
Compound Word Transformer: Learning to Compose Full-Song Music
over Dynamic Directed Hypergraphs

Wen-Yi Hsiao,1 Jen-Yu Liu,1, Yin-Cheng Yeh,1 Yi-Hsuan Yang2

1Yating Team, Taiwan AI Labs, Taiwan
2Academia Sinica, Taiwan

{wayne391, jyliu, yyeh, yhyang}@ailabs.tw

Abstract

To apply neural sequence models such as the Transformers to
music generation tasks, one has to represent a piece of music
by a sequence of tokens drawn from a finite set of pre-defined
vocabulary. Such a vocabulary usually involves tokens of var-
ious types. For example, to describe a musical note, one needs
separate tokens to indicate the note’s pitch, duration, velocity
(dynamics), and placement (onset time) along the time grid.
While different types of tokens may possess different proper-
ties, existing models usually treat them equally, in the same
way as modeling words in natural languages. In this paper, we
present a conceptually different approach that explicitly takes
into account the type of the tokens, such as note types and
metric types. And, we propose a new Transformer decoder ar-
chitecture that uses different feed-forward heads to model to-
kens of different types. With an expansion-compression trick,
we convert a piece of music to a sequence of compound words
by grouping neighboring tokens, greatly reducing the length
of the token sequences. We show that the resulting model can
be viewed as a learner over dynamic directed hypergraphs.
And, we employ it to learn to compose expressive Pop piano
music of full-song length (involving up to 10K individual to-
kens per song), both conditionally and unconditionally. Our
experiment shows that, compared to state-of-the-art models,
the proposed model converges 5 to 10 times faster at training
(i.e., within a day on a single GPU with 11 GB memory), and
with comparable quality in the generated music.

Introduction
To apply neural sequence models such as recurrent neural
networks (RNNs) or Transformers (Vaswani et al. 2017) to
automatic music composition (a.k.a., symbolic-domain mu-
sic generation), one has to represent a piece of music as a
sequence of tokens drawn from a pre-defined vocabulary
(Oore et al. 2018). Unlike the case in text, such a vocabu-
lary usually involves tokens of various types. For example, to
represent a musical score, we may need tokens that describe
the content of the musical notes (e.g., pitch and duration),
their placement along time, the instrument that plays each
note, as well as indicators of metrical events such as the be-
ginning of a new beat, bar (measure), or musical phrase (Wu
and Yang 2020). We need such a diverse set of tokens as
music is multifaceted; a type alone captures only a certain

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of the main ideas of the proposed com-
pound word Transformer: (left) compound word modeling
that combines the embeddings (colored gray) of multiple to-
kens {wt−1,k}Kk=1, one for each token type k, at each time
step t− 1 to form the input ~xt−1 to the self-attention layers,
and (right) toke type-specific feed-forward heads that predict
the list of tokens for the next time step t at once at the output.

aspect of music (e.g., melody, harmony, rhythm, timbre) and
cannot faithfully represent a music piece.

As different types of (musical) tokens may have different
properties, modeling the dependency of these tokens might
not be the same as modeling words in text. However, to our
best knowledge, little work has been done to explicitly ac-
count for the heterogeneity of tokens in music. The tokens
are mostly treated equally, in the same way as words in text
(Huang et al. 2019; Payne 2019; Huang and Yang 2020).

We are therefore motivated to study in this paper whether
we can improve sequence modeling of music by highlighting
the role of token types. Our first proposal is to customize the
prediction heads for tokens of different types. Specifically,
using the Transformer as the main architecture of the under-
lying sequence model, we approach this by using different
feed-forward heads for tokens of different types.

Our second proposal is to group consecutive and related
tokens in a token sequence into “compound words,” and then
perform sequence modeling over the resulting sequence of
compound words. This is to capture the co-occurrence re-
lationship of tokens—e.g., to generate a new musical note,
we may need at least two consecutive tokens to indicate its
pitch and duration; to change the tempo in the middle of a
piece of music, we need a token to indicate the target tempo
value, and an co-occurring time-related token to indicate the

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

178

Representation Model window Voc. size Data type
Music Transformer (Huang et al. 2019) MIDI-like Transformer 2,048 388 Classical performance
MuseNet (Payne 2019) MIDI-like* Transformer 4,096 N/A Multi-track MIDI
LakhNES (Donahue et al. 2019) MIDI-like* Transformer-XL 512 630 Multi-track MIDI
TR autoencoder (Choi et al. 2020) MIDI-like Transformer 2,048 388 Classical performance
Pop Music TR (Huang and Yang 2020) REMI Transformer-XL 512 332 Pop piano performance
Transformer VAE (Jiang et al. 2020) MIDI-like Transformer 128 47 Pop lead sheets
Guitar Transformer (Chen et al. 2020) REMI* Transformer-XL 512 221 Guitar tabs
Jazz Transformer (Wu and Yang 2020) REMI* Transformer-XL 512 451 Jazz lead sheets
MMM (Ens and Pasquier 2020) MIDI-like* Transformer 2,048 >442 Multi-track MIDI
This work CP linear Transformer 5,120 350 Pop piano performance

Table 1: A comparison of existing Transformer-based models and the proposed one for automatic music composition. The
representations marked with * are extensions of either MIDI-like (Oore et al. 2018) or REMI (Huang and Yang 2020).

time of the tempo change. Under the proposed compound-
word modeling, the individual tokens (e.g., pitch and dura-
tion) are still predicted separately with different heads. Yet,
instead of predicting them at different time steps, we predict
multiple tokens of various types at once in a single time step.
The token embeddings of the tokens predicted at the current
step are then combined and fed as the input for the next time
step. Namely, the self-attention is computed over combined
embeddings of individual tokens of a compound word.

From a theoretical point of view, the proposed model can
be interpreted as a learner over discrete-time dynamic di-
rected hypergraphs (Kazemi et al. 2020). Here, a graph con-
sists of nodes that each corresponds to a token in our vocabu-
lary. A sequence of tokens can then be viewed as a sequence
of edges (each connecting two nodes), or a walk, over this
graph. A sequence of compound words, in contrast, can be
viewed as a sequence of hyperedges (each connecting mul-
tiple nodes) (Feng et al. 2019), over the same graph. We dis-
cuss this at greater length later in the paper.

We refer to the proposed representation as the compound
word representation, or CP for short. CP can be considered
as an extension of existing representations, with the follow-
ing additional merits. First, it allows for fine-grained, type-
specific control over the prediction heads. For example, we
can now use different loss functions, sampling policies, and
token embedding sizes for different token types.

Second, as a compound word represents multiple tokens
at once, it requires much less time steps to generate a music
piece using compound words. Namely, the sequence length
of the same music piece is much shorter in CP than in ex-
isting representations. As the computational complexity of a
Transformer is related to the sequence length (Vaswani et al.
2017), this makes training and inference faster, and may fa-
cilitate learning the long-range dependency in music.1

Finally, the sequence length in CP is determined by the
number of compound words in a sequence, not by the num-
ber of individual tokens per compound word. Therefore, it is
possible to add new token types (by adding the correspond-
ing feed-forward head) to increase the expressivity of the
representation, without increasing the sequence length. This

1For example, we can study whether the proposed model cre-
ates music with better “structureness,” or long-term repetitions (Wu
and Yang 2020; Jhamtani and Berg-Kirkpatrick 2019) in the future.

makes it easy to extend to underlying representation, though
we do not explore this potential in this work.

For performance study, we consider generating expressive
Pop piano music at full-song scale in both the unconditional
setting (i.e., from scratch) and conditional setting (i.e., gen-
erating the piano arrangement given the lead sheet). This in-
volves modeling fairly long music sequences for up to 10K
individual tokens each. We show that, with CP, we are able
to train a linear Transformer decoder (Katharopoulos et al.
2020) with music quality similar to that of strong baselines,
with faster training and inference time. We provide audio
examples and open source the project at a GitHub repo.2

Related Work
Both language and music have principles governing the or-
ganization of discrete structural elements (e.g., words or mu-
sical notes) into sequences (Patel 2003). As such, the Trans-
formers, which have been firstly shown to work well for text
generation (Child et al. 2019; Keskar et al. 2019), have been
increasingly applied to music generation in recent years, by
treating music pieces as sequences of discrete tokens akin to
text words. We list some related papers in Table 1.

Table 1 shows that most existing work adopt a music rep-
resentation derived from either MIDI-like (Oore et al. 2018)
or REMI (Huang and Yang 2020), with possible addition of
track- or structure-related tokens. MIDI-like and REMI dif-
fer mainly in how the advance of time is represented: the
former uses [time shift] tokens to mark the time interval (in
absolute time) between note-related tokens, whereas the lat-
ter assumes symbolic timing and uses [bar] and [position]
tokens to place tokens on a metrical grid that uniformly di-
vides a bar into a certain number of positions. Neither MIDI-
like nor REMI groups the tokens by token types.3

Existing work also differs in the length of the attention
window (see the methodology section for definition) and vo-
cabulary size (which is data- and task-dependent). To our
knowledge, our work represents the first one to consider Pop
music modeling at full-song scale (involving 10k tokens per
song), and to use the recently-proposed linear Transformer
(Katharopoulos et al. 2020) as the model backbone.

2https://github.com/YatingMusic/compound-word-transformer
3Upon paper completion, we noticed an early but preliminary

attempt of grouping tokens by (Hawthorne et al. 2018b).

179

Methodology
Background
For sequence modeling, we need a conversion function g(·)
that converts a music piece X to a time-ordered sequence of
symbolic elements S = g(X) = {w1, w2, . . . , wT }, where
T denotes the resulting sequence length. Given a number of
such sequences, we train a neural sequence model with an
architecture such as the Transformer decoder to learn to gen-
erate new sequences S ′. We then use a deterministic inverse
function g−1(·) to get a new music piece from such a gener-
ated sequence, namely X ′ = g−1(S ′). There can be differ-
ent algorithms to implement the conversion function and its
inverse, leading to numerous possible sequence representa-
tions of the same music piece, e.g., SMIDI-like = gMIDI-like(X)
and SREMI = gREMI(X). Different conversion functions (or
sequence representations) assume different vocabulary sizes
M , so SMIDI-like and SREMI differ in both T and M .

A Transformer decoder comprises a stack of self-attention
layers and a stack of feed-forward layers. The self-attention
layers operate on a fixed-length sub-sequence of S to learn
the dependency among the elements. The length of such a
sub-sequence, a.k.a., the attention window, denoted as N ,
is usually much smaller than T , as N directly affects the
space complexity of the model. For the vanilla Transformer
(Vaswani et al. 2017) and its faster variant Transformer-XL
(Dai et al. 2019), it is O(N2M); for the linear Transformer
(Katharopoulos et al. 2020), it is O(NM).

Individual Tokens vs Compound Words
In this paper, we refer to the elements in either SMIDI-like or
SREMI as the individual tokens. They are drawn from a pre-
defined vocabulary V = {1, . . . ,M}. As mentioned in the
introduction, each token is associated with a type defined in
the type set, K = {1, . . . ,K}. We can partition V into K
subsets by token group, i.e., {Vk}Kk=1.

We propose to convert a sequence of tokens (e.g., SREMI)
into a sequence of compound words SCP with the following
procedure. First, neighboring tokens that define a musical
event together are grouped into a super token, i.e., placed
on the same time step, as illustrated in Figures 2(a)–(b). A
musical event here can be a note related one, i.e., to create
a new musical note, or a metrical related one, e.g., to mark
the beginning of a new beat, or a new bar. For example, in
REMI, a note is created by consecutive tokens of [pitch],
[duration], and [velocity], which are grouped in CP. And,
a tempo or chord change in REMI takes place only at beat
times, so we also group [beat], [chord] and [tempo]. Accord-
ingly, the model has to make multiple predictions (i.e., gen-
erate multiple tokens) at each time step.

Second, we fill the missing token types per time step with
“[ignore]” tokens, so that at each step there are consistently
K tokens to be predicted, as illustrated in Figure 2(c). This is
to make computational modeling feasible, as otherwise the
shape and meaning of the target output at each time step
would be uncertain. In other words, a compound word is
composed of a list of K tokens, each drawn from the cor-
responding subset Vk ∪ [ignore], that are placed on the same
time step t. Formally, SCP = gCP(X) = {cpt}

Tcp
t=1, in which

(a) REMI representation

(b) Tokens grouped (c) Compound words

Figure 2: An example illustrating the conversion from a
sequence of REMI tokens (Huang and Yang 2020) into a
(shorter) sequence of compound words. A compound word
comprises a number of grouped tokens and the [ignore] to-
kens, which are colored white in (c), as well as a family to-
ken (N: note-related or M: metric-related). Best seen in color.

cpt = {wt,1, · · · , wt,K}. We view this conversion function
gCP(·) as performing an expansion-compression trick, as the
original sequence is firstly expanded to a sequence of KTCP
individual tokens, and then compressed to a sequence of TCP
compound words; in general TCP < TREMI < KTCP.

To facilitate modeling the CP, we further partition the type
set K into F families. For example, if K can be partitioned
into two families, the note family KN and metric family KM
(marked as ‘N’ and ‘M’ in Figure 2(c)), we would have K =
KN ∪ KM, and KN ∩ KM = ∅. Each compound word cpt is
associated with a family token ft. For a metric-related cpt,
we would have wt,k = [ignore], for k ∈ KN. Similarly, for a
note-related cpt, wt,k = [ignore], for k ∈ KM.

Combining Token Embeddings of Adaptive Sizes
As input to Transformers, an element in a sequence is rep-
resented by an embedding vector, xt ∈ Rd, and then added
with a positional embedding vector (Ke, He, and Liu 2020).
In CP, we propose to form an embedding vector for a com-
pound word cpt by combining the embedding vectors pt,k of
the composing tokens wt,k, as well as an embedding vector
qt associated with the family token ft. Specifically, we com-
bine the vectors by firstly concatenating them, and then lin-
early projecting the resulting long vector to a d-dimensional
vector with a projection matrix Win. Namely,

pt,k = Embeddingk(wt,k) , k = 1, ...,K ,

qt = EmbeddingF (ft) ,
xt = Win [pt,1 ⊕ ...⊕ pt,K ⊕ qt] ,

~xt = Positional Encoding(xt) ,

(1)

where ⊕ denotes vector concatenation, and Embeddingk(·)
and EmbeddingF (·) involve the use of lookup tables.

180

In essence, xt can be considered as a compressive repre-
sentation of the composing tokens wt,k and family token ft.
We note the action of compressing the embeddings is rem-
iniscent of the main idea of the Compressive Transformer
(Rae et al. 2020), which proposes to compresses past mem-
ories beyond the attention window for long-range sequence
learning. Unlike it, we compress the memories within the
attention window defined over the individual tokens.

A main merit of CP is that we can customize the settings
for different token types. Being inspired by the adaptive
word representation (Baevski and Auli 2018), we use dif-
ferent embedding sizes dk for tokens of different types, i.e.,
pt,k ∈ Rdk . We basically use larger dk for token types with
larger vocabulary size |Vk|. See Table 3 for details.

Multi-head Output Module
A main proposal of our work is to use different feed-forward
heads for tokens of different types in a Transformer. Specif-
ically, we have (K + 1) heads in total, one for each token
type Vk and an additional one for the token family F .

Instead of working on the K + 1 heads at the same time,
we devise a two-stage setting that predicts the family token
first, and then the remaining tokens given the family token.
Specifically, at the t-th time step, the feed-forward procedure
can be summarized as:

ht = Self-attn (~xt−1) ,

f̂t = SampleF (softmax(WFht)) ,

hout
t = Wout [ht ⊕ EmbeddingF (f̂t)] ,

ŵt,k = Samplek
(
softmax(Wkh

out
t)
)
, k = 1, ...,K ,

(2)

where WF and {Wk}Kk=1 are theK+1 feed-forward heads,
Self-attn(·) the causal self-attention layers, and Sample(·) a
sampling function. We empirically find that this two-stage
setting makes it easier for the model to predict wt,k =
[ignore], for k not in the target family Kf̂t

.
Figure 1 illustrates Eqs. (1)–(2) in work, omitting the first-

stage part at the output for f̂t due to space limit.

Adaptive Sampling Policy
At inference time, we use stochastic temperature-controlled
sampling (Holtzman et al. 2020) to avoid degeneration and
to increase diversity. With CP, we employ different sampling
policies Samplek(·) for different token types; see Table 3.

Graph Interpretation
We discuss the proposed model from a graph-theoretical
point of view below. Given a vocabulary of tokens, we can
construct a fully-connected static graph G = (V, E) (Kivelä
et al. 2014) comprising nodes V = {1, . . . ,M} and edges
E = V × V . Each node corresponds to an individual token
in our vocabulary. This way, a token sequence SMIDI-like or
SREMI can be viewed as a sequence of edges (each connect-
ing two nodes), or a walk, over this graph.

In CP, the vocabulary (and accordingly the graph) is aug-
mented with a set of special tokens, denoted as V∗, that in-
cludes for example type-specific [ignore] tokens and family

tokens. And, a compound word consists ofK+1 nodes, one
from each of the K types and an additional one from the set
of family tokens. A sequence of compound words, namely
SCP, therefore, involves transitions from K +1 nodes to an-
other K + 1 nodes per time step. Such a transition can be
viewed as a directed hyperedge (Feng et al. 2019; Jiang et al.
2019), that connects at onceK+1 source nodes (e.g., cpt−1)
to K + 1 target nodes (cpt). It is directed because the order
of the nodes matters (i.e., from t− 1 to t).

A sequence of compound words also forms a dynamic di-
rected hypergraph (Kazemi et al. 2020): {G1,G2, . . . ,GT },
where Gt = (V, Et). Starting from an empty graph with no
edges, at each time step t > 1 we add a new directed hyper-
edge, labeled with the time step t, connecting in total 2K+2
nodes. In practice, we have a [BOS] token (beginning of se-
quence) and [EOS] token (end of sequence), so the hyper-
edge at t = 1 and t = T connects to only K + 2 nodes.

A neural model for graphs, or a graph neural network
(GNN), can be regarded as an encoder-decoder pair (Kazemi
et al. 2020; Rossi et al. 2020), where an encoder is a func-
tion that maps from a graph G to node embeddings zi, i =
1 . . .M , and a decoder takes as input one ore more node
embeddings and makes a prediction based on these, e.g.,
node classification or edge prediction. The proposed CP
Transformer can therefore be regarded as a learner over dy-
namic directed hypergraphs, as at each time step t it man-
ages to predict the next hyperedge to be added (i.e., ŵt,k

and f̂t) based on the node embeddings updated from G<t =
{G1,G2, . . . ,Gt−1}, or the collection of input embeddings
x<t = {x1,x2, . . . ,xt−1} marked with positional embed-
dings (i.e., edge labels on the directed hyperedges).

We note that, while we introduce the proposed methods in
the context of music modeling, the idea of compound words
is generic and may be applicable to sequences seen in other
data domains, when multiple tokens (i.e., a hyperedge) are
needed to represent a single event, entity, or object.

Implementation

To test the effectiveness of the proposed methods, we im-
plement a CP Transformer that learns to generate Pop piano
music with human performance characteristics such as ex-
pressive variations in velocity (i.e., the force with which a
note is played, which is related to loudness) and tempo (Oore
et al. 2018; Lerch et al. 2019). We consider Pop piano for its
richness and expressivity, and for offering a direct perfor-
mance comparison with the Pop Music Transformer (Huang
and Yang 2020) (see Table 1).

Specifically, we consider both the conditional and un-
conditional generation tasks. In the former, a lead sheet
(i.e., a melody line and an accompanying sequence of chord
labels) is given, and the model has to generate a piano per-
formance according to that. In the latter, the model generates
a piano performance of full-song length from scratch freely.

We intend to compare CP with REMI in our evaluation.
We provide the implementation details below.

181

Task Repre. #words (T)
mean (± std) max

Conditional REMI 6,432 (± 1,689) 10,240
CP 3,142 (± 821) 5,120

Unconditional REMI 4,873 (± 1,311) 7,680
CP 2,053 (± 580) 3,584

Table 2: Statistics of the number (#) of words (i.e., tokens in
REMI; compound words in CP) per song in the training set.

Dataset
We collect the audio files of 1,748 pieces of Pop piano from
the Internet. The average length of the songs is about 4 min-
utes, and we have about 108 hours in total. All the songs are
in 4/4 time signature (four beats per bar). We convert each
song (an audio) into a symbolic sequence as follows.

• Transcription: We use the state-of-the-art RNN model
for automatic piano transcription, “Onset and Frames”
(Hawthorne et al. 2018a), to estimate the pitch, onset and
offset time, and velocity of the musical notes from audio.

• Synchronization: To get symbolic timing from the origi-
nal wall clock time, we use the RNN-based model avail-
able in the Python package madmom (Böck et al. 2016)
to estimate the downbeat and the beat positions, which
represent the state-of-the-art for the task. Then, we inter-
polate 480 ticks between two adjacent beats, and map the
absolute time into its according tick. By doing so, we can
keep tiny offset. Lastly, we infer the tempo changes from
the time interval between adjacent beats.

• Quantization: We quantize the tempo, velocity, duration
and the beat positions to reduce the size of the vocabulary.
For example, we set the 16-th note as our basic time unit.
See Table 3 for the number of tokens per type.

• Analysis: For the conditional generation task, we esti-
mate the melody notes and chord symbols from the tran-
scription result to form the lead sheets. Specifically, we
develop an in-house rule-based chord recognition algo-
rithm4 to recognize 12 roots and 7 chord qualities. We use
the “Skyline algorithm” (Uitdenbogerd and Zobel 1999)
to extract the melodies. And, as a lead sheet is usually of
coarser time resolution, we quantize the chord symbols
and melody notes to the 4-th notes (i.e., beat times).

We randomly hold out 50 songs for testing, and use the re-
maining for training the Transformers.

Vocabulary
To represent the content of a piano performance, the basic
setting employs tokens of six types: three note-related types
[pitch], [duration], [velocity], and three metric-related types
[position/bar], [tempo], [chord]. The specific vocabulary is
task-dependent and is introduced below.

Conditional generation—We additionally use [track] to-
kens to mark whether it is the lead sheet track (i.e., the con-
dition) or the piano track (the track to be generated). While

4https://github.com/joshuachang2311/chorder

Repre. Token type Voc. size Embed. Samplek(·)
|Vk| size (dk) τ ρ

CP

[track] 2 (+1) 3 1.0 0.90
[tempo] 58 (+2) 128 1.2 0.90
[position/bar] 17 (+1) 64 1.2 1.00
[chord] 133 (+2) 256 1.0 0.99
[pitch] 86 (+1) 512 1.0 0.90
[duration] 17 (+1) 128 2.0 0.90
[velocity] 24 (+1) 128 5.0 1.00
[family] 4 32 1.0 0.90
total 341 (+9) — — —

REMI total 338 512 1.2 0.90

Table 3: Details of the CP representation in our implementa-
tion, including that of the sampling policy (τ -tempered top-ρ
sampling). For the vocabulary size, the values in the paren-
theses denote the number of special tokens such as [ignore].

the piano track (i.e., the sub-sequence after the [track=piano]
token) involves all the six types of tokens mentioned above,
the lead sheet track only involves the use of composition-
related tokens [position/bar], [chord], [pitch], [duration],
not performance-related tokens [velocity], [tempo]. In CP,
we have three family tokens, [family=track], [family=note],
[family=metric]. Moreover, we have type-specific [ignore]
tokens and an additional [conti] token for the beat positions
having no tempo or chord changes.

Unconditional generation—This task only concerns with
the piano track so we do not need the [track] tokens. But, as
it concerns with full-song generation, we add an [EOS] to-
ken to signify the end of a sequence. We view it as a family
token, so there are three possible family tokens here: [fam-
ily=EOS], [family=note], [family=metric].

Details of the adopted representations are shown in Tables
2 and 3. Table 2 compares the sequence length T of REMI
and CP. We can see that SCP is much shorter than SREMI,
especially under the conditional task.5 Table 3 displays the
size of each vocabulary subset Vk. We see that CP and REMI
have similar total vocabulary sizeM . REMI does not use the
family tokens (except for [EOS]) and special tokens.

Model Settings
For the backbone architecture of our model, we employ the
linear Transformer (Katharopoulos et al. 2020),6 as its com-
plexity is a linear function of the length of the attention win-
dow N . Moreover, we set N equal to the sequence length
T for our model. That is, no segmentation over the training
sequences is done, and thereby all the tokens in a sequence
can be accessed by our model under causal masking, with-
out using tricks such as memory caching (Dai et al. 2019)
or memory compression (Rae et al. 2020). We refer to our
model as CP+linear in what follows.

For the baselines, we employ the Pop Music Transformer

5We set an upper limit of the number of elements per sequence
(e.g., 10,240 tokens in REMI) and remove overly long songs, which
amounts to removing 25–88 songs from the training set depending
on the task and the adopted representation.

6https://github.com/idiap/fast-transformers

182

Task Representation + model@loss Training GPU Inference (/song) Matchness
time memory time (sec) tokens (#) melody chord

Conditional

Training data — — — — 0.755 0.838
Training data (randomized) — — — — 0.049 0.239
REMI + XL@0.44 3 days 4 GB 88.4 4,782 0.872 0.785
REMI + XL@0.27 7 days 4 GB 91.5 4,890 0.866 0.800
REMI + linear@0.50 3 days 17 GB 48.9 4,327 0.779 0.709
CP + linear@0.27 0.6 days 10 GB 29.2 18,200 0.829 0.733

Unconditional REMI + XL@0.50 3 days 4 GB 139.9 7,680 — —
CP + linear@0.25 1.3 days 9.5 GB 19.8 9,546 — —

Table 4: Quantitative evaluation result of different models. REMI+XL represents a re-implementation of the state-of-the-art
Pop Music Transformer (Huang and Yang 2020), while CP+linear stands for the proposed CP Transformer.

(Huang and Yang 2020), which is open-source and stands
for a state-of-the-art for unconditional music composition.7
This REMI+XL model adopts the REMI representation and
uses Transformer-XL (Dai et al. 2019) as the model back-
bone. As its complexity grows quadratically with N , we set
N = 512, following (Huang and Yang 2020).

Moreover, we consider one more baseline that replaces
Transformer-XL by linear Transformer, using also N = T ,
to offer a sensible performance comparison between CP and
REMI. We refer to this variant as REMI+linear.

We use 12 self-attention layers each with 8 attention heads
for all the models for fair comparison. The model hidden
size and inner layer of the feed-forward part are set to 512
and 2,048, respectively. For the token embedding size d, we
fix it to 512 for REMI, following (Huang and Yang 2020).
For CP, we set it adaptively based on the vocabulary size
of each token type, as shown in Table 3. For sampling, we
employ the “nucleus sampling” (Holtzman et al. 2020), a
stochastic method that samples from the smallest subset of
tokens whose cumulative probability mass exceeds a thresh-
old ρ ∈ [0, 1]. Before sampling, we reshape the probability
distribution of the tokens (e.g., softmax(Wkh

out
t)) through

“temperature” (Ackley, Hinton, and Sejnowski 1985), with
the temperature parameter τ > 0. As Table 3 also shows, we
use different ρ and τ for different token types. For example,
we use a large τ to encourage diverse velocity values.

The conditional generation task can be approached with
a sequence-to-sequence model, since we have paired data of
lead sheets and piano performances (i.e., the former is ex-
tracted automatically from the latter). Instead of adding a
Transformer encoder (as done in (Choi et al. 2020)) to re-
alize this, we use the encoder-free “Prefix LM” method of
the Google’s “T5” model (Raffel et al. 2020), and run a sin-
gle Transformer over an interleaved sequence of lead sheets
and piano performances. Specifically, a sequence of lead
sheet and the corresponding target sequence of piano perfor-
mance are integrated into one sequence bar after bar. That
is, the integrated sequence would have the form of {. . . ,
[bar], [track=leadsheet], (content of the lead sheet for a bar),
[track=piano], (content of the piano for the same bar), [bar],
(content of the two tracks of the next bar) . . . }. This makes
it easy to learn the dependency of the two tracks, and to im-
pose the pre-given lead sheet at inference time.

7https://github.com/YatingMusic/remi

Quantitative Evaluation
The experiments hereafter are conducted in the interest of a
resource-constrained scenario, assuming that we only have
a single GPU with 11 GB memory and are only willing to
train a model for 3 days. We conjecture that this makes sense
for most middle-size academic labs worldwide. Yet, to have
an idea of the model performance when more resources are
available, we include to the evaluation of the conditional task
two settings exceeding such a specification.

We firstly compare the efficiency of the models in terms
of training time, inference time, and GPU memory usage,
under the conditional setting. The average result over the 50
held-out test songs is shown in Table 4.

GPU memory usage. Table 4 shows that both CP+linear
and REMI+XL require <11 GB GPU memory for training.
Accordingly, in our implementation, we train them (sepa-
rately) on an NVIDIA RTX 2080 Ti GPU (with 11GB mem-
ory). In contrast, REMI+linear requires 17 GB GPU mem-
ory, so we train it on a TITAN GPU with 24 GB memory.

Training time. We see that REMI-based models require
much longer clock time to reach a low training loss. While
it takes nearly 7 days for REMI+XL to reduce the negative
log-likelihood (NLL) of the training data to 0.27, it takes
only 0.6 days for CP+linear to reach the same NLL. Such a
training efficiency is desirable (especially given that it is on
a single 2080 Ti GPU), as it makes further extensions and
modifications of the model easy and affordable.

Inference time. CP+linear is remarkably fast, taking on
average<30 seconds to complete the conditional generation
of a song. As a song in our dataset is about 4 minutes, this
is much faster than real time. In contrast, REMI+XL and
REMI+linear are about 3x and 1.7x slower, respectively.
CP+linear is fast for it generates in total 8 individual tokens
(of different types) at once each time step.

Table 4 also compares the efficiency of REMI+XL and
CP+linear under the unconditional setting, for which we
generate also 50 songs (from scratch) and report the average
inference time. We see that CP+linear is even faster here, re-
quiring only <20 seconds to create a new song at full-song
length. In contrast, REMI+XL is on average 7x slower.

Next, we compare the performance of the models in terms
of two objective metrics, also under the conditional setting.
As the goal is to generate a song given a lead sheet, we can
measure whether the generated song has a melody line and

183

Repre. + model@loss F R H C O
REMI + XL@0.44 4.05 3.12 3.38 3.55 3.31
REMI + XL@0.27 4.29 3.14 3.70 3.64 3.35
REMI + linear@0.50 4.03 3.09 3.48 3.46 3.29
CP + linear@0.27 4.09 3.13 3.50 3.31 3.08

(a) Conditional generation

Repre. + model@loss R H S O
REMI + XL@0.50 3.11 3.46 2.91 3.03
CP + linear@0.22 3.33 3.68 3.11 3.34

(b) Unconditional generation

Table 5: Result of subjective evaluation (Fidelity, Richness,
Humanness, Correctness, Structureness, Overall).

chord progression similar to that in the given condition, and
take that as a figure of merit. (In contrast, proper objective
evaluation of unconditional generation models remains an
open issue (Yang and Lerch 2020; Dong et al. 2020; Wu and
Yang 2020).) Specifically, we consider:
• Melody matchness. We represent the lead sheet and the

correspondingly generated piano both in the REMI format
and compute the bar-wise longest common sub-sequence
(LCS) of the two resulting sequences SLS

REMI and Ŝpiano
REMI.

When two notes (each from the two sequences) have the
same pitch and close onset time (within the 8-th note), we
consider that as a match. We divide the length of the LCS
by the number of [pitch] tokens in SLS

REMI (i.e., the number
of target melody notes) of that bar, and take the average
value of such a ratio across all the bars of a song as a
simple measure of melody matchness.

• Chord matchness. The chroma vector (Fujishima 1999)
represents a short-time fragment of music by the distri-
bution of energy across the 12 pitch classes (C, C#, etc)
and offers a simple way to evaluate the harmonic simi-
larity between two fragments. We calculate the segment-
wise cosine similarity between the chroma vector repre-
senting each chord label of a lead sheet (which would be
binary-valued) and the chroma vector of the correspond-
ingly generated piano segment (normalized by the maxi-
mum value so it is ∈ [0, 1]12), and treat the average value
across time as a measure of chord matchenss.
Table 4 shows that the evaluated models all have match-

ness close to that of the training set, and much higher than
that of the random baseline (i.e., the average matchness be-
tween a lead sheet and a random song from the test set). This
suggests, while CP+linear is easier and faster to train than
REMI+XL, they may generate music of similar quality. We
further investigate this through a user study, which directly
assesses the perceptual quality of the generated music.

Qualitative Evaluation
We devise an online questionnaire that solicits anonymous
response to the music generated by different models for both
the conditional and unconditional settings. For the former,
we present excerpts of 32 bars taking from one-third loca-
tion of the music. For the latter, we present the full songs

(a) REMI+XL

(b) CP+linear

Figure 3: Piano-rolls of middle 64 bars of random generated
pieces of two models in the unconditional setting. We see
richer and diverse content in the result of CP+linear.

(i.e., when an [EOS] token is generated).8 Our intention is to
investigate whether CP+linear and REMI+XL indeed gen-
erate music of similar perceptual qualities.

The generated music is rendered into audio with a pi-
ano synthesizer using a free, non-professional grade sound
font. Each batch comprises the result of the evaluated mod-
els in random order. A subject has to rate the music for three
random batches for each setting separately, in terms of the
following aspects on a five-point Likert scale. 1) Fidelity:
is the conditionally generated piece similar to the refer-
ence, from which the condition lead sheet was taken from?
2) Richness: diversity and interestingness. 3) Humanness:
does the piece sound like expressive human performances?
4) Correctness: perceived absence of composing or playing
mistakes. 5) Structureness: whether there are structural pat-
terns such as repeating themes or development of musical
ideas. 6) Overall. As the music can be long, the question-
naire may take around 30 mins to complete.

Table 5 shows the average result from 18 subjects. We see
that REMI+XL performs the best in the conditional setting,
yet with only moderate performance gap between the mod-
els.9 In contrast, CP+linear performs (slightly) better con-
sistently across the four metrics in the unconditional setting,
suggesting it a powerful alternative to REMI+XL.

Conclusion
In this paper, we have presented a new variant of the Trans-
former that processes multiple consecutive tokens at once at
a time step. Each individual token is associated with a token
type, which is exploited by the model to customize its input
and output modules. The proposed model achieves sequence
compression by integrating the embeddings of the tokens,
which can be seen as forming a hyperedge over a dynamic
graph. We show that the new Transformer works remarkably
well for modeling music, creating full-song piano of compa-
rable perceived quality with a competing Transformer-XL
based model in much shorter training and inference time.

8It turns out that the REMI+XL model seldom generates [EOS]
tokens even when the music is already quite long (e.g., 8 minutes),
so we stop it each time when it has generated 7,680 tokens.

9In the conditional setting, the global structure of the song to be
generated is fairly outlined in the given condition (i.e., the melody).
Thus, it seems sufficient for models to learn from short segments.

184

Acknowledgements
We are grateful to our interns at the Taiwan AI Labs, Joshua
Chang for developing the symbolic-domain chord recog-
nition algorithm, and Yu-Hua Chen and Hsiao-Tzu Hung
for helping organize the PyTorch code. We also thank the
anonymous reviewers for their valuable comments.

Ethics Statement
Research on automatic music generation may infringe copy-
right laws and may raise concerns regarding the role of hu-
man musicians in the future. Cares have to be given regard-
ing the fair use of existing musical material for model train-
ing, and the potential concern of “deepfaking” an existing
artist’s style in computer-generated music.

References
Ackley, D. H.; Hinton, G. E.; and Sejnowski, T. J. 1985. A
learning algorithm for Boltzmann machines. Cognitive Sci-
ence 9(1): 147–169.

Baevski, A.; and Auli, M. 2018. Adaptive input repre-
sentations for neural language modeling. arXiv preprint
arXiv:1809.10853 .

Böck, S.; Korzeniowski, F.; Schlüter, J.; Krebs, F.; and Wid-
mer, G. 2016. Madmom: A new Python audio and mu-
sic signal processing library. In Proc. ACM Multimedia,
1174–1178.

Chen, Y.-H.; Huang, Y.-S.; Hsiao, W.-Y.; and Yang, Y.-H.
2020. Automatic composition of guitar tabs by Transformers
and groove modeling. In Proc. Int. Soc. Music Information
Retrieval Conf.

Child, R.; Gray, S.; Radford, A.; and Sutskever, I. 2019.
Generating long sequences with sparse Transformers. arXiv
preprint arXiv:1904.10509 .

Choi, K.; Hawthorne, C.; Simon, I.; Dinculescu, M.; and En-
gel, J. 2020. Encoding musical style with transformer au-
toencoders. In Proc. Int. Conf. Machine Learning.

Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.; and
Salakhutdinov, R. 2019. Transformer-XL: Attentive lan-
guage models beyond a fixed-Length context. In Proc. An-
nual Meeting of the Association for Computational Linguis-
tics, 2978–2988.

Donahue, C.; Mao, H. H.; Li, Y. E.; Cottrell, G. W.; and
McAuley, J. 2019. LakhNES: Improving multi-instrumental
music generation with cross-domain pre-training. In Proc.
Int. Soc. Music Information Retrieval Conf., 685–692.

Dong, H.-W.; Chen, K.; McAuley, J.; and Berg-Kirkpatrick,
T. 2020. MusPy: A toolkit for symbolic music generation.
In Proc. Int. Soc. Music Information Retrieval Conf.

Ens, J.; and Pasquier, P. 2020. MMM- Exploring conditional
multi-track music generation with the Transformer. arXiv
preprint arXiv:2008.06048 .

Feng, Y.; You, H.; Zhang, Z.; Ji, R.; and Gao, Y. 2019. Hy-
pergraph neural networks. In Proc. AAAI, 3558–3565.

Fujishima, T. 1999. Realtime chord recognition of musical
sound: A system using common Lisp. In Proc. International
Computer Music Conf., 464–467.

Hawthorne, C.; Elsen, E.; Song, J.; Roberts, A.; Simon, I.;
Raffel, C.; Engel, J.; Oore, S.; and Eck, D. 2018a. Onsets
and Frames: Dual-objective piano transcription. In Proc. Int.
Soc. Music Information Retrieval Conf., 50–57.

Hawthorne, C.; Huang, A.; Ippolito, D.; and Eck, D. 2018b.
Transformer-NADE for piano performances. In Proc. Ma-
chine Learning for Creativity and Design Workshop.

Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; and Choi, Y.
2020. The curious case of neural text degeneration. In Proc.
Int. Conf. Learning Representations.

Huang, C.-Z. A.; Vaswani, A.; Uszkoreit, J.; Simon, I.;
Hawthorne, C.; Shazeer, N.; Dai, A. M.; Hoffman, M. D.;
Dinculescu, M.; and Eck, D. 2019. Music Transformer: Gen-
erating music with long-term structure. In Proc. Int. Conf.
Learning Representations.

Huang, Y.-S.; and Yang, Y.-H. 2020. Pop Music Trans-
former: Beat-based modeling and generation of expressive
Pop piano compositions. In Proc. ACM Multimedia.

Jhamtani, H.; and Berg-Kirkpatrick, T. 2019. Modeling Self-
Repetition in Music Generation using Generative Adversar-
ial Networks. In Proc. Machine Learning for Music Discov-
ery Workshop.

Jiang, J.; Wei, Y.; Feng, Y.; Cao, J.; and Gao, Y. 2019. Dy-
namic hypergraph neural networks. In Proc. IJCAI, 2635–
2641.

Jiang, J.; Xia, G. G.; Carlton, D. B.; Anderson, C. N.; and
Miyakawa, R. H. 2020. Transformer VAE: A hierarchical
model for structure-aware and interpretable music represen-
tation learning. In Proc. Int. Conf. Acoustics, Speech and
Signal Processing, 516–520.

Katharopoulos, A.; Vyas, A.; Pappas, N.; and Fleuret, F.
2020. Transformers are RNNs: Fast autoregressive Trans-
formers with linear attention. In Proc. Int. Conf. Machine
Learning.

Kazemi, S. M.; Goel, R.; Jain, K.; Kobyzev, I.; Sethi, A.;
Forsyth, P.; and Poupart, P. 2020. Representation learning
for dynamic graphs: A survey. Journal of Machine Learning
Research 21(70): 1–73.

Ke, G.; He, D.; and Liu, T.-Y. 2020. Rethinking posi-
tional encoding in language pre-training. arXiv preprint
arXiv:2006.15595 .

Keskar, N. S.; McCann, B.; Varshney, L. R.; Xiong, C.; and
Socher, R. 2019. CTRL: A conditional Transformer lan-
guage model for controllable generation. arXiv preprint
arXiv:1909.05858 .

Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J. P.;
Moreno, Y.; and Porter, M. A. 2014. Multilayer networks.
Journal of Complex Networks 2(3): 203–271.

Lerch, A.; Arthur, C.; Pati, A.; and Gururani, S. 2019. Music
performance analysis: A survey. In Proc. Int. Soc. Music
Information Retrieval Conf.

185

Oore, S.; Simon, I.; Dieleman, S.; Eck, D.; and Simonyan,
K. 2018. This time with feeling: Learning expressive musi-
cal performance. Neural Computing and Applications .
Patel, A. D. 2003. Language, music, syntax and the brain.
Nature Neuroscience 6: 674–681.
Payne, C. M. 2019. MuseNet Accessed: 2021-03-01.
Rae, J. W.; Potapenko, A.; Jayakumar, S. M.; Hillier, C.; and
Lillicrap, T. P. 2020. Compressive Transformers for long-
range sequence modelling. In Proc. Int. Conf. Learning Rep-
resentations.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Ex-
ploring the limits of transfer learning with a unified text-
to-text Transformer. Journal of Machine Learning Research
21(140): 1–67.
Rossi, E.; Chamberlain, B.; Frasca, F.; Eynard, D.; Monti,
F.; and Bronstein, M. 2020. Temporal graph networks
for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637 .
Uitdenbogerd, A.; and Zobel, J. 1999. Melodic matching
techniques for large music databases. In Proc. ACM Multi-
media, 57–66.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Proc. Advances in Neural Infor-
mation Processing Systems, 5998–6008.
Wu, S.-L.; and Yang, Y.-H. 2020. The Jazz Transformer on
the front line: Exploring the shortcomings of AI-composed
music through quantitative measures. In Proc. Int. Soc. Mu-
sic Information Retrieval Conf.

Yang, L.-C.; and Lerch, A. 2020. On the evaluation of gener-
ative models in music. Neural Computing and Applications
32: 4773–4784.

186

