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Abstract

A music mashup combines audio elements from two or more
songs to create a new work. To reduce the time and effort re-
quired to make them, researchers have developed algorithms
that predict the compatibility of audio elements. Prior work
has focused on mixing unaltered excerpts, but advances in
source separation enable the creation of mashups from iso-
lated stems (e.g., vocals, drums, bass, etc.). In this work,
we take advantage of separated stems not just for creating
mashups, but for training a model that predicts the mutual
compatibility of groups of excerpts, using self-supervised and
semi-supervised methods. Specifically, we first produce a ran-
dom mashup creation pipeline that combines stem tracks ob-
tained via source separation, with key and tempo automati-
cally adjusted to match, since these are prerequisites for high-
quality mashups. To train a model to predict compatibility,
we use stem tracks obtained from the same song as posi-
tive examples, and random combinations of stems with key
and/or tempo unadjusted as negative examples. To improve
the model and use more data, we also train on “average” ex-
amples: random combinations with matching key and tempo,
where we treat them as unlabeled data as their true compati-
bility is unknown. To determine whether the combined signal
or the set of stem signals is more indicative of the quality
of the result, we experiment on two model architectures and
train them using semi-supervised learning technique. Finally,
we conduct objective and subjective evaluations of the sys-
tem, comparing them to a standard rule-based system.

Introduction
In Margaret Boden’s account of how creativity works,
“combinational” creativity—the juxtaposition of unrelated
ideas—and “exploratory” creativity—the searching within
the rules of a style for exciting possibilities—are two es-
sential modes of creative thinking (Boden 2007). Modeling
these processes computationally is an important step for de-
veloping artificial creativity in the field of AI (Jordanous
2014). The combinatory possibilities and joy of exploration
are perhaps two causes for the continued popularity of cre-
ating music mashups.

Mashups are a popular genre of music where new songs
are created by combining audio excerpts (called samples)
*The author performed this work as an intern at ByteDance.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of other songs. Typically, the vocal part from one song is
juxtaposed with the instrumental part of another, although
it is also common for basic mashups to include samples
of 3 songs (Boone 2013). However, creating mashups is
challenging: it requires an expert’s ear to decide whether
two samples would make a good mashup, and it is time-
consuming to search for pairs of songs that would work well
together. Both issues are exacerbated when aiming to com-
bine elements of three or more songs.

Accordingly, efforts to assist users in creating mashups or
to automate the process have continued for over a decade.
At minimum, two samples being combined should have
the same tempo and time signature, and they should not
clash harmonically; these criteria informed early systems for
assisting mashup creation (Tokui 2008; Griffin, Kim, and
Turnbull 2010), but they are also easy to meet using beat-
tracking, key estimation, and audio-stretching algorithms.
To predict the mashability (i.e., the compatibility) of a can-
didate group of samples is more challenging, but allows one
to automate the creation of mashups.

Previous methods for estimating compatibility have relied
on rule-based systems with hand-crafted features (Davies
et al. 2014; Lee et al. 2015), even though the criteria used
by listeners to judge mashup quality are unknown and un-
doubtedly complex. We thus propose to use a neural network
to learn the criteria. The central challenge in training such a
model is that there is no training data: i.e., no datasets of au-
dio samples with annotations defining which combinations
of samples are better than others. To address this, we pro-
pose to use self-supervised learning (by leveraging existing
music as training data) and a semi-supervised approach that
maximizes the utility of the other data we create.

We create training data by applying a supervised music
source separation (MSS) algorithm (e.g., Jansson et al. 2017;
Stöter, Liutkus, and Ito 2018) to extract independent stem
tracks from existing music (i.e., separated vocal, bass, drum
and other parts). We can then recombine the stems to gen-
erate many new mashups, with the original combinations
serving as ground truth examples of ‘good’ mashups; in this
way our model is self-supervised.1 It is straightforward to

1This may be different from conventional settings such as learn-
ing a representation of signals or their temporal coherence (Misra,
Zitnick, and Hebert 2016; Huang, Chou, and Yang 2018).
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use separated signals to help Music Information Retrieval
(MIR) tasks such as music transcription (Pedersoli, Tzane-
takis, and Yi 2020), singing voice detection (Stoller, Ewert,
and Dixon 2018), and modeling vocal features (Lee 2019).
However, to the best of our knowledge, no prior work has
leveraged supervised MSS for automatic generation of new
music pieces.

The above explains how to acquire positive examples for
training the model. To obtain negative examples, we can
use random combinations of stems with different keys and
tempo that are almost guaranteed to sound awful. However,
the extreme difference in compatibility between these two
cases may lead to a highly polarized model that only re-
gards stems as compatible if they were extracted from the
same song. To avoid this, we use semi-supervised learn-
ing: we create random mashups that meet the minimum
requirements for viability—combinations where the tempo
and key are automatically matched—and treat them as “un-
labeled” instances. This step aims to improve the reliabil-
ity of the model, and it also means that our model sees
more mashups, including many potentially “creative” ones,
because the stems are sourced from different genres. This
has been described as a key aspect of successful mashups:
“the combination of musical congruity and contextual in-
congruity” (Brøvig-Hanssen and Harkins 2012).

Our contributions can be summarized as follows. First, we
propose a novel framework that leverages the power of MSS
and machine learning to generate music mashups. Second,
we propose techniques to generate data without human la-
bels and develop two deep neural network architectures that
are trained in a self- and semi-supervised way. Third, we
conduct objective and subjective evaluations, where we pro-
pose to use an unstudied dataset, Ayumix2, to evaluate the
task. The result demonstrates our AI mashups can achieve a
good overall quality according to our participants.

Related Work
Early approaches to estimating mashability relied on fixed
notions of what makes two sound clips mesh well. Auto-
MashUpper (AMU) modeled the mashability of two clips as
a weighted sum of harmonic compatibility, rhythmic com-
patibility and spectral balance, each of which is computed
as a correlation between two beat-synchronous representa-
tions (Davies et al. 2014). A system based on AMU was tai-
lored to model good combinations of vocals and accompa-
niments, and included a constraint that the two parts should
have contrasting amounts harmonic complexity, to avoid
cases where both parts are complex or both are simple (Lee
et al. 2015). Rule-based models of harmonic compatibil-
ity have been improved on (Bernardes, Davies, and Guedes
2017) and deployed in mashup creation tools (Maçãs et al.
2018), but all of these approaches share the potential weak-
ness that a hand-crafted model of compatibility may fail to
generalize, or to completely capture all of the subtle factors
that contribute to balanced, high-quality mixes. Nonetheless,

2About Ayu Creator Challenge 2020: https://randomjpop.
blogspot.com/2020/05/ayumi-hamasaki-launches-the-creator-
challenge.html accessed on March 10, 2021.

AMU is a well-described, well-motivated baseline model
that has been re-implemented for open-source use.

In contrast to AMU, our system uses a supervised model
where the training data were obtained by running MSS on
existing songs. These steps were also taken to train Neural
Loop Combiner (NLC), a neural network model that esti-
mates audio compatibility of one-bar loops (Chen, Smith,
and Yang 2020). However, NLC uses an unsupervised
MSS algorithm designed to isolate looped content (Smith,
Kawasaki, and Goto 2019), resulting in a very different sys-
tem to ours, which uses supervised MSS to isolate vocal,
bass, drum, and other parts.

First, since vocals are looped less often, NLC likely had
far fewer instances of vocals in its extracted training set.
This is a drawback since vocals are an essential part of
mashups. Second, the data acquisition pipeline for NLC in-
volves several heuristics to improve source separation qual-
ity, and the outputs are not guaranteed to contain distinct
instruments (e.g., a positive training pair could include two
drum loops). In contrast, the supervised separation we use
leads to highly distinct stems, which is more appropriate for
creating mashups. It also enables us to train a model where
the input audio clips have a fixed role—namely, vocal, har-
monic and drum parts—which is important, since the fea-
tures that determine the compatibility likely depend strongly
on the role. This design is also novel since it allows us to di-
rectly estimate the mashability of groups of stems instead
of learning a representation space for embedding the stems,
since mashability can be non-transitive.

A separate difference is that the authors of NLC chose to
focus strictly on hip-hop, whereas our training dataset spans
a wide variety of genres. We do this to obtain a more general-
izable model (the semi-supervised technique explained later
assists here too), and because much of the joy of mashups
comes from the surprise of hearing two disparate samples
from different genres work well together (Brøvig-Hanssen
and Harkins 2012; Boone 2013).

Data Generation Pipeline
The pipeline aims to generate mashup candidates by mix-
ing stems with different conditions. Then the candidates are
sent to a machine learning model (described in the next sec-
tion) to predict their compatibility. The pipeline includes
three modules, Music Source Separation (MSS), Mashup
Database (MashupDB), and Mashup Generation.

Music Source Separation
We built our in-house MSS system based on a U-net en-
coder/decoder Convolutional Neural Network (CNN) archi-
tecture with skip connections (Jansson et al. 2017; Prétet
et al. 2019). The network consists of 12 layers of encoders
and decoders. Following the standard evaluation procedures
on the MUSDB18 testset, our model achieved competitive
Signal to Distortion Ratio (SDR) compared to the state-of-
the-art (Défossez et al. 2019). Specifically, the mean SDR’s
for the four output stems, vocals, drums, bass, and other,
are 7.21, 5.68, 5.51, and 3.74 dB, respectively. For repro-
ducibility, we suggest one can use Spleeter (Hennequin et al.
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2020), an open-source tool with pre-trained models, as a re-
placement. It is expected to have similar effectiveness for
generating the stem samples.

Mashup Database
To construct a MashupDB, we need a music database which
ideally spans many genres. To simplify, we use preview ver-
sions (clips around 30 seconds long) instead of the full au-
dio tracks. For each clip, we extract the stems using MSS
(see Figure 1), and we obtain the key, tempo, and down-
beat information using madmom (Böck et al. 2016). In this
work, we consider three major stem types: vocal (vocals),
harmonic (bass + other), and percussion (drums)—i.e., we
mix the original bass and other stems for their similar pur-
pose of representing the harmonic component of the accom-
paniment.

Mashup Generation
Figure 2 depicts the pipeline for generating mashups of dif-
ferent types. First, a vocal stem is randomly selected as the

seed. The system then searches in the MashupDB for har-
monic and percussion stem candidates. Three conditions are
allowed for the pipeline to generate mashups, namely origi-
nal, matched, and unmatched conditions.

For original condition, it selects the harmonic and percus-
sion stems from the same clip of the vocal seed, and mixes
them without adjusting the key and tempo.

For matched condition, the generated mashup shall satisfy
basic harmonic and rhythmic requirements. With the vocal
seed as the reference, this can be achieved by finding the har-
monic stem candidates within ±3 semitones in key, and the
percussion stem candidates having tempo within the ratio
range of [0.8, 1.2]. If no such harmonic and percussion stems
exist, the pipeline will draw another vocal seed and start the
process again. If multiple harmonic or percussion stems are
found, it selects one at random and then adjusts the key and
tempo respectively to match the vocal seed using Rubber-
band (Cannam 2012). Like in (Davies et al. 2014), limit-
ing the search space this way serves to avoid artefacts that
can be caused by large amounts of pitch-shifting and time-
stretching. The resulting mashups have duration between 25
and 60 seconds.

The purpose of the unmatched condition is to simulate
cases where the key and tempo detection are wrong or the
stems are incompatible. We propose three strategies to this
end. First, unmatched key, by disabling the key control and
pitch shifting, the selected harmonic stem only satisfies the
tempo constraint. Second, unmatched tempo, by disabling
the tempo control and time stretching, it makes the three
stems very likely to have clashing tempos. To increase the
chance that this is immediately perceptible, the first down-
beat of one stem is offset randomly by ± 1 second at
most. Third, unmatched key & tempo, by jointly applying
the above two strategies, neither key nor tempo of the three
stems meet the basic requirement.

For practical usage, we adopt the matched condition to
generate the mashup candidates for testing. To generate a
good mashup, however, there are still numerous factors that
the pipeline does not account for, such as chord, instrumen-
tation, and groove. We believe those factors are too com-
plicated to enumerate and justify manually. In addition, any
errors in key, beat and downbeat detection and any artefacts
from MSS and Rubberband can be propagated. All these fac-
tors can result in only part of the mashup candidates being
good. To solve this problem, we make use of the pipeline
to generate data to train machine learning models that could
identify good pieces.

Modeling the Mashability
Data Preparation
To train the model to predict mashability, we build a train-
ing MashupDB based on a large music collection. Then,
we employ the Mashup Generation pipeline to generate the
positive, negative, and unlabeled data with the original, un-
matched, and matched conditions, respectively.

Our system is fully audio-based, so for testing or practical
use, one can build a new MashupDB different from the train-
ing one, depending on what musical sources the user wants
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to explore to generate mashups.
The role of positive data is to guide the model to learn

what a good combination of stems should sound like. Since
the test samples are generated with the matched condition,
we also include the unlabeled data to ensure the model can
see similar samples of the same condition, which we treat as
the intermediate space between positive and negative data.

On the other hand, the role of negative data is to provide
examples that do not meet the basic harmonic and rhyth-
mic compatibility to be a musical piece. It has been shown
that incorporating domain knowledge in designing the neg-
ative sampling strategies could help learning a robust model
(Schroff, Kalenichenko, and Philbin 2015; Wu et al. 2017;
Riad et al. 2018). For Neural Loop Combiner, Chen et al.
investigated 5 ways of negative sampling, including random
combinations of different loops, shifting or rearranging the
order of beats (Chen, Smith, and Yang 2020). Those tech-
niques were devised in order to make 1-bar loops that al-
ready had the same tempo and duration incompatible. How-
ever, none of them were guaranteed to lead to incompati-
ble pairs. The negative sampling strategies we have used are
more clearly extreme—juxtaposing incompatible keys, tem-
pos, and beat phases, in clips of 16 bars or longer—so most
of their proposed strategies are not needed for our scenario.
Instead, manipulating the key and tempo for negative sam-
pling is more likely reflecting the typical mistakes that an
existing mashup system could make.

Semi-Supervised Learning
Based on the nature of the positive and negative data, per-
ceptually distinguishing between them is very easy for hu-
mans. We also observe similar trends that the training can
achieve almost 100% accuracy using only positive and neg-
ative labels on the validation set. To mitigate this concern,
we explore semi-supervised learning methods that enable
the model training to take the unlabeled data into considera-
tion (Kingma et al. 2014; Kipf and Welling 2017). Generally
speaking, the quality of these unlabeled data is expected to
vary widely, and thus we treat them as “average” examples
with the hope that the training could help clarify them.

We adopt the method proposed by (Zheng, Zheng, and
Yang 2017), called label smoothing regularization for out-
liers (LSRO). The original use case was on person re-
identification in images, where the unlabeled images are
generated by a generative adversarial network (GAN). The
main idea of LSRO is to assign a uniform label distribution
to the unlabeled data. In our case, supposing that the model
output is two-dimensional classes (positive, negative), we
assign a virtual label of (0.5, 0.5) to each of the unlabeled
data for loss computation. In this way, the learning process
is regularized when an unlabeled example is close to either
positive examples or negative examples in the feature space.

As pointed out by (Zheng, Zheng, and Yang 2017), LSRO
exhibited superior performance to its semi-supervised learn-
ing counterparts, such as Pseudo Labeling (Lee 2013) and
All-in-One (Salimans et al. 2016), in their application. In
fact, we experimented with Pseudo Labeling, and it turned
out not to be as good as LSRO in our pilot study. Therefore,
we opt to present only LSRO in this paper.
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Figure 3: The proposed model architectures.

Network Architectures
We formulate the task as a classification problem. The model
can be described by p(y | V,H, P ), where V , H , and P are
respectively the input signals of the vocal, harmonic, and
percussion stems, and y ∈ {0, 1} is the binary label (good or
bad). We take the output posterior probability as the masha-
bility of the combination.

We propose two types of model architecture, PreMixNet
and PostMixNet, where the former takes the three individual
stems as input (denoted as Pre-Mix), and the latter takes the
single downmixed track as input (denoted as Post-Mix). The
two models are illustrated in Figure 3(b) and Figure 3(c).
When mixing audio tracks, it is common practice to judge
the quality by listening alternately to the downmixed track
and to each individual stem, or by comparing side-by-side
the compatibility of a pair of individual stems (Senior 2011).
Because this process is complicated and different from per-
son to person, we want to investigate whether the difference
between the Pre-Mix and Post-Mix representations would
affect the final performance.

Figure 3(a) defines the model components and the basic
convolutional block (denoted as ConvBlock), which con-
sists of two convolutional layers, each followed by a Batch-
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Norm and a ReLU, and finally an average pooling layer.
The convolutional layers in ConvBlock can be either 1D or
2D. Both PreMixNet and PostMixNet take the 128-bin mel-
spectrogram as input and have several convolutional blocks
(Figures 3(b) and 3(c)). A unit we call SourceNet, which
contains two ConvBlock2D’s, takes the input of either Pre-
Mix or Post-Mix. The purpose of SourceNet is to enhance
the saliency of patterns on the mel-spectrograms (McFee
and Bello 2017). We use a kernel size of (3,3) and a tem-
poral pooling size of (2,1) for each ConvBlock2D. Each
SourceNet contains 4 convolutional layers (see 3(c)) with
64, 64, 128, and 128 filters, respectively. A ConvBlock1D
follows to summarize the content for each frame. For a
ConvBlock1D, we use kernel sizes of (3, 128) and (3, 1) for
the two convolutional layers, respectively (see 3(a)), with
256 filters and a temporal pooling size of (2, 1) for both.
The time dimension is then reduced by average pooling, and
the filter dimension is reduced by adding the maximum and
average. Finally, two fully-connected layers (with 128 fea-
tures) make the output. In PreMixNet, we combine the three
stem SourceNet outputs by concatenating along the filter di-
mension. The three SourceNets do not share the weights.

Experiments
Owing to people’s different music backgrounds, tastes, and
understandings of harmonic and rhythmic compatibility,
judging the quality of a mashup is highly subjective. Fol-
lowing prior works (Davies et al. 2014; Lee et al. 2015; Xing
et al. 2020), we focus more on subjective evaluation but also
provide the objective result for a reality check that the mod-
els are learning something useful.

Datasets
We built a training MashupDB based on an internal mu-
sic collection of 33,192 music clips (with average duration
about 30 seconds). It covers many genres of popular mu-
sic, including Asian pop, Western pop, rock, folk, electronic,
and hip-hop. Most of them have vocals, but a few are purely
instrumental. We used the pipeline to generate a balanced
dataset, denoted as in-house, yielding a set of 51,507 ex-
amples, where 1/3 are positive, 1/3 negative, and 1/3 unla-
beled. Note that any music collection could work as a train-
ing MashupDB as long as it is sufficiently large and generic.

For testing, we built two MashupDB’s based on two pub-
licly available datasets: Harmonix Set (Nieto et al. 2019) and
Ayumix2020. We note that even though these two datasets
may have few common songs to the training set, it is still
valid because we did not use any human labels in training.

Harmonix Set contains 912 full-tracks covering genres in
a wide range of popular western genres, such as pop, elec-
tronic, hip-hop, rock, country, and metal. Human annota-
tions of beats, downbeats, and segments are available. To
build the MashupDB, we extracted all the verse and cho-
rus parts based on the segment labels, and used the beat
and downbeat labels to obtain the tempo. There are in to-
tal 5,310 vocal seeds obtained from the verse and chorus
segments of the 912 songs. In order to have a balanced test
set, we applied the pipeline to generate, for each vocal seed,

Accuracy Average Rank
PreMixNet 99.8% 1.0000
PostMixNet 98.5% 1.0019
PreMixNet + LSRO 98.9% 1.0024
PostMixNet + LSRO 99.3% 1.0338

Table 1: Results for objective evaluation.

5 clips with matched condition, leading to 26,550 unlabeled
mashup candidates.

The Ayumix2020 dataset originates from the Ayu Cre-
ator Challenge event, in which the record label Avex re-
leased 100 studio acapella tracks3 from J-pop star Ayumi
Hamasaki. The aim was to encourage creators to create and
share remixes using these tracks during the COVID-19 pan-
demic. We selected 30 Ayumix songs, segmented a chorus
clip from each song, and extracted its corresponding key and
tempo information from the original (non-acapella) version
using madmom. We used Harmonix MashupDB to generate
180 unlabeled candidates for each song, meaning that the
accompaniment stems (harmonic + percussion) to be com-
bined with an Ayumix vocal stem are all from Harmonix Set.

Model Training
To compare the effectiveness of different model settings in
the evaluation, we trained PreMixNet and PostMixNet with
and without unlabeled data. We used a ratio of 4: 1 for split-
ting the in-house dataset into training and validation sets. All
models were trained with Adam Optimization with a 1e−4

learning rate. All models were trained using an NVIDIA
Tesla-V100 GPU for 3 days.

Objective Evaluation
For objective evaluation, we are interested in knowing (i)
how well a trained model classifies the generated labeled
data from the Harmonix Set (cross-dataset evaluation), and
(ii) how the positive data rank against the unlabeled data
on the test set (accompaniment retrieval). To this end, we
used the pipeline to further generate 5,310 negative exam-
ples with unmatched condition and 5,310 positive examples
with original condition based on the vocal seeds.

The first objective can be evaluated in terms of accuracy
on a binary prediction task using 0.5 as the threshold. For
the second objective, we used the test set of 26,550 unla-
beled examples as the retrieval database. Following prior
work (Chen, Smith, and Yang 2020), we calculate the rank-
ing position (≥ 1) based on the probability scores for each
positive example, and report the average rank.

As shown in Table 1, all proposed models achieve very
high accuracy on labeled data and successfully rank the pos-
itive (original) one at the top. This demonstrates the model
effectively discriminates between positive and negative ex-
amples, and between positive and unlabeled examples. How-
ever, this result does not show that the model is able to se-

3Studio acapella is the clean vocal stem track of a commercially
released song. The data are available at https://youtube.com/playlist?list=
PL57sdSoJE6THHJyhWfFU7z1RdmWkdmL43 accessed on Mar 10, 2021.
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Figure 4: Comparison of different systems in subjective evaluation. All values are Mean Opinion Score (MOS). The upper
and center sub-figures display the generation and retrieval tasks, respectively. The bottom sub-figure shows the MOS of top-20
mashups (in lighter colors) and bottom-20 mashups (in darker colors) for the retrieval task.

lect unlabeled mashups that human audiences would prefer.
Therefore, we conduct the following subjective evaluation.

Subjective Evaluation
Baseline We compare our models with AutoMashUpper
(AMU), which represents a rule-based automatic mashup
creation system. We implemented the system based on an
open-source tool.4 AMU takes two stems as input. To get
the mashability of a group of three stems, we take the aver-
age of the three pairwise mashabilities.

Configuration Five systems were compared in the subjec-
tive evaluation (AMU and our four model variants), and we
considered two evaluation tasks: generation and retrieval.

For the generation task, no vocal seed constraint is ap-
plied. Given a test MashupDB, we used the pipeline to gen-
erate as many matched candidates as possible. Then, a model
is employed to recommend the top candidates so that musi-
cians may benefit from the ideas by listening to them. We
used Harmonix Set alone for this task and picked the top 20
and bottom 20 mashups for each system in the listening test.
This yielded (20 + 20)× 5 = 200 samples to be evaluated.

For the retrieval task, we used the 30 selected songs from
Ayumix as the test vocal seeds. We generated 180 mashup
candidates for each vocal seed and selected the top 1 by each

4https://github.com/migperfer/AutoMashupper accessed on
Mar 10, 2021.

corresponding system, leading to 30 (queries) ×5 (systems)
= 150 samples to be evaluated.

Questionnaire Subjects were required to rate the qual-
ity of each test sample on a scale of 1 to 5 (1: awful, 2:
poor, 3: fair, 4: good, and 5: excellent) according to five as-
pects: rhythm, harmony, timbre, innovation, and an overall
score. The questions were as follows: Harmony: How good
is the harmonic compatibility between the vocals and music?
Rhythm: How good is the rhythmic compatibility between
the vocals and music? Timbre: Is each instrumental part clear
and recognizable? How spectrally balanced and professional
is the combination? Innovation: Does the combination sound
unexpected without clashing? Overall: Does it sound like it
was professionally made, not a randomly remixed piece?

Methodology We developed a web-based platform for the
listening test. Each page presented two audio samples which
use the same vocal stem but different accompaniments. Sub-
jects were not told about the relationship between the two
samples, so they do not necessarily compare between them.
Subjects were also asked to answer whether or not they have
heard the vocal melody of the singer before. Pages were
shown in a random order, and each page was rated by three
subjects. To assign the samples to web pages, separate strate-
gies were used for the generation and retrieval tasks. For
generation, each page presented a mashup (selected by a sys-
tem) and its original version (generated by the pipeline with
the original condition), in a random order. This means that
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Generation Retrieval
Number of subjects 28 12
Time spent per page 95 sec 108 sec
Report vocal ‘never heard’ 68% 75%
Cronbach’s Alpha 0.79 0.73

Table 2: Statistics of subjects.

subjects were also required to rate the original version for
a fair evaluation. For retrieval, because rating 6 samples (5
systems + 1 original) for a query vocal in one page is too
much, we divided them into three pairs using a random per-
mutation, so that each page still displayed two samples.

Statistics of Subjects We recruited 40 subjects. Each sub-
ject rated at least 10 pages. According to self-report, 85%
said they listened to music on a daily basis, and 40% had ex-
perience in music production. Table 2 summarizes the statis-
tics of the two tasks.

Subjective Result Figure 4 shows the Mean Opinion
Score (MOS) results of all cases. For each test clip, we take
the median score from the three subjects, and average them
over all clips for a system. In Tables 3 and 4, we also report
the significance levels using Mann-Whitney U test for gen-
eration, and Wilcoxon rank-sum test for retrieval. In these
tables, ‘O’, ‘H’, ‘R’, ‘T’, and ‘I’ stand for overall, harmony,
rhythm, timbre, and innovation, respectively. Several points
can be made as follows.

Our proposed models outperform AMU by a large margin
on ‘overall’ and on harmony, and by a comfortable margin
on timbre. PreMixNet+LSRO performs the best among dif-
ferent variants in most of the cases, indicating that modeling
individual stems and using unlabeled data with LSRO can
improve predictions of mashability. The significance test re-
sults of PreMixNet+LSRO versus other systems are shown
in Table 4. Other than PreMixNet+LSRO, we see that Post-
MixNet also works well. Closer investigation reveals that
PostMixNet prefers mashups with strong percussion stems,
which are possibly easier to learn from the Post-Mix pos-
itive examples alone. However, because it learns no unla-
beled data, we can still find a few bad cases in the top 20
that degrade the MOS overall.

From Table 3 we observe clearly that, for our models, the
top-20 mashups outperform the bottom-20 ones significantly
in most cases. By contrast, for AMU, this only happens
on timbre. This demonstrates the effectiveness of a learned
model in distinguishing between good and bad mashups.

All the systems obtain higher MOS on rhythm. We at-
tribute this to the straightforward beat structure of songs in
Harmonix Set (Nieto et al. 2019). We also note that, by ob-
serving the low rhythm MOS of bottom-20, there are still
many mashups having very poor rhythmic compatibility in
the test set. This is because tempo can vary within a clip,
but the time-stretching by Rubberband is performed glob-
ally, leading to beat phase mismatches in the later measures.

The MOS for the original version can be regarded as the
upper bound. But we note that these scores could be over-
rated, because in many cases when a subject is familiar with

System O H R T I
Original × × × × ×
AutoMashUpper × × × .01 ×
PreMixNet .05 × .001 .01 ×
PostMixNet .001 .01 .01 .001 .001
PreMixNet + LSRO .001 .05 .01 .01 .05
PostMixNet + LSRO .05 × .01 .01 ×

Table 3: Significance levels (p-value) between top-20 and
bottom-20 mashups, where ‘×’ means no significance.

System (Generation) O H R T I
AutoMashUpper .01 .001 × .05 ×
PreMixNet .05 × × .05 .05
PostMixNet × .05 × × ×
PostMixNet + LSRO .05 .05 .05 × ×
System (Retrieval) O H R T I
AutoMashUpper .001 .05 × .05 .01
PreMixNet .05 × × × ×
PostMixNet .05 × × × ×
PostMixNet + LSRO .01 × × .01 ×

Table 4: Significance levels (p-value) on PreMixNet+LSRO
versus other systems, where ‘×’ means no significance.

the song, it is very likely she/he would directly rate 5 for
the original version without further judgement. On the other
hand, the original versions have noticeably fewer MSS arte-
facts, and this may also have influenced the ratings.

Finally, we find that the retrieval task is generally more
difficult than the generation one. This is as expected because
Ayumix vocals represent the most iconic J-pop style, while
Harmonix Set is composed mostly by Western pop songs.
We also ascribe the higher MOS of Ayumix’s original ver-
sions to the relatively low quality of the generated Ayumix
mashups, since it may be easier to find which is the original
version by the subjects.

Conclusion and Future Work
In this paper, we have proposed a novel framework to gener-
ate music mashups from separated stems and shown the po-
tential of a learning-based approach to modeling the masha-
bility. No human labels are needed, and the approach could
work on any large music collection. The results of a listening
test demonstrated the effectiveness of our models. Among
the models we tested, adding unlabeled data to train a Pre-
MixNet gave the best performance.

Currently our system’s efficiency is low because the
model cannot predict the mashability before the key and
tempo of each stem were adjusted. For improvement, we
plan to learn an effective embedding that is invariant to
key and tempo to hopefully generalize the mashability of
stems using the metric learning techniques (Hu, Lu, and Tan
2014; Lin et al. 2017; Humphrey, Bello, and LeCun 2013;
Movshovitz-Attias et al. 2017). In addition, we plan to use
the generated mashups as means of data augmentation to im-
prove MIR tasks such as beat tracking and chord estimation.
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