The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Complex Coordinate-Based Meta-Analysis with Probabilistic Programming

Valentin Iovene, Gaston E Zanitti, Demian Wassermann

Inria, CEA, Université Paris-Saclay, Palaiseau, France
tgy @inria.fr, gaston.zanitti @inria.fr, demian.wassermann @inria.fr

Abstract

With the growing number of published functional magnetic
resonance imaging (fMRI) studies, meta-analysis databases
and models have become an integral part of brain mapping
research. Coordinate-based meta-analysis (CBMA) databases
are built by extracting both coordinates of reported peak ac-
tivations and term associations using natural language pro-
cessing techniques from neuroimaging studies. Solving term-
based queries on these databases makes it possible to obtain
statistical maps of the brain related to specific cognitive pro-
cesses. However, existing tools for analysing CBMA data are
limited in their expressivity to propositional logic, restricting
the variety of their queries. Moreover, with tools like Neu-
rosynth, term-based queries on multiple terms often lead to
power failure, because too few studies from the database con-
tribute to the statistical estimations. We design a probabilistic
domain-specific language (DSL) standing on Datalog and one
of its probabilistic extensions, CP-Logic, for expressing and
solving complex logic-based queries. We show how CBMA
databases can be encoded as probabilistic programs. Using
the joint distribution of their Bayesian network translation,
we show that solutions of queries on these programs compute
the right probability distributions of voxel activations. We
explain how recent lifted query processing algorithms make
it possible to scale to the size of large neuroimaging data,
where knowledge compilation techniques fail to solve queries
fast enough for practical applications. Finally, we introduce a
method for relating studies to terms probabilistically, leading
to better solutions for two-term conjunctive queries (CQs) on
smaller databases. We demonstrate results for two-term CQs,
both on simulated meta-analysis databases and on the widely
used Neurosynth database.

Introduction

The non-invasivity of functional magnetic resonance imag-
ing (fMRI) led it to dominate brain mapping research since
the early 1990s (Huettel, Song, and McCarthy 2008). In the
past three decades, tens of thousands of published studies
acquired and analysed fMRI signals, producing new under-
standing of the human brain and the cognitive function of its
different components. Quickly, the idea of meta-analysing
this ever-growing amount of neuroimaging studies flour-
ished. By gathering and synthesising the findings of a large
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corpora of neuroimaging studies, can we derive new knowl-
edge about the brain’s mechanics? Can we study consensus
within the cognitive neuroscience community? The lack of
power of neuroimaging studies undermines the reproducibil-
ity of their findings (Poldrack et al. 2017; Botvinik-Nezer
et al. 2020). Can we build consensus by aggregating re-
sults from several underpowered studies into more robust
findings supported by past literature? Neuroimaging stud-
ies traditionally report peak activation coordinates in a stan-
dard stereotactic coordinate system. This makes it possible
to compare them from one study to another. These coordi-
nates result from statistical hypothesis testing and represent
a condensed synthesis of which regions of the brain are re-
ported as activated by a given study. Directly meta-analysing
whole-brain unthresholded statistical maps (i.e. image-based
meta-analysis) is known to yield statistically more power-
ful results (Salimi-Khorshidi et al. 2009); and the field is
moving in that direction (Gorgolewski et al. 2015). How-
ever, most meta-analyses have resorted to coordinate-based
meta-analysis (CBMA): the meta-analysis of these peak ac-
tivation coordinates. In the past ten years, an ecosystem of
CBMA databases and tools was brought to life (e.g. Laird,
Lancaster, and Fox 2005; Yarkoni et al. 2011), becoming an
integral part of brain mapping research. Automatic CBMA
databases, like Neurosynth, extract both natural language
processing features and peak activation coordinates from
neuroimaging studies. These tools are used to derive acti-
vation patterns (e.g. Wager et al. 2013; Cole et al. 2012) or
reveal meaningful cognitive processes through reverse in-
ference (e.g. Smallwood and Schooler 2015; Seghier 2013;
Chang et al. 2013; Andrews-Hanna, Smallwood, and Spreng
2014). With them, researchers can define more robust re-
gions of interest supported by past literature.

Nonetheless, currently available tools are limited in the
complexity of queries that they can express and solve on
CBMA data. Neurosynth (Yarkoni et al. 2011) presents brain
map for single-term queries. Although technically feasible,
term-based conjunctive queries (CQs) lead to underpowered
meta-analyses due to the small number of studies match-
ing the queries. Methods for exploiting CBMA data have
recently been proposed, but they concern themselves with
either developing new procedures for thresholding statisti-
cal brain maps, or integrating spatial priors into probabilistic
models by correlating nearby voxel activations (Montagna



et al. 2018). We look at neuroimaging meta-analysis from
a different angle by improving upon existing CBMA litera-
ture through the development of a domain-specific language
(DSL) that leverages past research on probabilistic logic pro-
gramming languages and databases to formulate and solve
more expressive CBMA queries. We believe that, with this
approach, more could be wrung out of this type of data.

Recently, NeuroQuery (Dockes et al. 2020) produced
meta-analyses using unstructured text-based queries. By en-
coding the relationship between terms in a vocabulary us-
ing a regularised linear model, NeuroQuery can produce
brain maps for underrepresented terms (few studies exactly
match the term). However, NeuroQuery’s queries are dis-
tinct from and harder to interpret than database queries,
which have clear semantics. Moreover, producing a brain
map from studies related to some term t; and not related
to some other term ¢, is not possible because NeuroQuery
cannot express logic-based queries. Finally, NeuroQuery is
not a probabilistic model that can be plugged into a richer
hierarchical model combining meta-analyses with heteroge-
neous modalities, such as neuroanatomical and ontological
knowledge.

Since the 1970s, the computer science community has
been working on extending logic programming languages
(Roussel 1975; Abiteboul, Hull, and Vianu 1995) with
probabilistic semantics to represent knowledge uncertainty
inherent to real-world data (reviewed by De Raedt and
Kimmig 2015). A wide variety of efficient approaches to
answering questions (queries) from these programs were
developed, alongside seminal theoretical understandings.
Domain-specific languages are not new to the cognitive neu-
roscience community. The White Matter Query Language
(Wassermann et al. 2013) was developed to help experts for-
mally describe white matter tracts in a near-to-English syn-
tax. To the best of our knowledge, applying these techniques
to the formulation and resolution of logic-based queries on
probabilistic CBMA databases has yet to be attempted. This
approach could make it possible to formulate elaborate hy-
potheses on the brain’s function and structure and test them
against past cognitive neuroscience literature.

Adopting a language-oriented programming approach, we
use probabilistic logic programming languages to formu-
late and solve logic-based queries on CBMA databases. This
work fits into a broader project to design a DSL, coined Neu-
roLang, for expressing and testing cognitive neuroscience
hypotheses that combine meta-analysis, neuroanatomical
and ontological knowledge. The work presented here focuses
on the probabilistic semantics of NeuroLang and its appli-
cation to term-based CBMA queries.

Contributions of this work are three-fold. First, we investi-
gate the feasibility and technicalities of applying probabilis-
tic logic programming to CBMA-based brain mapping. We
propose a way to encode a CBMA database as a probabilis-
tic logic program based on CP-Logic (Vennekens, Denecker,
and Bruynooghe 2009), on which complex CBMA queries
can be solved. We translate this program to an equivalent
Bayesian network representation in order to show that cor-
rect answers to probabilistic queries can be derived from its
factorised joint probability distribution. Second, we explain
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how leveraging lifted query processing techniques (Braz,
Amir, and Roth 2005; Dalvi and Suciu 2012) allows us to
scale to the large size of neuroimaging data at the voxel
level. Third, we propose a relaxed modeling of TFIDF fea-
tures to better encode the relationship between terms and
studies and show that fewer samples are needed to solve two-
term CQs than traditional approaches, on simulated and real
CBMA databases.

Background
Term-Based Queries on CBMA Databases

An example of term-based query formulated in plain English
is: “for each region of the brain, what is the probability that
studies associated with both terms insula and speech report
its activation?”. The result of term-based queries are used in
forward inference to obtain a map of the brain’s activated
regions reported by studies matching the query.

A CBMA database of N studies with a fixed vocabulary
of M terms can be represented as two matrices X € RY-M
and Y € {0,1}VK where X;; is a TFIDF feature mea-
sured for term j in study ¢ and Y;; = 1 if voxel k is reported
as activated in study . In practice, Y is a sparse matrix be-
cause only a small proportion of voxels are reported within
a single study.

Forward inference brain maps are constructed from a
probabilistic model where binary random variables Ay and
T} respectively model the activation of each voxel v and
the association of studies to each term t;. P[A|T}] is
the probability that voxel k activates in studies condi-
tioned on the studies being associated with term j and
P [Ag|Tinsula A Tipeecn] is the probability that voxel & acti-
vates in studies conditioned on studies being associated with
both terms ‘insula’ and ‘speech’.!

Neurosynth (Yarkoni et al. 2011) associates terms to stud-
ies by applying a threshold 7 to TFIDF features X . Forward
inference maps are obtained by estimating, for each voxel k,

X Yal[Xy; > 7]
Y X5 > 7]

Solving a query with a p-term conjunction, ¢ = Ty A- - -AT),
is done by estimating, for each voxel &,

_ XY Yad[min(Xar, -, Xip) > 7]
SN min( X, ..., Xip) > 7]

As terms are added to this conjunction (and thus, complexity
to the query), the term 1[min(X;1,..., X;,) > 7] goes to
zero for an increasing number of studies. Rapidly, obtaining
a meaningful brain map becomes infeasible due to statisti-
cally weak results. A different model that relaxes the hard
thresholding of TFIDF features is proposed in the next sec-
tions. Note that, solving a disjunction of two terms is done
by replacing min with max, thereby requiring that only one
of the TFIDF features passes the threshold. The more terms
are added, the larger the number of studies that are included
in the estimation. In that case, statistical power is thus not an
issue.

"We use P [Ax|T;, T;] to denote P[4y = 1|T; = 1,T; = 1].

P[A|T}] (D

PAg[e] 2)



Probabilistic Logic Programming

Before diving into how probabilistic logic programming can
be used to encode CBMA data, we give a brief introduc-
tion to those languages through the example of CP-Logic.
We also define the syntactic restrictions of the subset of this
language that we use in our DSL.

CP-Logic We use CP-Logic (Vennekens, Denecker, and
Bruynooghe 2009) as an intermediate representation in the
compilation of our DSL. In CP-Logic, programs contain
rules (also called CP-Events) of the form

(h1:p1 V- -Vhy:py) < ¢ 3)
where h; are head predicates, p; are probabilities such that
> ;i < 1, and the implication rule’s body (also called an-
tecedent) o is a first-order logic formula. All variables oc-
curring in the head (also called consequent) of the rule must
also occur in ¢. Such rules are interpreted as ‘@ being true
causes one of the atoms h; to be true’. Which h; becomes
true is drawn from the probability distribution defined by
probabilities p;. CP-Logic programs define a probability dis-
tribution over the set of possible worlds (Sato 1995) associ-
ated with possible executions of the probabilistic program.

Syntactic Restrictions and Probabilistic Databases
Only a subset of CP-Logic’s expressive syntax is neces-
sary to encode a CBMA database and formulate term-based
queries on it. In NeuroLang, two kinds of rules are allowed.
Deterministic rules (h : 1) < ¢, where ¢ is a conjunction
of predicates and h is a single head predicate that is true with
probability 1 whenever ¢ is true. Probabilistic rules whose
body is T (always true). If the head of the rule contains a
single predicate, it is a probabilistic fact. If it contains more
than one head predicate, it is a probabilistic choice. More-
over, recursive rules such as (A(z) : 0.3) < A(y) A B(x)
are not permitted in the program.

With these syntactic restrictions, probabilistic rules de-
fine relations in a probabilistic database. If a rule has more
than one head predicate, its tuples are mutually exclusive
and partition the space of possible worlds. Queries with mu-
tually exclusive predicates are rewritten to be compatible
with probabilistic tuple-independent databases. Determinis-
tic rules of the program define unions of conjunctive queries
(UCQs) on these relations. A UCQ Q(x) is defined by a
disjunction CQ, (x),...,CQ, (x), where CQ,(x) are CQs
which conjunct logic literals. One major theoretical result in
the field of probabilistic databases is the dichotomy theorem
(Dalvi and Suciu 2012). It classifies UCQs based on their
complexity: those that can be solved in polynomial time and
those that are #P-hard, in the size of the database. A set of
rules analyses the syntax of a given UCQ Q(x) to derive
an algebraic expression that solves P[Q(x)]: the probabil-
ity of Q(x) being true over all possible groundings of the
database (i.e. possible worlds). This resolution strategy is
called lifted query processing. Guarantees on the efficiency
of query resolution is of particular interest in the context of
neuroimaging’s high-dimensional space.
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Probabilistic CBMA Databases

We now describe how CBMA data and queries can be en-
coded as a CP-Logic program. We then show how this pro-
gram can be translated to a Bayesian network. We use its
factorised joint probability distribution to analytically derive
the same solutions for term-based queries as Neurosynth. Fi-
nally, we describe our approach to solving queries on this
program using lifted query processing strategies.

Encoding a CBMA Database as a Probabilistic
Logic Program

The program of fig. 1 encodes a CBMA database. The
equiprobable choice on the SelectedStudy relation partitions
the space of possible worlds such that each one corresponds
to a particular study. VoxelReported and TermInStudy re-
lations encode matrices Y and X. We write the program
such that solving the query P [Activation(v)|p], where ¢
conjuncts and/or disjuncts TermAssociation(t;) atoms, pro-
duces the probabilistic model of term-based CBMA queries
described in the Background section. For instance, when
defining

¢ = TermAssociation(insula) A TermAssociation(speech)

P[Activation(v)|p] is equivalent to the query
P [Ai|Tspeech A Tinsula] described  previously. We show
that in the next section.

Equivalence With Term-Based Query Solutions

To justify the design of the program in fig. 1, we trans-
late it to an equivalent Bayesian network representation us-
ing the algorithm proposed by Meert, Struyf, and Block-
eel (2008). The resulting Bayesian network is depicted in
fig. 2 using plate-notation. To simplify the notation, we use
Ay, T,, and T, to denote random variables Activation(vy,),
TermAssociation(t,, ), and TermAssociation(t,,). From the
joint probability distribution defined by the Bayesian net-
work, it can be derived that

= ZP Py} = 1P = 1P[c]S = 1] (5)
1
=¥ Z Yiel[ X > 7)1 [ X > 7] (6)
=1
and, similarly, that
P(T;,, Tr) ZP Pl = 1Py =1] (D)
- N
Z (Xin > 71X > 7] (8)

From these two joint probability distributions, the solu-
tion of the conditional query can be derived using that

P[AL|T,, T = W, which gives the formula of
eq. (2), forp = 2.



(TermInStudy(t;,s;) : 1) « T.
(VoxelReported(vg, s;) : 1) «— T.

i=1

v 1
(\/ SelectedStudy(s;) : N) «— T.

Vie NNVie M, X;; >1
Vie NNVEe K, Y. =1

(TermAssociation(t) : 1) < 3s (TermInStudy(¢, s) A SelectedStudy(s)) .
(Activation(v) : 1) < Js (VoxelReported(v, s), SelectedStudy(s)) .

Figure 1: CP-Logic program encoding a probabilistic CBMA database. TermInStudy (¢, s) models the presence of term ¢ in study
s. VoxelReported(v, s) encodes whether voxel v was reported in study s. The large SelectedStudy equiprobable choice over
studies makes each possible world correspond to a specific study. Activation(v) and TermAssociation(t) respectively model
the activation of voxel v and the association with term ¢. The SUCC query P [Activation(v)] gives the marginal probability of
activation of voxels over all studies. The query P [Activation(t)| TermAssociation(insula)] results in a forward inference map

for the term insula.

The same can be shown for disjunctive queries
P[AL|T, V T;,] by summing the results of 3 two-term CQs
as follows

P [Ak|Tn \ T’m,] =P [Ak|Tna Tm] +

9
P (A4 Ts, T] + P (AT, <Tr]

This confirms that the probabilistic program of fig. 1 is
sound, as solving queries on the program leads to the statis-
tical estimation described in the previous section.

Solving Queries on Probabilistic CBMA Databases

We now explore query resolution techniques that scale to the
size of large probabilistic CBMA databases. The estimation
of a forward inference brain map for a two-term conjunction
corresponds to the query

P [Activation(v)|TermAssociation(t; ), TermAssociation(t ;)]
We solve this task by defining two CQs

Activation(v), TermAssociation(t; ),

Ql (7}) —
()2 <+ TermAssociation(t;), TermAssociation(t;)

such that Pﬁéﬁj)] solves the initial query. The numerator

corresponds to the joint probability of voxel activation and
association to both terms. The denominator corresponds to
the joint probability of association to both two terms.

TermAssociation(t,)

Knowledge-Compilation Approaches Do Not Scale to the
Size of Neuroimaging Data We implemented the pro-
gram of fig. 1 in ProbLog2 (Dries et al. 2015). We observed
that, when solving two-term CQs, grounding and compil-
ing the program to sentential decision diagrams (SDDs) was
impractical. Solving a two-term CQ takes more than 30 min-
utes on a recent laptop. This is due to the large number of
voxels, terms and studies modeled in the program, leading
to a large number of ground literals. To give perspective on
the scale of CBMA and neuroimaging data, a brain is typi-
cally partitioned into a grid of about 230,000 2mm? voxels.
On average, studies in the Neurosynth database report 3165
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voxel activatons. There are 14,371 studies and 3228 terms in
the Neurosynth database. We also tried compiling our pro-
gram manually to SDDs (Darwiche 2011). Despite our ef-
forts, which did note include exploring recent tree-building
strategies (Amarilli, Bourhis, and Senellart 2016), the reso-
lution of queries was still too slow to be practical for real-
world applications. Currently available CBMA tools are ca-
pable of solving single-term queries in seconds. Resolution
of more complex queries should have a similar time com-
plexity.

Lifted Processing of UCQs on Probabilistic CBMA
Databases We leverage theoretical results which have
identified classes of queries that lifted inference can solve
in polynomial time. The dichotomy theorem (proven in
Dalvi and Suciu 2012) provides a procedure for checking
that UCQs are liftable. This theorem is convenient because
it guarantees that any query such that the lifted process-
ing rules apply is guaranteed to be solvable in PTIME. If
the query is not liftable, we resort to knowledge compi-
lation (KC)-based resolution techniques. Because the lan-
guage does not have probabilistic clauses and prevents recur-
sivity, we can use its deterministic rules to construct UCQs
associated with a given probabilistic query P[i)(x)], where
¥ () is a conjunction of intensional, extensional or prob-
abilistic literals. This lifted approach makes it possible to
solve CQ in a few seconds. Extensional query plans (see
4.1 of Van den Broeck and Suciu 2017) are obtained and
evaluated to solve queries using a custom Python relational
algebra engine.

Relating Terms and Studies Probabilistically

The hard thresholding 1[z > 7] of TFIDF features x pre-
sented in the Background section, and used by Neurosynth,
misses studies that could be relevant to the resolution of
queries. Because we are interested in solving more complex
queries, in this section we explore a relaxation by introduc-
ing the soft-thresholding function

€[0,1] (10)

w(z;a,7) =0 (a(x — 7))
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CZ? {07 1} | [Ckz = 1] Ykz
VoxelReported(s;) {T,1} P [VoxelReported(s;) = T|c'R] = 1[c'R = 1]

Figure 2: Plate-notation representation of the Bayesian network translated from the program proposed to encode a CBMA
database. Each ground atom in the program (e.g. TermInStudy(¢2, s21)) becomes a binary random variable with a deterministic
conditional probability distribution (CPD). Specific AND nodes encode the conjunctions in the antecedent of the rules of the

SS TIS VR

program. Choice random variables ¢>°, Ciis Cri

where ¢ is the logistic function and 7 a threshold. As « in-
creases, w(x; o, T) converges towards the hard-thresholding
function 1[z > 7]. With an appropriate «, a larger propor-
tion of studies is included in the calculation of P [A|¢], giv-
ing better estimates on small databases. For example, results
of two-term CQ P [Ak|T1 A\ T2] and UCQ P [Ak‘Tl V TQ]
queries are estimated with

N
S Yiw (X150, 7) w (X250, 7)
P ATy A To) = =
i;LU(Xﬂ;Oé,T)w(X,‘Q;Oé,T)
(11)
N 2
Y Yi(1- 1 (1 —w(Xiji0,7)))
PAT VT = = =
> (1= H(l—w(Xz]»aT)))

1

%

(12)

More generally, P[Ax|p] can be estimated for first-order
logic formulas ¢ that blend conjunctions and disjunctions of
Boolean random variables 7}, j € 1,..., M. For example,
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represent probabilistic choices in the program.

if o =(T1VTy) A (T3 VTy), we have
N
> Y f (X, Xi2) f(Xis, Xia)
P[Aplp] = =5 (13)
> f( X, Xi2) f( Xz, Xia)
i=1

where f(z1,22) =1 — (1 —w(z1;0,7))(1 — w(z2; 0, 7)).
This modeling is implemented simply by integrating
w(X;j;a,7) as the probabilities of probabilistic facts

TermInStudy(t;, s;) in the program of fig. 1.

Experiments and Results

We compare our method with Neurosynth’s on simulated
CBMA databases sampled from a generative model and on
the Neurosynth database. Using both models, we solve 55
different two-term CQs P [A|T; A Tj).

Gain of Statistical Power when Solving Two-Term CQs
on Smaller Simulated CBMA Databases We evaluate
our method on simulated small CBMA databases obtained
by sampling from the generative model of fig. 3. This gen-
erative model provides the ground truth of which voxels ac-
tivate in studies matching a given query of interest. This bi-
nary classification setting makes it possible to compare mod-



? Z8) ~ o (N (1, %))
Ziwr OO Z%:)IDF = Z%:) X Z1pF

O*Op
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i €N
o B N
logistic bernoulli gaussian

Figure 3: Model for generating CBMA databases of size

N. Z;;) models term frequencies in study ¢ and follows a
logistic-normal distribution. Zjpp computes inverse docu-

ment frequencies from {Zé?}ze N. pi is the probability of
activation of voxel vg. Vectors () are obtained from a rejec-
tion sampling scheme that controls the proportion of voxels
that activate when the query is verified. Zipf, p and X are
estimated from 4168 scrapped PubMed abstracts.

els by measuring their ability to identify true voxel activa-
tions for multiple sample sizes. We experimented with mul-
tiple numbers of voxels (KX € [100,1000]). Preliminary re-
sults showed that varying the number of voxels in this range
does not alter the results. We report results for K = 1000
voxels, of which 5% are activated in studies matching the
query. Predicted voxel activations are obtained by thresh-
olding p-values computed from each model’s estimation of
P [Aj|p] using a G-test of independence. We use a p-value
threshold of 0.01 and a Bonferroni correction for multiple
comparisons. Simulation results for two-term CQs are pre-
sented in fig. 4, where we compare our model’s and Neu-
rosynth’s F scores across 55 two-term CQs. These queries
correspond to all two-term combinations out of 11 terms (de-
picted on the y-axis of the bottom plot of fig. 4) associated
with a sufficiently large number of studies within the Neu-
rosynth database to produce meaningful forward inference
map. The Fj score measures the performance of a binary
classifier by combining its precision and recall into a sin-
gle metric. We see the advantage of our approach over Neu-
rosynth’s for smaller generated samples where activations
related to the query can be identified more reliably (higher
F scores). Multiple values of « in the range [100, 1000]
were tried during our experiments. However when « is too
small or too large, the model tends to include either too
many (and irrelevant) or too few studies in the estimation.
When « tends to 0, w becomes equivalent to Neurosynth’s
hard thresholding. We found that a sweet spot for o was
around 300 and report results for that value. Drawing the
sigmoid curve for a = 300 confirms that this transforma-
tion of TFIDF features is adequate because it maintains Neu-
rosynth’s hard thresholding’s property of giving a 0 or 1
probability to the lowest and highest TFIDF features (re-
spectively).

The proposed approach did not show an advantage over
Neurosynth for solving two-term disjunctive queries. This
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is expected, as such queries do not reduce the number of
studies incorporated in the estimation of P [A4|T; V T}], as
explained in the Background section.

Gain of Activation Consistency on a Real CBMA
Database We evaluate our method on the Neurosynth
CBMA database. Because we don’t have a ground truth of
which voxels activate for a given query, we resort to compar-
ing models based on the consistency of their predicted acti-
vations over many random sub-samples of the Neurosynth
database.

From predicted activation maps of K voxels obtained
from M sub-samples of a CBMA database, the consistency
for a two-term conjunctive formula ¢ is computed as

K
O¢:2;{2<1—2x Zymk ) (14)
k=1

where g7, = 1 if voxel k is predicted to be activated in
sub-sample m when formula ¢ is true. The closer to one,
the closer the average activation is to 0 or 1, which indicates
a higher consistency across sub-samples. The closer to zero,
the closer the average activation is to 0.5 which indicates that
the predicted activations are highly variable across samples.

Results are reported in fig. 5, where the distribution of
consistencies, across the same 55 CQs as in the previous
experiment, are shown for multiple sample sizes. For the
largest sample sizes, consistency scores are closer to 1 with
our method than with Neurosynth’s. For a sample size of
2395 (chosen on a logarithmic scale), the average consis-
tency of our method was 0.48 while Neurosynth’s was 0.4
(+20%) across samples and queries. For a sample size of
3856, we notice a 10% improvement.

We did not experiment with larger sample sizes due to the
computational cost of running the experiment on many Neu-
rosynth subsamples for all CQs. Also, we were mainly inter-
ested in whether our approach would be more consistent for
smaller sample sizes. We observed that the consistency be-
tween Neurosynth and our approach was similar when both
models were estimated on the entire database. This means
that the proposed approach is more consistent on smaller
sample sizes but equivalently consistent on larger sample
sizes. The NeuroLang program implementing this model is
available at https://github.com/NeuroLang/NeuroLang/tree/
master/examples/plot_neurosynth_relaxed_tfidf.py.

Discussion

This work fits into a broader approach to design a domain-
specific language for expressing logic-based cognitive neu-
roscience hypotheses that combine neuroimaging data,
neuroanatomical probabilistic maps, ontologies and meta-
analysis databases to produce fine-grained brain maps sup-
ported by past literature and heterogeneous data.

The number of voxels (KX = 1000) used in the simulation
experiments is orders of magnitude lower than on the typical
whole-brain neuroimaging setting, where K ~ O(10°). We
chose to lower the dimension in the simulation setting for
computational practicality purposes. However, we believe
that maintaining the same proportion of reported activations
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Figure 4: Comparison of Neurosynth’s and our method’s F; scores across 55 two-term CQs on simulated CBMA databases of
varying sample sizes. For each sample size, 100 random sub-samples were used. Above, F; score distributions on all queries are
compared across sample sizes. Below, F} score matrices (white is 0, black is 1) are compared across sample sizes. The upper
triangular contains scores of our method and the lower triangular contains scores of Neurosynth. The threshold 7 = 0.1 is used
in both models. The value o = 300 was empirically chosen. Varying « near this value does not change the results noticeably.

Sample sizes were taken on a logarithmic scale.
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Figure 5: Comparison of both models’ distributions of voxel
activation consistency across 1000 sub-samples of the Neu-
rosynth’s database, for 55 two-term CQs and for multiple
sample sizes. As the sample size increases, our method finds
more consistent activations than Neurosynth.

as in the Neurosynth database was enough to confirm our
approach on simulations before applying it to real data.

The flexible syntax of logic-based languages
allows to express various kinds of queries.
P [TermAssociation(t)|¢insula VV ¢vri]  queries for  terms
that are most probably associated with a given pattern of
activation, where @i, 1S a conjunction of logic pred-
icates Activation(v;) whose probabilities come from a
neuroanatomical probabilistic map of the insula, and where
©mr1 1s also a conjunction of predicates Activation(vy)
whose voxels vy are based on neuroimaging data coming
from a custom fMRI study.
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The current version of NeuroLang is limited in what it
can model, mainly due to the syntactic limitations on pro-
grams and queries that we had to make in order to use lifted
processing strategies that scale to the size of CBMA data.
In cognitive neuroscience, there is interest in using spatial
priors to give the incentive to nearby voxels to co-activate
(Kong et al. 2018). Spatial priors could be formulated as re-
cursive probabilistic rules, such as Activation(vy) : f(d) <
Activation(ve),d = euclidean(vy,vs), where d is the
Euclidean distance measure between two regions of the
brain, and where f maps d to a proper probability in [0, 1].
The resolution of such queries remains a challenge both in
terms of methodology and tractability. Future progress in
the field of probabilistic programming languages could open
the door to other queries of interest to the cognitive neuro-
science community.

Conclusion

This work is a step towards incorporating complex meta-
analyses in brain mapping models. We encode a CBMA
database in a probabilistic logic program on which gen-
eral logic-based queries can be solved. Leveraging efficient
query resolution strategies on probabilistic databases, we are
able to scale to the size of neuroimaging data. We experi-
mented with a new method for solving two-term CQs us-
ing TFIDF features more efficiently than the hard thresh-
olding scheme used by Neurosynth. This is promising but
further investigation should be conducted to know whether
this method extends to queries that conjunct more terms or
queries that blend conjunctions and disjunctions. The pro-
posed method requires the same computational power as
Neurosynth.
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