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Abstract

Sub-seasonal forecasting (SSF) focuses on predicting key
variables such as temperature and precipitation on the 2-week
to 2-month time scale. Skillful SSF would have immense so-
cietal value in such areas as agricultural productivity, water
resource management, and emergency planning for extreme
weather events. However, SSF is considered more challeng-
ing than either weather prediction or even seasonal predic-
tion, and is still a largely understudied problem. In this pa-
per, we carefully investigate 10 Machine Learning (ML) ap-
proaches to sub-seasonal temperature forecasting over the
contiguous U.S. on the SSF dataset we collect, including
a variety of climate variables from the atmosphere, ocean,
and land. Because of the complicated atmosphere-land-ocean
couplings and the limited amount of good quality observa-
tional data, SSF imposes a great challenge for ML despite the
recent advances in various domains. Our results indicate that
suitable ML models, e.g., XGBoost, to some extent, capture
the predictability on sub-seasonal time scales and can outper-
form the climatological baselines, while Deep Learning (DL)
models barely manage to match the best results with carefully
designed architecture. Besides, our analysis and exploration
provide insights on important aspects to improve the qual-
ity of sub-seasonal forecasts, e.g., feature representation and
model architecture. The SSF dataset and code 1 are released
with this paper for use by the broader research community.

1 Introduction
Over the past few decades, major advances have been made
in weather forecasts on time scales of days to about a
week (Lorenc 1986; Simmons and Hollingsworth 2002; Na-
tional Research Council 2010). Similarly, major advances
have been made in seasonal forecasts on time scales of 2-
9 months (Barnston et al. 2012). However, making high-
quality forecasts of key climate variables such as tempera-
ture and precipitation on sub-seasonal time scales, defined
as the time range between 2-8 weeks, has long been a gap
in operational forecasting (National Academies of Sciences
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1The SSF dataset and codebase are publicly available at https:
//sites.google.com/view/ssf-ml/home.

2016). Skillful climate forecasts at sub-seasonal time scales
would be of immense societal value, and would have an
impact in a wide variety of domains including agricultural
productivity, water resource management, and emergency
planning for extreme weather events, etc. (Pomeroy et al.
2002; Klemm and McPherson 2017). The importance of
sub-seasonal climate forecasting (SSF) has been discussed
in great detail in two recent high profile reports from the
National Academy of Sciences (National Research Coun-
cil 2010; National Academies of Sciences 2016). Despite
the scientific, societal, and financial importance of SSF,
progress on the problem has been limited (Braman et al.
2013; de Perez and Mason 2014), partly because it has at-
tracted less attention compared to weather and seasonal cli-
mate prediction. Also, SSF is arguably more difficult com-
pared to weather or seasonal forecasting due to limited pre-
dictive information from land and ocean, and virtually no
predictability from the atmosphere (Uccellini and Jacobs
2018), which forms the basis of numerical weather predic-
tion (Simmons and Hollingsworth 2002) (Figure 1(a)).

There exists great potential to advance sub-seasonal pre-
diction using Machine Learning (ML) techniques. Due in
large part to this potential promise, a recently concluded
real-time forecasting competition called the Sub-Seasonal
Climate Forecast Rodeo was sponsored by the Bureau of
Reclamation in partnership with NOAA, USGS, and the
U.S. Army Corps of Engineers (Raff et al. 2017; Hwang
et al. 2019). However, a direct application of standard black-
box ML approaches to SSF can run into challenges due to
the high-dimensionality and strong spatial correlation of the
raw data from atmosphere, ocean, and land, e.g., Figure 1(c)
shows that popular approaches such as Fully connected Neu-
ral Networks (FNN) and Convolutional Neural Networks
(CNN) do not perform so well when directly applied to the
raw data. One reason is that sub-seasonal forecasting does
not lie in the big data regime: about 40 years of reliable data
exists for all climate variables, with each day corresponding
to one data point, which totals less than 20,000 data points.
Additionally, different seasons may have different predic-
tive relations, and many climate variables have strong tem-
poral correlations at daily time scales, further reducing the
effective data size. Therefore, it is worth carefully and sys-
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Figure 1: (a) Sources of predictability at different forecast time scales. Atmosphere is most predictive on weather time scales,
whereas for SSF, land and ocean are considered important sources of predictability (Uccellini and Jacobs 2018). (b) Maximum
information coefficient (MIC) (Reshef et al. 2011) between residualized temperatures of week 3 & 4 and week -2 & -1. Small
MICs (≤ 0.1) at a majority of locations indicate little information shared between the most recent date and the forecasting
target. (c) Predictive skills of Fully connected Neural Networks (FNN) and Convolutional Neural Networks (CNN), in terms
of temporal cosine similarity (see definition in Section 5), for temperature prediction over 2017-2018. FNN and CNN do not
perform well, as the cosine similarities for most locations are either negative (red) or close to zero (white).

tematically investigating the capability of ML approaches
including Deep Learning (DL) while keeping in mind the
high-dimensionality, spatial-temporal correlations, and lim-
ited observational data available for SSF. Our main contri-
butions of this paper are as follows:

• We illustrate that, with the limited predictability at
sub-seasonal time scale and the unique nature of cli-
mate data, i.e., strong spatial-temporal correlation, high-
dimensionality, and limited amount of high-quality obser-
vational data, SSF imposes a great challenge for ML de-
spite the recent advances in various domains.

• We perform a comprehensive empirical study on 10 ML
approaches to SSF over the contiguous U.S. and show that
suitable ML models, e.g., XGBoost, to some extent, cap-
ture predictability at sub-seasonal time scales and outper-
form existing approaches in climate science, such as cli-
matology, i.e., the 30-year average at a given location and
time. Notably, DL models are only able to match the best
results after careful selection of architecture.

• We analyze and explore various aspects, e.g., feature rep-
resentation and model architecture, which shed light on
potential directions to improve the quality of sub-seasonal
forecasts. An analysis of feature importance suggests that
ocean and land covariates are more useful than atmo-
spheric covariates, which is consistent with Figure 1(a).

• We construct an SSF dataset covering the contiguous
U.S. and including climate variables from the atmosphere,
ocean, and land. We release the dataset and a flexible code
base for data extraction, preprocessing, and SSF model
training and evaluation.

Organization of the paper. We discuss related work in Sec-
tion 2. In Section 3, we describe the SSF problem tackled in
this paper and demonstrate its difficulties. In Section 4, we
outline the investigated ML approaches. The details of ex-
perimental setup and results are provided in Section 5 and
Section 6, and we conclude in Section 7.

2 Related Work
Although statistical models were used for weather predic-
tion before the 1970s (Frederik Nebeker 1995), since the
1980s weather forecasts mainly relied on physics-based dy-
namical models (Barnston et al. 2012). More recently, there
has been a surge of applications for ML approaches to
both short-term weather forecasting (Cofıno et al. 2002;
Grover, Kapoor, and Horvitz 2015; Radhika and Shashi
2009), and longer-term climate prediction (Badr, Zaitchik,
and Guikema 2014; Cohen et al. 2019). However, little at-
tention has been paid on forecasting on sub-seasonal time
scale (Vitart, Robertson, and Anderson 2012). Recently, ML
techniques have made great strides in statistical prediction
in many fields, so it is natural to investigate whether it can
advance sub-seasonal climate prediction. In particular, many
advances have occurred in developing prediction models us-
ing spatiotemporal climate data (Steinhaeuser, Chawla, and
Ganguly 2011; Goncalves, Banerjee, and Von Zuben 2017;
Hwang et al. 2019), e.g., predicting land temperature using
oceanic data (DelSole and Banerjee 2017; He et al. 2019).

Since SSF can be formulated as a sequential modeling
problem (Sutskever, Vinyals, and Le 2014; Venugopalan
et al. 2015), bringing the core strength of DL-based sequen-
tial modeling has great potential for a transformation in cli-
mate forecasting (Ham, Kim, and Luo 2019; Reichstein et al.
2019; Schneider et al. 2017). In the past decade, recurrent
neural network (RNN) (Funahashi and Nakamura 1993) and
long short-term memory (LSTM) models (Gers, Schmid-
huber, and Cummins 2000) have become popular sequen-
tial models and have been successfully applied in language
modeling and other seq-to-seq tasks (Sundermeyer, Schlüter,
and Ney 2012). Starting from (Sutskever, Vinyals, and Le
2014; Srivastava, Mansimov, and Salakhudinov 2015), the
encoder-decoder structure with RNN or LSTM has become
one of the most competitive algorithms for sequence trans-
duction. Variants of such models that incorporate mech-
anisms like convolution (Xingjian et al. 2015; Shi et al.
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2017) or attention mechanisms (Bahdanau, Cho, and Ben-
gio 2015) have achieved remarkable breakthroughs for au-
dio synthesis, word-level language modeling, and machine
translation (Vaswani et al. 2017).

SSF is an extremely important but understudied problem
and ML is just starting to get used in this area. Within ML,
Hwang et al. (2019) are the first to specifically focus on SSF
over western U.S. and released their benchmark dataset. In
this paper, we expand the spatial forecasting range to the
entire contiguous U.S. and extend the set of predictors by
including climate variables considered as important sources
of predictability on sub-seasonal time scale (Uccellini and
Jacobs 2018), such as soil moisture, Niño and NAO indices.

3 Sub-seasonal Climate Forecasting
Problem statement. In this paper, we focus on building
temperature forecasting models at the forecast horizon of
15-28 days ahead, i.e., the target variable is the residualized
average temperature of week 3 & 4. The geographic region
of interest is the contiguous U.S. (latitudes 25N-49N and
longitudes 76W-133W) at a 2◦ by 2◦ resolution (197 grid
points). Our covariates consist of climate variables, such as
sea surface temperature, soil moisture, geopotential height,
etc., indicating the status of land, ocean, and atmosphere.
Table 1 provides a detailed description.
Difficulty of the problem. To illustrate the challenge of
SSF, we measure the statistical dependence between the
residualized average temperature of week -2 & -1 (1-14 days
in the past) and week 3 & 4 (15-28 days in the “future”) at
each grid point by maximum information coefficient (MIC)
(Reshef et al. 2011), an information theory-based measure
of the linear or non-linear association between two variables.
The values of MIC range between 0 and 1, and a small MIC
value close to 0 indicates a weak dependence. To assess sta-
tistical significance, we apply moving block bootstrap (Kun-
sch 1989) to time series of 2-week average temperature at
each grid point from 1986 to 2018, with the block size of
365 days. The top panel in Figure 1(b) illustrates the aver-
age MIC from 100 bootstrap over the contiguous U.S., and
the marginal distribution of all locations is shown at bottom.
Small MIC values (≤ 0.1), indicating little predictive infor-
mation shared between the most recent data and the forecast-
ing target, to some extent, demonstrate how difficult SSF is.

From an ML perspective, applying black-box DL ap-
proaches naively to SSF is less likely to work due to the
limited number of samples, and the high-dimensional and
spatial-temporally correlated features. Figure 1(c) shows the
performance of two vanilla DL models: FNN with ReLU
activation function and CNN, in terms of the (temporal) co-
sine similarity between the prediction and the ground truth
at each location over 2017-2018. For most locations, their
cosine similarities are either negative or close to zero. Be-
sides, as we illustrate in the sequel, we explore about 10 ML
models for the problem, and most do not even get positive
relative R2, indicating they perform no better than the long
term average (details are presented in Appendix A) 2. Such
results further demonstrate the difficulty of SSF.

2Appendix can be found at https://arxiv.org/abs/2006.07972.

(a) Encoder (LSTM)-Decoder (FNN)

(b) CNN-LSTM

Figure 2: Architectures of the designed DL models. (a) En-
coder (LSTM)-Decoder (FNN) includes a few LSTM layers
as the Encoder, and two fully connected layers as the De-
coder. (b) CNN-LSTM consists of a few convolutional lay-
ers followed by an LSTM.

4 Methods
Notation. Let t denote a date and g denote a location. The
target variable at time t and location g is the residualized
average temperature over weeks 3 & 4 (from t+15 to t+28),
denoted as yg,t. For a given location g, yg,T represents the
target variable over a time range T . Similarly, yG,t denotes
the target variable over all G locations at time t. Xt ∈ Rp
denotes the p-dimensional covariates at time t.
Non-DL models. We explore the following non-DL models.

• MultiLLR (Hwang et al. 2019). MultiLLR introduces a
multitask feature selection algorithm to remove the irrel-
evant predictors and integrates the remaining predictors
linearly. For a location g and a target date t∗, its coeffi-
cient βg is estimated by β̂g = argminβ

∑
t∈D wg,t(yg,t−

βTXt)
2, where D is the temporal span around the tar-

get date’s day of the year and wg,t is the corresponding
weight. In (Hwang et al. 2019), an equal data point weight-
ing (wg,t = 1) has been employed.

• AutoKNN (Hwang et al. 2019). An auto-regression
model with weighted temporally local samples, where
the auto-regression lags are selected via a multitask k-
nearest neighbor criterion. The method only takes his-
torical measurements of the target variables as input.
The nearest neighbors of each target date are selected
based on an average of spatial cosine similarity com-
puted over a history of M = 60 days, starting one
year prior to a target date t∗ (lag l = 365). More pre-
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Type Climate variable Description Spatial coverage Data Source
Sp

at
io

te
m

po
ra

l
tmp2m Daily temperature at 2 meters

Contiguous U.S.

CPC Global Daily Temperature
(Fan and Van den Dool 2008)

sm Monthly soil moisture CPC Soil Moisture
(Fan and van den Dool 2004)

sst Daily sea surface temperature North Pacific
& Atlantic Ocean

Optimum Interpolation SST (OISST)
(Reynolds et al. 2007)

rhum Daily relative humidity Contiguous U.S.
and North Pacific
& Atlantic Ocean

Atmospheric Research
Reanalysi Dataset

(Kalnay et al. 1996)
slp Daily pressure at sea level

hgt10 & hgt500 Daily geopotential height

Te
m

po
ra

l

MEI Bimonthly multivariate ENSO index

NA

NOAA ESRL MEI.v2
(Zimmerman, Vimont, and Block 2016)

Niño 1+2, 3,
3.4, 4 Weekly Oceanic Niño Index (ONI) NOAA National Weather Service, CPC

(Reynolds et al. 2007)

NAO Daily North Atlantic
Oscillation index

NOAA National Weather Service, CPC
(Van den Dool, Saha, and Johansson 2000)

MJO phase
& amplitude Madden-Julian Oscillation index Australian Government BoM

(Wheeler and Hendon 2004)

Table 1: Description of climate variables and their data sources.

cisely, the similarity between the target date t∗ and a
date t in the corresponding training set is formulated
as simt = 1

M

∑M−1
m=0 cos(yG,t−l−m,yG,t∗−l−m), where

cos(yG,t1 ,yG,t2) computes the (spatial) cosine similarity
(see formal definition in Section 5), evaluated over G lo-
cations, between two given dates t1 and t2.

• Multitask Lasso (Tibshirani 1996; Jalali, Ravikumar, and
Sanghavi 2013). It assumes yG,t = XtΘ

∗ + ε, where
ε ∈ RG is a Gaussian noise vector and Θ∗ ∈ Rp×G is the
coefficient matrix for all locations. With n samples, Θ∗

is estimated by Θ̂n = argminΘ∈Rp×G
1

2n‖Y − XΘ‖22 +

λn‖Θ‖2,1 with X ∈ Rn×p and Y ∈ Rn×G. λn is a
penalty parameter and the corresponding penalty term is
computed as ||Θ||2,1 =

∑
i(
∑
j Θ2

ij)
1/2.

• Gradient boosted trees (XGBoost) (Friedman 2001;
Chen and Guestrin 2016). A functional gradient boosting
algorithm using regression tree as its weak learner. The al-
gorithm starts with one weak learner and iteratively adds
new weak learners to approximate functional gradients.
The final ensemble model is constructed by a weighted
summation of all weak learners.

• State-of-the-art climate baselines. We consider two
baselines from climate science perspective, both are Least
Square (LS) linear regression models (Weisberg 2005).
The first model uses covariates based on climate indices,
such as NAO and Niño indices, which are widely used
to monitor ocean conditions. The covariate of the second
model is the most recent available data point from target
variable, i.e, residualized temperature of week -2 & -1,
with which the model, also known as damped persistence
(Van den Dool 2007) in climate science, is essentially a
first-order autoregressive model.

DL models. We design two DL models, namely En-
coder (LSTM)-Decoder (FNN) and CNN-LSTM, specifi-
cally adapting to SSF. The objective function is to minimize
the mean squared error among all dates and locations.
• Encoder (LSTM)-Decoder (FNN). Inspired by Autoen-

coder widely used in sequential modeling (Sutskever,
Vinyals, and Le 2014), we design the Encoder (LSTM)-
Decoder (FNN) model, of which the architecture is shown
in Figure 2(a). Input of the model is features extracted
spatially from covariates using unsupervised methods like
Principal Component Analysis (PCA). The temporal com-
ponents of covariates are handled by feeding features of
each historical date into an LSTM Encoder recurrently.
Then, the output of each date from LSTM is sent jointly to
a two-layer FNN network with ReLU activation function.
The output of the FNN Decoder is the predicted residual-
ized temperature of week 3 & 4 over all target locations.

• CNN-LSTM. The proposed CNN-LSTM model directly
learns the representations from the spatiotemporal data us-
ing convolutional layers (LeCun et al. 1998). Shown in
Figure 2(b), CNN extracts features for each climate vari-
able at all historical dates separately. Then, the extracted
features from the same date are collected and fed into an
LSTM model recurrently. The temperature prediction for
all target locations is done by an FNN layer taking the out-
put of the LSTM’s last layer from the latest input.

5 Data and Experimental Setup
Data description. Climate agencies across the world main-
tain multiple datasets with different formats and resolutions.
We construct the SSF dataset by collecting climate variables
(Table 1) from a diverse collection of data sources and con-
verting them into a consistent format. In particular, temporal
variables, e.g., Niño indices, are interpolated to a daily res-
olution, and spatiotemporal variables are interpolated to a
spatial resolution of 0.5◦ by 0.5◦.
Preprocessing. Spatiotemporal climate variables are nor-
malized by z-scoring at each location and each date using
the mean and standard deviation of the corresponding day
of the year over 1986-2016. Temporal covariates, e.g., Niño
indices, are directly used without normalization. CNN and
CNN-LSTM take the temporal and normalized spatiotempo-
ral variables as input. Models other than CNN based mod-
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Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)
Temporally Global Dataset

XGBoost - one day 0.3044(0.03) 0.3447(0.05) 0.0252(0.05) 0.5905(0.04)
Lasso - one day 0.2499(0.04) 0.2554(0.06) -0.0224(0.05) 0.5604(0.06)

Encoder (LSTM)-Decoder (FNN) 0.2616 (0.04) 0.2995 (0.07) -0.0719 (0.06) 0.6310 (0.05)
FNN 0.0792(0.01) 0.0920(0.02) 0.0085(0.02) 0.1655(0.02)
CNN 0.1688(0.04) 0.2324(0.06) -0.0662(0.06) 0.4768(0.04)

CNN-LSTM 0.1743(0.04) 0.2867(0.06) -0.1225(0.07) 0.5148(0.04)
LS with NAO & Niño 0.2415(0.03) 0.3169(0.04) 0.0454(0.05) 0.4624(0.03)

Damped persistence 0.2009(0.04) 0.2310(0.06) -0.0884(0.06) 0.5335(0.05))
MultiLLR 0.0684 (0.03) 0.1046 (0.05) -0.1764 (0.06) 0.3156 (0.04)
AutoKNN 0.1457 (0.03) 0.1744 (0.05) -0.1018 (0.06) 0.4000 (0.04)

Temporally Local Dataset
XGBoost - one day 0.1965(0.04) 0.2345(0.05) -0.0636(0.06) 0.5178(0.05)

Lasso - one day 0.1631(0.04) 0.2087(0.06) -0.1178(0.05) 0.5059(0.05)
Encoder (LSTM)-Decoder (FNN) 0.1277 (0.04) 0.1272 (0.06) -0.1558 (0.06) 0.4971 (0.06)

Table 2: Comparison of spatial cosine similarity of tmp2m forecasting for test sets over 2017-2018. XGBoost and Encoder
(LSTM)-Decoder (FNN) have the best performance. Models achieve better performance using temporally global set compared
to temporally local set.

els, e.g., XGBoost and Multitask Lasso, can not directly use
spatiotemporal covariates due to the extremely high dimen-
sionality of such covariates. In those cases, we extract the
top 10 principal components (PCs) of each spatiotemporal
covariate, based on PC loadings from 1986 to 2016 (for de-
tails, refer to Appendix B), and normalize PCs by z-scoring
at each day of the year. The target variable is the residual-
ized 2m temperature over the contiguous U.S. via the same
normalization as spatiotemporal climate variables.
Feature set construction. We combine the PCs of spa-
tiotemporal covariates with temporal covariates into a se-
quential feature set, which consists not only covariates of
the target date, but also covariates of the 7th, 14th, and 28th

day prior to the target date, as well as the day of the year of
the target date in the past 2 years and both the historical past
and future dates around the day of the year of the target date
in the past 2 years (see Appendix B for a detailed example).
Evaluation pipeline. Predictive models are created inde-
pendently for each month in 2017 and 2018. To mimic a
live system, we generate 105 test dates during 2017-2018,
one for each week, and group them into 24 test sets by their
month of the year. Given a test set, our evaluation pipeline
consists of two parts: (1) “5-fold” training-validation pairs
for hyper-parameter tuning, based on a “sliding-window”
strategy designed for time-series data. Each validation set
consists of the data from the same month of the year as the
test set, and we create 5 such sets from dates in the past 5
years (2012 - 2016). Their corresponding training sets con-
tain 10 years of data before each validation set; (2) the train-
ing set, including 30-year data in the past. To assure no over-
lap between the training and test set, we enforce the training
set to end 28 days before the first date in the test set. More
detailed explanations are included in Appendix B.
Evaluation metrics. Forecasts are evaluated by cosine sim-
ilarity, the only metrics used in the Sub-Seasonal Climate
Forecast Rodeo (Raff et al. 2017). The cosine similarity
between ŷ, a vector of predicted values, and y∗, the cor-
responding ground truth, is computed as cos(ŷ,y∗) =

〈ŷ,y∗〉
‖ŷ‖2‖y∗‖2 , where 〈ŷ,y∗〉 denotes the inner product between
the two vectors. Then, the spatial cosine similarity is defined
as cos(ŷG,t,y∗G,t), measuring the prediction skill at a date t.
The temporal cosine similarity, assessing the prediction skill
at a location g, is defined as cos(ŷg,T ,y∗g,T ).

6 Experimental Results
We compare the predictive skills of 10 ML models on SSF.
In addition, we discuss a few aspects that impact the ML
models the most, as well as the evolution of our DL models.

6.1 Results of All Methods
Temporal results. Table 2 lists the mean, the median, the
0.25 quantile, the 0.75 quantile, and their corresponding
standard errors of spatial cosine similarity of all methods.
Results based on relative R2 are included in Appendix C.
XGBoost, Encoder (LSTM)+Decoder (FNN) and Lasso ac-
complish higher predictive skills than other presented meth-
ods and can outperform climatology and two climate base-
line models, i.e., LS with NAO & Niño, and damped per-
sistence. Overall, XGBoost achieves the highest predictive
skill in terms of both the mean and the median, demonstrat-
ing its predictive power. Surprisingly, linear regression with
a proper feature set has good predictive performance. Even
though DL models are not the obvious winner, with careful
architectural selections, they still show encouraging results.
Spatial results. Figure 3 shows the temporal cosine sim-
ilarity of all methods evaluated on test sets described in
Section 5. Among all methods, XGBoost and the Encoder
(LSTM)-Decoder (FNN) achieve the overall best perfor-
mance, regarding the number of locations with positive tem-
poral cosine similarity. Qualitatively, coastal and south re-
gions in general are easier to predict compared to inland re-
gions (e.g., Midwest), which might be explained by the in-
fluence of the slow-moving component, i.e., Pacific and At-
lantic Ocean. Such component exhibits inertia or memory, in
which anomalous condition can take relatively long period
of time to decay. However, each model has its own favorable
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Figure 3: Temporal cosine similarity over the contiguous U.S. of ML models for temperature prediction over 2017-2018. Large
positive values (green) closer to 1 indicate better predictive skills. Overall, XGBoost and Encoder (LSTM)-Decoder (FNN)
perform the best. Qualitatively, coastal and south regions are easier to predict than inland regions (e.g., Midwest).

and disadvantageous regions. For example, XGBoost and
Lasso do poorly in Montana, Wyoming, and Idaho, while
Encoder (LSTM)-Decoder (FNN) performs much better on
those regions. The observations naturally imply that the en-
semble of multiple models is a promising future direction.
Comparison with the state-of-the-art methods. MultiLLR
and AutoKNN are two state-of-the-art methods designed for
SSF on western U.S. (Hwang et al. 2019). Both methods
have shown good forecasting performance on the original
target region. However, over the inland region (Midwest),
Northeast, and South region, the methods do not perform
so well (Figure 3). To be fair, even though a similar set of
climate variables have been used in our work compared to
the original paper (Hwang et al. 2019), how we prepossess
the data and construct the feature set are slightly different.
Such differences may lead to relatively poor performance
for these two methods, especially for MultiLLR. A detailed
comparison over western U.S. and on SubseasonalRodeo
dataset (Hwang et al. 2019) can be found in Appendix C.

6.2 Analysis and Exploration
We analyze and explore several important aspects that could
influence the performance of ML models.
Temporally “local” vs. “global” dataset. Our current train-
ing set consists of all calendar months over the past 30 years,
which we refer to as the temporally “global” dataset. An-
other way to construct the training set is to only consider
calendar months within a temporal neighborhood of the test
date. For instance, to make forecasts of June 2017, the train-
ing set can contains dates in June (from earlier years), and
months that are close to June, e.g., April, May, July, and
August, over the past 30 years only. Such a construction ac-
counts for the seasonal dependence of predictive relations,
for example summer predictions are not trained with winter
data. We name such dataset as a temporally “local” dataset.

A comparison between the “global” and “local” datasets has
been listed in Table 2 where a significant drop in cosine sim-
ilarity can be noticed when using “local” dataset for all of
our best predictive models, including XGBoost, Lasso, and
Encoder (LSTM)-Decoder (FNN). We suspect such perfor-
mance drop from “global” to “local” dataset may come from
the reduction in the number of effective samples.
Feature importance. We study which covariates are im-
portant, considered by ML models, based on their SHAP
(SHapley Additive exPlanations) values (Lundberg and Lee
2017). SHAP values illustrate how much each feature con-
tributes to the forecasts. Therefore, features with large abso-
lute SHAP values are important. Figure 4 shows the mean
of absolute SHAP values for each covariate over 24 models
(one per month in 2017-2018), computed from (a) XGBoost
and (b) Lasso. Among all covariates, soil moisture (3rd row
from the top) is the variable that has been constantly con-
sidered as important covariates by both models. Another set
of important covariates is the family of Niño indices. An
LS model using those indices alone as predictors performs
fairly well (Table 2). Besides, sst of both Pacific and At-
lantic also stand out. Such observations indicate that ML
models pick up ocean-based covariates, some land-based co-
variates, and almost entirely ignore the atmosphere-related
covariates, which are well aligned with domain knowledge
(Uccellini and Jacobs 2018; Delsole and Tippett 2017).
The influence of feature sequence length. To adapt the us-
age of LSTM, we construct a sequential feature set, which
consists not only the target date, but also 17 other dates pre-
ceding the target date. However, other ML models, e.g., XG-
Boost and Lasso, which are not designed to handle sequen-
tial data, experience a drastic performance drop when we
include more information from the past. More precisely, by
including covariates from the full historical sequence, the
performance of XGBoost drops approximately 50% com-

174



(a) XGBoost

(b) Lasso

Figure 4: SHAP values computed from (a) XGBoost and (b)
Lasso. Darker color means a covariate is of the higher im-
portance. The first 8 rows contains the top 10 principal com-
ponents extracted from 8 spatiotemporal covariates respec-
tively, and the last row includes all temporal indices. Land
covariate, e.g., soil moisture and ocean covariates, e.g., sst
and some climate indices, are considered more important.

pared to when using covariates from the most recent date
only. A possible explanation is that, as we increase the fea-
ture sequence length, such model weights covariates from
different dates exactly the same without considering tempo-
ral relationship, thus irrelevant historical information might
mislead the model. In Appendix C, we compares results ob-
tained from various sequence lengths.

6.3 What Happened with DL Models?
While applying black-box DL models naively does not work
well for SSF, the improvement (Table 2), as we evolve
from FNN to CNN-LSTM, and finally to Encoder (LSTM)-
Decoder (FNN), demonstrates how the network architecture
plays an important role. Below we focus on discussing fea-
ture representation and the architecture design for sequence
modeling. More discussions are included in Appendix C.
Feature representation: CNN vs. PCA. Since SSF can be
considered as a spatiotemporal prediction problem, to han-
dle the spatial aspect, CNN (LeCun et al. 1998) can be ap-
plied as a “supervised” way for learning feature represen-
tation by viewing each climate covariate as a map. CNN,
while doing convolution using a small kernel, mainly fo-
cus on spatially localized regions. However, the global de-
pendency among climate variables restricts the effective-

ness of CNN kernels on feature extraction, which explains
the limited predictive skill of CNN shown in Table 2 and
Figure 3. Meanwhile, PCA, termed Empirical Orthogonal
Functions (EOF) (Von Storch and Zwiers 2001) in climate
science, is a commonly used “unsupervised” feature repre-
sentation method, which focuses on low-rank modeling of
spatial covariance structure revealing spatial connection. By
using PCs, we are including spatial and temporal informa-
tion about the dominant components of variability in each
spatiotemporal covariate. Our results (Table 2) illustrate that
PCA-based models have higher predictive skills than CNN-
based models, verifying that PCA is an adequate technique
for feature extraction in SSF.
Sequential modeling: Encoder-Decoder. With features ex-
tracted by PCA, we formulate SSF as a sequential modeling
problem (Sutskever, Vinyals, and Le 2014), where the input
is the covariates sequence described in Section 5, and the
output is the target variable. Due to the immense success in
sequential modeling (Srivastava, Mansimov, and Salakhudi-
nov 2015), the standard Encoder-Decoder, where both En-
coder and Decoder are LSTM (Hochreiter and Schmidhu-
ber 1997), is the first architecture to investigate. Unfortu-
nately, the model does not perform well and suffers from
over-fitting, possibly caused by overly complex architecture.
To reduce the model complexity, we replace the LSTM De-
coder with an FNN Decoder which takes only the last step
of the output sequence from the Encoder. Such change leads
to an immediate boost of predictive performance. However,
the input of the FNN Decoder mainly contains information
encoded from the latest day in the input sequence and can
only embed limited amount of historical information owing
to the recurrent architecture of LSTM. To further improve
the performance, we adjust the connection between Encoder
and Decoder, such that FNN Decoder takes every step of
the output sequence from LSTM Encoder, which makes a
better use of historical information. Eventually, such archi-
tecture achieves the best performance among all investigated
Encoder-Decoder variants (see details in Appendix C).

7 Conclusion
In this paper, we investigate the potential to advance sub-
seasonal climate forecasting, a challenging and understud-
ied problem, using ML techniques. SSF is typically a high-
dimensional problem on strongly spatiotemporal correlated
climate data with limited number of samples. We conduct
a comprehensive study of 10 ML models, including DL
models, on the SSF dataset, which is constructed for SSF
over the contiguous U.S. Empirical results show the gradient
boosting model XGBoost, the DL model Encoder (LSTM)-
Decoder (FNN), and the linear model Lasso manage to out-
perform forecasts based on climatology, damped persistence
and climate indices. Besides, our analysis and exploration
provide insight on several essential aspects to improve the
SSF performance, and show that ML models are capable of
picking the climate variables from important sources of pre-
dictability on sub-seasonal time scale. With this paper, we
release the SSF dataset and code base publicly, which will
hopefully reduce the barrier to work on SSF for the broader
ML community.
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