; if P = Q, thenDDC(P,Q) = 0.
Survival curves that estimate a single survival probability,
such as 0, for every individual at their observed event time,
for which B({Ŝ(zi|xi)}ni=1) = B({0}n), achieve a maxi-
mum DDC of 1.

Claim. A perfectly calibrated survival model necessarily
minimizes the divergence between P and Q for a sufficiently
large n.

Proof. The probability integral transform states that for
some random variable X with cumulative distribution func-
tion Fx, Fx(X) should be uniformly distributed U(0, 1)
(Angus 1994). Thus, given a randomly sampled event time
zi, it must be that S(zi) = 1 − F (zi) ∼ U(0, 1). Given
a set of randomly sampled event times {zi}ni=1, where n is
sufficiently large (e.g., n >> 10), we then expect the distri-
bution of P = B({Ŝ(zi|xi)}ni=1) ∼ U(0, 1) (Haider et al.
2020). Hence, a calibrated survival model should minimize
the divergence between P and a uniform distribution Q. �

Though necessary, minimizing this metric does not guar-
antee that the estimated survival curves accurately estimate
the true underlying survival process. Despite good calibra-
tion, these probabilistic estimates may still be inaccurate
(i.e., poor discrimination). Hence, it is important to evaluate
models in terms of both their calibration and their discrimi-
native performance. To this end, we seek models that excel
with respect to both measures of performance.

Importantly, DDC does is not applied to censored indi-
viduals. Though learning with censored individuals is a key
element of survival analysis, evaluating calibration on cen-
sored individuals raises a number of issues. Without strong
assumptions on the event time distribution for censored indi-
viduals, one cannot make meaningful conclusions regarding
the calibration of a model for censored individuals (see Sup-
plementary Material for discussion). To this end, while we
measure discriminative performance across both uncensored
and censored individuals, we focus our evaluation of calibra-
tion (specifically, DDC and D-Calibration) on uncensored
individuals. This introduces a mismatch between the distri-
bution we evaluate in practice and the one we aim to evaluate
in theory. However, if patients are censored at-random, this
estimate of calibration should generalize.

Tradeoff between calibration and discrimination. It is
important to note that well-calibrated survival curves need
not have optimal discriminative performance on the ob-
served sample. A well-calibrated model is one that consis-
tently estimates survival curves that closely match the true
survival curves. Due to stochasticity, some individuals may
experience the event when their true survival probability is
high. As a perfectly calibrated model will estimate a high
survival probability at the observed event time for these indi-
viduals, these individuals will contribute negatively to the C-
Index calculated based on the observed event times. Hence,
when individual time to event varies (which we expect is of-
ten the case due to the stochasticity of nature), there exists
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Figure 3: Example survival curves estimated using DRSA
trained with Llog + Lend (left), example survival curves
estimated using DRSA trained with the proposed training
scheme (middle),and example survival curves estimated us-
ing DRSA trained withLkernel (right) on the NACD dataset.
Each color represents a randomly selected individual from
the test set; the same individuals are shown in each graph.
Visually, training with the proposed scheme results in sur-
vival curves with a greater variation in shape over time, due
to the supervision over the full time horizon and the relative
scaling abilities of Lkernel.

a trade-off between obtaining perfect calibration and perfect
observed discriminative performance (i.e. a C-index of 1).
This issue arises due to discrimination being measured with
respect to only single observed sample. This phenomenon is
explored further in the Supplementary Material.

Practically speaking, both measures of performance are
important. Maintaining discriminative performance with in-
creased calibration represents an important gain for a par-
ticular survival model. Accordingly, we consider the trade-
off between the discriminative performance and calibration
by calculating the harmonic mean between the C-index and
1 − DDC, a value we term the total score. A higher total
score corresponds to a model that balances discriminative
performance and calibration.

Experiments and Results
Here, we test the efficacy of the proposed training scheme.
We present two publicly available datasets on which we test
our proposed methods and benchmark methods to which
we compare. We detail the proposed method’s performance
compared to the benchmarks in terms of discrimination and
calibration and compare against different ablations of the
proposed method using the new evaluation framework.

Experimental Setup
Datasets. We consider two publicly available datasets:

• the Northern Alberta Cancer Dataset (NACD) consists
of 2,402 individuals with various forms of cancer (Haider
et al. 2020; Yu et al. 2011). The dataset tracks 51 features
for each individual, including demographics, vital signs,
patient characteristics such as appetite, and specific de-
tails about the type and progression of the cancer. 36.6%
of the individuals in the dataset are right-censored, with an
average survival time of 16.06 months for uncensored in-
dividuals. For this dataset, we use a τ of 86 months based
on the largest length of stay.
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• CLINIC records the survival status of 6,036 patients in a
hospital, with 13.2% being censored (Knaus et al. 1995).
The dataset consists of 14 features for each individual,
including information about demographics, vital signs,
onset of diseases, and medications. The average survival
time for uncensored individuals is 5.33 months. For this
dataset, we use a τ of 52 months, such that each time-bin
represents one month.

Model Architecture. To demonstrate the efficacy of our
approach and compare it against baseline methods, we
consider minimizing the proposed composite loss to train
the Deep Recurrent Survival Analysis (DRSA) architecture
(Ren et al. 2019). Though the proposed loss functions are
model-agnostic, we consider the DRSA architecture due
to its state-of-the-art discriminative performance, flexibility
for allowing variable-length forecasting, and its lack of as-
sumptions regarding the probability at the end of the time-
horizon. More information about this architecture choice can
be found in the Supplementary Material.

Baselines. To evaluate how our proposed approach com-
pares to current state-of-the-art in deep survival analysis, we
compare against two baseline survival analysis models:
• The DRSA architecture with the objectives it was orig-

inally proposed with (using Llog and Lend) (Ren et al.
2019), and

• Multi-task logistic regression (MTLR) is one of the only
survival analysis approaches that has shown good empir-
ical performance in terms of our definition of calibra-
tion (Yu et al. 2011; Haider et al. 2020). MTLR trains
a separate logistic regression model per time-point to es-
timate survival, and combines these to estimate the sur-
vival distribution over some time horizon. When com-
pared to other methods, such as extensions of the Cox
model, MTLR performed best in terms of both calibration
and discrimination (Haider et al. 2020).
Training/Evaluation Details. Across experiments, we

use the same DRSA architecture: a one-layer LSTM with
hidden size 100 and a single feed-forward layer with a sig-
moid activation on the output for each time-step (Ren et al.
2019). We separate our data into training/validation/test sets
using a 60/20/20% split. For training, we use Adam and
a batch size of 50 (Kingma and Ba 2015). We train for
100 epochs (which, empirically, was enough for models to
converge) and select the best model based on a validation
set. For the proposed composite training scheme, we tune
the value of σ for Lkernel based on the NACD dataset,
and use this optimal value on the CLINIC dataset to test
whether the manner in which Lkernel affects LRPS gener-
alizes across multiple datasets. When training with multiple
losses, we use λ = 1. Though we considered other weight-
ing schemes, it did not appear to affect performance. Note
that we weighted the LRPS loss function due to the right-
skewed time-to-event distribution for both datasets. We train
each model five times, with different weight initializations.
We present the mean and the standard deviation of the re-
sults on the test set for all metrics except D-Calibration, for
which we present the number of runs where the resulting
survival estimates passed the D-Calibration test. We evalu-

ate DDC and D-calibration using only uncensored test indi-
viduals, but we evaluate C-index and Brier score using all
test individuals. All deep models were built in PyTorch 1,
while MTLR was implemented using the corresponding R
package (Paszke et al. 2019; Haider 2019).

Results
First, our proposed approach consistently outperforms all
baselines with respect to DDC and D-calibration, while
maintaining comparable C-index and average Brier score
values (Table 1). Lower values represent better performance
for DDC and Brier score, while higher values represent bet-
ter performance for the other metrics. The proposed method
consistently leads to estimated survival curves with a bet-
ter trade-off between calibration and discrimination, as ev-
idenced by the higher total score compared to MTLR and
DRSA as it was originally proposed. The fact that no model
dominates in C-index across datasets is consistent with re-
cent findings in survival analysis (Lee et al. 2019).

Compared to the original DRSA (Ren et al. 2019), the
proposed training scheme results in a statistically significant
improvement in calibration across both tasks (NACD DDC:
.025 vs. .007, CLINIC DDC: .138 vs .056). This improve-
ment, however, is accompanied by a small decrease in C-
index in the NACD dataset. However, the probabilistic esti-
mates of survival are more likely to accurately represent the
true underlying survival processes. We see the same overall
trend when comparing our proposed method with MTLR,
where the proposed model is significantly more calibrated
across both datasets (NACD DDC: .062 vs .007, CLINIC
DDC: .168 vs .057), while the relative C-index depends on
the dataset.

Compared to training each component of the proposed
loss (i.e., LRPS and Lkernel) separately, using the compos-
ite loss leads to improvements (Table 1: NACD total score:
.715 and .847 vs .850, CLINIC total score: .687 and .731 vs
.753). In particular, note that training with LRPS results in
good calibration performance, while training withLkernel in
and of itself results in poor calibration performance. Hence,
as expected, LRPS itself will elicit calibrated and accurate
estimates of survival, but combining it with the scaling abil-
ity of Lkernel can improve performance even more. More-
over, training using LRPS alone results in better calibration
than using the logarithmic loss functions (NACD DDC: .025
vs .012, CLINIC DDC: .138 vs .097), with minimal drops
in discriminative performance. These empirical results sup-
port the original hypothesis that training using LRPS should
result in survival models that better balance discriminative
performance and calibration, but the composite loss results
in the best performance.

Next, we focus on a qualitative assessment of our pro-
posed method. Visually, this approach produces survival
curves with a greater variation in shape over the full time
horizon (Figure 3). In particular, the baseline training
scheme results in survival curves that decay quickly to-
wards a survival probability of 0. This is evidenced by the
high DDC value due to many individuals’ estimated survival

1https://github.com/MLD3/Calibrated-Survival-Analysis
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Model NACD CLINIC
C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑ C-index ↑ DDC ↓ D-Calibration ↑ Brier ↓ Total Score ↑

Ren et al. 2019 .748± .002 .025± .012 1 .101± .002 .846± .004 .616± .003 .138± .002 0 .107± .000 .719± .003
MTLR .750± .000 .062± .000 0 .101± .000 .834± .000 .608± .000 .168± .000 0 .106± .000 .702± .000

Proposed - LRPS .741± .008 .305± .089 0 .207± .034 .715± .050 .628± .003 .241± .022 0 .153± .002 .687± .011
Proposed - Lkernel .742± .003 .012± .002 3 .101± .003 .847± .001 .615± .005 .097± .006 0 .110± .001 .731± .005

Proposed .742± .006 .007± .003∗ 5 .104± .002 .850± .003 .627± .001 .056± .011∗ 0 .106± .001 .753± .004∗

Table 1: The proposed training approach consistently leads to improvements in calibration (DDC, D-Calibration, Averaged
Brier Score) across all baselines and ablations, without sacrificing discriminative performance (C-index) (mean ± standard
deviation across random initializations, number of times passing the statistical test for D-Calibration). Lower DDC and Brier
scores and higher values of C-index, D-Calibration, and total score indicate better performance. An * indicates results that are
statistically significant over all baselines using a paired t-test (p < .05).

probabilities being very low at the time they experienced the
event. Meanwhile, our proposed loss functions achieve bet-
ter DDC values by allowing more flexibility in the shape of
the survival curves, such that some individuals have higher
survival probabilities at the time of their observed events.
We hypothesize that this is due in part to the direct supervi-
sion over the entire predictive distribution that comes from
training with LRPS . In contrast, Llog provides direct super-
vision on the survival probability over only a single time-
point, possibly resulting in less flexibility in the shape of the
predictive distribution over the time horizon (Gneiting, Bal-
abdaoui, and Raftery 2007). This single time-point supervi-
sion, along with the logarithmic losses sensitivity to extreme
cases, can result in miscalibrated survival curves.

We present results for proposed method using σ = 0.8 in
Lkernel for both datasets. This value was tuned on a vali-
dation set on the NACD dataset and applied to the CLINIC
dataset. Hence, the manner in which Lkernel affects LRPS
generalizes across multiple datasets, supporting our original
hypothesis. Moreover, we visually confirm the original mo-
tivation for the use of Lkernel: the value of σ helps control
the scale of different individual’s survival curves. As noted
in Section 3, we expect a model trained to minimize Lkernel
with small σ (e.g. σ = 0.1) to result in survival curves where
different individuals curves are close to each other in scale,
and a model trained to minimize Lkernel with large σ (e.g. σ
= 10.0) to result in more spaced out survival curves. Figure
4 shows estimated example curves for 10 random individ-
uals in the NACD dataset when trained using Lkernel with
σs of 0.1 and 10.0. The resulting survival curves display the
hypothesized phenomenon, confirming the ability ofLkernel
to control the scale of different individuals’ survival curves.
Hence, the improved performance for the composite loss is
in part due to an additional rescaling of the survival distribu-
tions to better match the underlying survival probabilities.

Overall, these results indicate the ability of our proposed
training procedure to better match the true survival distri-
bution, while maintaining the useful property of accurately
ranking individuals. Moreover, the comprehensive evalua-
tion framework helps facilitate model comparisons for both
discriminative performance and calibration.

0 40 80
Time

0.0

0.2

0.4

0.6

0.8

1.0

S
ur
vi
va
l
P
ro
ba
bi
lit
y

Kernel Loss with σ = 0.1

0 40 80
Time

0.0

0.2

0.4

0.6

0.8

1.0
Kernel Loss with σ = 10.0

Figure 4: Survival curves from models trained with Lkernel
using σ = 0.1 (left) and σ = 10.0 (right) from the NACD
dataset. Each color represents a different individual. These
plots confirm our original hypothesis regarding Lkernel: the
value of σ can control the relative scales of survival proba-
bilities. Hence, by tuning σ, we can scale the survival curves
to best match the true underlying survival distributions.

Conclusion
Given the stochasticity of nature, we expect individuals to
have an underlying survival distribution that corresponds
to a meaningful probabilistic interpretation of an individ-
ual’s survival. Though critical to clinical application, cali-
bration to date has been largely overlooked in survival anal-
ysis, especially in deep survival analysis. We hypothesized
that recent work in deep survival analysis that optimizes
and evaluates for discriminative performance alone results
in poorly-calibrated estimated survival curves. To this end,
we introduced a new approach for training deep survival
analysis models to optimize for both discriminative perfor-
mance and calibration. We provided both theoretical justi-
fication and empirical evidence for why the proposed ap-
proach elicits calibrated estimates of survival. Applied in
the context of a state-of-the-art deep survival analysis ar-
chitecture, the proposed training scheme leads to significant
gains in calibration across two publicly available datasets,
while achieving similar discriminative performance. Still,
there remains room for improvement. In particular handling
continuous-time survival analysis problems without the use
of any distributional assumptions is an interesting line of fu-
ture work. Nonetheless, this work presents a complete and
flexible pipeline for training and evaluating accurate and
well-calibrated deep models for survival analysis.
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particular, our work provides major contributions towards
the goal of personalized healthcare by focusing on estimat-
ing individualized survival curves. Our definition of calibra-
tion ensures an emphasis on estimating the true underlying
survival distribution for a particular individual. Accurate and
calibrated individualized survival distributions can help aug-
ment clinical decision making on a per-patient basis, rather
than at a population level, providing important steps towards
personalized medicine. However, this is only the first step.
Going forward, survival analysis techniques, such as those
proposed in this work, should be combined with recent ad-
vances in fairness in machine learning to ensure accurate and
useful personalized algorithms that do not reinforce harmful
biases present in the original data.
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