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Abstract

Reinforcement learning (RL) has made significant progress
in both abstract and real-world domains, but the majority of
state-of-the-art algorithms deal only with monotonic actions.
However, some applications require agents to reason over
different types of actions. Our application simulates reaction-
based molecule generation, used as part of the drug discovery
pipeline, and includes both uni-molecular and bi-molecular
reactions. This paper introduces a novel framework, towered
actor critic (TAC), to handle multiple action types. The TAC
framework is general in that it is designed to be combined with
any existing RL algorithms for continuous action space. We
combine it with TD3 to empirically obtain significantly better
results than existing methods in the drug discovery setting.
TAC is also applied to RL benchmarks in OpenAI Gym and
results show that our framework can improve, or at least does
not hurt, performance relative to standard TD3.

Introduction
Reinforcement Learning (RL) has pushed the frontiers of
various domains such as robotics (OpenAI et al. 2019; Kahn,
Abbeel, and Levine 2020), game playing agents (Silver et al.
2017; Anthony, Tian, and Barber 2017), and economics
(Zheng et al. 2020). RL is a core problem of artificial in-
telligence where an agent is situated in an environment and
must learn to adapt its policy to maximize a reward signal. At
each time step t, the agent interacts with an MDP described
by the tuple M = (S,A,P , r), where S is the state space,
A is the action space, P is the state transition function, and
r is the reward function. The agent observes a state s ∈ S,
chooses an action a ∈ A according to its policy π : S →
A, and then receives a reward and next state s′ ∈ S from
the environment. Most of the existing RL algorithms are fo-
cused on choosing “monotonic” actions i.e, the action space
is restricted to A ∈ Rm, where m is the dimension of action
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space. However, several complex and crucial applications in
the real world, like reaction-based molecule generation (as
part of the drug discovery pipeline) (Gottipati et al. 2020b),
symbolic regression (Udrescu and Tegmark 2020) need to
accommodate multiple action types (uni-molecular templates
and bi-molecular templates in the case of molecule genera-
tion). For bi-molecular templates, one needs to further choose
a molecule (i.e, reactant) selection action corresponding to
the template selection action. Existing RL algorithms do
not implicitly exploit such multiple action types and their
hierarchical structure. While hierarchical actor critic (Levy,
Platt, and Saenko 2019; Röder et al. 2020) or option critic
(Bacon, Harb, and Precup 2016) deal with breaking action
sequences over long time horizons into clear spatial or tem-
poral sub-goals, they do not necessarily deal with having
to choose between multiple action types at every time step.
To achieve this, we remodel the critic to process multiple
action types and combine them at an intermediate level to
predict a hypothetical next state. It is then followed by an-
other neural network to compute the value function V (s′) of
that hypothetical next state. To the best of our knowledge,
the proposed approach of a “towered” actor-critic (TAC) is
the only algorithm that handles multiple action types in this
manner.

Many successful and exciting applications of deep neural
networks and RL have been reported over the last decade in
the field of de novo molecule generation. These generative
systems were found to be extremely efficient in optimiz-
ing structures of molecules to fit a desired properties profile
such as drug-likeness, predicted activity against biological
targets, lipophilicity, etc. (Gómez-Bombarelli et al. 2018;
You et al. 2018b; Olivecrona et al. 2017; Segler et al. 2017;
Popova, Isayev, and Tropsha 2018). However, only a few
recent publications have identified and proposed solutions to
the long standing challenge of embedding synthetic accessi-
bility into the molecule generation framework. Some of them
reported use of RL to tackle this problem (Gottipati et al.
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2020b). These systems use reaction-based transformations
of molecules as a set of actions available to the agent. In this
context, there are two types of reactions / transformations (ac-
tions): uni-molecular and bi-molecular. These approaches are
limited because they are built on existing RL algorithms and
do not leverage these multiple action types. Later sections
elaborate on this issue and propose a novel architecture and
training paradigm to demonstrate superior performance over
the existing state of the art de novo drug design approaches.

While this work is focused on applying the TAC formula-
tion to reaction based drug discovery, there are several other
real world use cases where TAC is applicable and can boost
performance. For example, in a simplistic case of symbolic
regression, the mathematical operators can be classified into
“unitary operators” (like abs, negation etc.) that operate on
a single number and “binary operators” (like addition, sub-
traction etc.) that operate on two numbers and thus, another
number to be operated upon has to be chosen by the policy
network. Symbolic regression along with other use cases like
learning-based active localization (Chaplot, Parisotto, and
Salakhutdinov 2018) are described in detail in the Appendix.

We further show that this approach can be applied to any
Markov Decision Process (MDP), including the ones without
any inherent requirement for towered structure in the policy
network, and obtain superior performance on a wide range
of tasks. This paper’s contributions are:

1. The introduction of a novel mechanism, towered actor
critic, to train agents on MDPs with multiple action types.

2. TAC is applied to the task of reaction-based de novo drug
design (where there are different action types at every time
step) and show significant improvement over the existing
state-of-the-art results.

3. TAC is also applied to standard RL tasks that do not have
an inherent pyramidal/hierarchical structure of actions. Per-
formance is comparable, or improved, relative to TD3 on
several continuous action OpenAI Gym environments.

Related Work
This section summarizes the most relevant background on
RL and drug discovery.

Reinforcement Learning
While most of the RL research is focused on choosing mono-
tonic actions, there are few approaches that attempted to
deal with multiple action types. Hierarchical actor critic
(Levy, Platt, and Saenko 2019; Röder et al. 2020; Masson
and Konidaris 2015) learns by creating low-level and high-
level sub goals for more sample efficient training. Option
critic (Bacon, Harb, and Precup 2016), (Kumar and Precup
2017) learns to choose temporally extended actions. Some
approaches (Lakshminarayanan et al. 2016) use a combina-
tion of both spatially and temporally extended actions, but
none of these approaches deal with having to choose actions
from multiple action types at the same time step. The specific
architecture used for the critic in this work is inspired by the
after state MDP (Sutton and Barto 2018) and the successor
representation (Dayan 1993) (that attempts to solve the re-
ward revaluation problem by providing a way to represent the

relationship between different states via storing future state
occupancies) and is detailed further in the later section. In the
domain of continuous action space RL, several improvements
have been proposed over the original deterministic policy gra-
dient algorithm (Silver et al. 2014). Deep deterministic policy
gradient (DDPG) (Lillicrap et al. 2015) extended the work to
include deeper networks and demonstrated superior results
over a wide range of RL environments. Twin delayed deep de-
terministic networks (TD3) (Fujimoto, van Hoof, and Meger
2018) tackled the problem of overestimation bias by employ-
ing multiple tricks including: using the minimum value of
two critics while computing the temporal difference target
and making delayed updates to the policy network.

Though the TAC framework is designed to be combined
with any existing RL algorithm for continuous action spaces,
this paper combines and benchmarks TAC with TD3.

De Novo Drug Design
There has been significant progress in the application of ma-
chine learning methods for de novo drug design. Molecule
generation is a well-studied problem and has been handled
by several methods like genetic or evolutionary algorithms
(Brown et al. (2004); Jensen (2019); Ahn et al. (2020)), gen-
erative models (Simonovsky and Komodakis (2018); Gómez-
Bombarelli et al. (2018); Winter et al. (2019a); Jin, Barzilay,
and Jaakkola (2018); Popova, Isayev, and Tropsha (2018);
Olivecrona et al. (2017); Griffiths and Hernández-Lobato
(2020)) and RL based approaches (You et al. (2018a); Zhou
et al. (2018)). Although these methods perform very well
on popular benchmarks, such as Guacamol (Brown et al.
(2019)), the molecules proposed can be infeasible to synthe-
size in the real world. This issue has also been systematically
highlighted by Gao and Coley (2020), where a synthesis
planning program is used to quantify how often molecules
proposed by some of the popular generative models cannot
be readily synthesized.

Recent research has tried to ameliorate this problem, such
as when Bradshaw et al. (2019) used a method based on vari-
ational auto-encoders to optimize for a target property using
single-step reactions. A similar solution was proposed by
Korovina et al. (2019), where the authors employed random
selection of reactants and reaction conditions in a multi-step
process to generate molecules. These generated molecules
were then subjected to property evaluation. More recently,
Gottipati et al. (2020b) introduced PGFS (policy gradient for
forward synthesis) which attempted to generate molecules via
multi-step chemical synthesis and at the same time optimized
the generation towards maximising an objective function. As
an extension of PGFS, Gottipati et al. (2020a) optimized for
the maximum reward objective instead of the usual cumu-
lative return objective that helped in slightly improving the
performance.

PGFS operates in the realm of off-policy continuous action
space. The actor module Π that consists of f and π networks
predicts a reaction template and a continuous action (which
is in the space defined by the feature representations of all
second reactants). Specifically, the f network takes in the
current state s (reactant-1 R(1)) as input and outputs the best
reaction template T . The π network then takes in both R(1)
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Figure 1: PGFS agent (comprising actor and critic modules)
and environment.

and T as inputs and outputs the continuous action a. The
environment then takes in a and computes k closest valid
second reactants (R(2)). For each of these R(2)s, it computes
the corresponding product of the chemical reaction between
R(1) and R(2), computes the reward for the obtained product
and chooses the product (next state, st+1) that corresponds
to the highest reward. All these quantities are stored in the
replay buffer. Thus, by formulating forward synthesis as a
continuous action space RL problem, PGFS is able to lever-
age TD3 (Fujimoto, van Hoof, and Meger 2018) to update
the actor (f , π) and critic (Q) networks.

Specifically, the authors used the following optimizations:

minL(θQ) =
1

N

∑
i

|yi −Q(R
(1)
i , {Ti, ai})|2 (1)

where, the parameters θQ of the critic (Q network) are up-
dated by minimizing mean squared error between the critic
value of the current state (R(1)) action ({Ti, ai}) pair and the
1-step TD target yi

minL(θf,π) = −
∑
i

Critic(R
(1)
i ,Actor(R(1)

i )) (2)

where, the parameters θf and θπ of the actor networks f
and π respectively are updated by minimizing the negative
(equivalent to maximizing) of the critic’s value of current
state-action pair, where the actions Ti and ai are computed
by the actor networks.

minL(θf ) = −
∑
i

(T
(1)
i log(f(R

(1)
i ))) (3)

where, the parameters θf of the f -network were also updated
by minimizing the cross entropy loss between the output of
the f -network f(R

(1)
i ) and the actual valid template T (1)

i

chosen. This is done to encourage the f -network to predict
valid templates during the initial phases of training.

PGFS used two types of reactions (reaction templates):
uni-molecular reactions (also called transformation reactions)
and bi-molecular reactions. If we consider Equation 1, we
notice that for both types of reactions, the same update rule
is being used i.e, even for uni-molecular reactions that do
not require an action a (because, uni-molecular reactions do
not need a second reactant R(2)), the critic is still evaluating
such actions and using it to update its parameters. Similarly,
in Equation 2, the parameters of the π network are getting
updated even though its output is not used by the environ-
ment in case of uni-molecular reactions. Thus, every time a
uni-molecular template is chosen by the f -network, the pa-
rameters of the critic and π networks are getting updated by
arbitrary gradients. Since the percent of uni-molecular tem-
plates with respect to all available templates is sufficiently
small (about 15 percent), there might not be any noticeable
damage if the task under consideration doesn’t need to utilize
lot of uni-molecular templates. Nonetheless, the overall train-
ing becomes slower and we recognize this as a fundamental
issue that couldn’t be addressed with any of the existing RL
algorithms.

TAC For De Novo Drug Design
The environment (underlying MDP) in reaction based
molecule generation assumes that the transition function is
deterministic (i.e., the environment computes only the most
probable product for a given state and action). Under this
assumption, the value function of the next state V (si+1) is
exactly equal to Q(si, ai) value of the current state si, action
ai pair. Also, we are interested in the quality (reward) of the
product P (si+1) and not necessarily on the multiple ways
in which the same product can be obtained using different
chemical reactions (state-action pairs). Thus, drawing further
inspiration from after state MDP (Sutton and Barto 2018)
enables us to (hypothetically) break the “critic” down into
a two step process by introducing two modules in the critic:
product predictor module (that predicts the product P of the
chemical reaction) and value function predictor module (that
predicts the value function V (si+1) of the next state si+1 i.e,
of the product P ). While the after state MDP learns the value
functions of next states by computing all of the next states in
the environment, we incorporate a (hypothetical) next state
prediction module inside the critic and enable gradient prop-
agation through this module to enable it to learn potentially
more robust representations of the next state that are useful
for the task under consideration. The critic architecture is
also inspired from work in successor representations (Dayan
1993). Instead of representing the value function as a prod-
uct of a reward vector and a successor representation matrix
(or their corresponding learned variants (Barreto et al. 2017;
Borsa et al. 2018; Hansen et al. 2019; Machado, Bellemare,
and Bowling 2018)), we represent the action-value function
Q(s, a) as a composite function of the product prediction
module (i.e, next state prediction module) and the value net-
work. Thus, when the task is changed, (i.e, when the reward
to be optimized is changed) the product prediction modules
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Figure 2: Illustration of TAC-FS in the context of reaction-
based molecule generation for handling multiple action types
(uni-molecular and bi-molecular templates)

need not be retrained (analogous to how the successor repre-
sentations need not be retrained always).

The product predictor module has two different networks,
U -net (for processing uni-molecular reactions) and B-net
(for processing bi-molecular reactions). U -net takes in R(1)

and template T as inputs and computes the (hypothetical)
product

Pu = UθU (R(1), T )

B-net takes R(1), and action a as inputs and computes the
(hypothetical) product:

Pb = BθB (R(1), a)

These are then combined by:

P = Pu × (1−Rmask) + Pb ×Rmask,

where P represents the final (hypothetical) product of the
chemical reaction and Rmask is a reaction mask that is equal
to 1 when its a bi-molecular reaction and 0 if uni-molecular.
The final predicted product obtained from these product pre-
dictor modules is passed through value network V to get the
Q(s, a).

Like in PGFS, the actor module takes in reactant at the
current time step R(1) and outputs the best template T and
action a. Additionally, the actor module in the proposed ap-
proach - TAC-FS (towered actor critic for forward synthesis)
also identifies the type of reaction template (whether uni-
molecular or bi-molecular) and outputs the corresponding
binary mask Rmask. The f network computes T which is a
tensor that contains the probability of each template. Invalid
templates are masked off using a binary template mask Tmask

(as, only a few reaction templates are valid for a given R(1)).
It is then passed through a gumbel softmax layer to obtain
the template in one-hot tensor format, which indicates the
final chosen template.

T = f(R(1))

T = T � Tmask

T = GumbelSoftmax(T, τ)

(4)

Based on the chosen template, the environment identifies
the type of template (either uni-molecular or bi-molecular).
We then compute the action a by passing the reactant R(1)

and chosen template T as inputs to the π network. Thus, the
actor module finally returns T , a and Rmask.

During the “backward” phase, after sampling a random
minibatch from the buffer, the networks are updated as fol-
lows: First, we compute the action ai+1, template Ti+1 and
Rmaski+1 for the next time step given state (R(1)

i+1) using the
actor module.

Ti+1, ai+1, Rmaski+1
= Actor-target(R(1)

i+1) (5)

We then add clipped noise to the action output ai+1

ai+1 = ai+1 + ε, ε ∼ clip(N (0, σ̃),−c, c) (6)

The one-step TD target can then be computed as:

yi = ri+ min
j=1,2

Critic-targetj(R
(1)
i+1, {Ti+1, Rmaski+1 , ai+1})

(7)
The value loss computes the mean square error between the
one-step TD target computed above and the Q(s, a) value
of current state R(1)

i , action (Ti, ai) pair. Using the critic,
we compute the predicted product Pi and the Q(s, a) value
which are then used to compute the value loss and an auxiliary
loss.

Pi, Qi = CRITIC(R
(1)
i , {Ti, Rmaski , ai}) (8)

Lvalue =
∑
i

|yi −Qi|2 (9)

We also ensure that the predicted product representation is
almost the same as the actual product representation by mini-
mizing an auxiliary loss which is mean squared error between
these two representations:

Lauxil = |Pi −R(1)
i+1|

2, (10)

where Pi is product predicted by the critic, and R(1)
i+1 is the

actual product. Thus, the overall critic loss is a weighted sum
of the value loss and auxiliary loss

Lcritic = Lvalue + αLauxil, (11)

where α is a hyper parameter.
The parameters of the critic networks (θU , θB , θV ) are

updated by minimizing the overall critic loss Lcritic. Note that
we actually use two critics (to prevent overestimation bias, as
elaborated by Fujimoto, van Hoof, and Meger (2018)), and
follow the same steps in Equations 6-10 for both the critics
to update their parameters.

The policy loss is defined as negative of the critic’s value
for the current state-action pair, where the actions are com-
puted by the current version of the actor networks.

Lpolicy = −
∑
i

CRITIC(R
(1)
i ,ACTOR(R

(1)
i )) (12)

Similar to (Gottipati et al. 2020b), to enable faster training,
we also aim to minimize an auxilary loss, which is the cross
entropy loss between the template tensor predicted by the
f -network and the corresponding template T obtained for
the reactant R(1).

Lauxil-actor = −
∑
i

(T
(1)
i log(f(R

(1)
i ))) (13)
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Figure 3: TAC-generic Architecture

The overall actor loss is a weighted sum of the policy loss
Lpolicy and the actor’s auxilary loss Lauxil-actor:

Lactor = Lpolicy + βLauxil-actor, (14)

where β is a hyper parameter. The parameters of the f and π
networks are updated by minimizing the actor loss Lactor. The
pseudo-code for the entire algorithm is provided in Algorithm
1.

TAC-Generic
There are a few challenges/differences to directly applying
the TAC formulation to environments that do not have/need
an inherent hierarchical structure in action space. In TAC-
generic, the MDP remains unchanged (i.e., the environment
still takes in the same state and action as inputs and returns
the same reward and next state as the original MDP). Only
the actor and critic networks as well as the algorithm for
updating these networks are being changed. Let us introduce
a hypothetical action a(1) (analogous to T in TAC-FS) of
dimensions the same as that of the actual action a. In the
actor network, unlike the drug discovery environment, we do
not need this other action type (hypothetical action) as inputs
to the higher levels of network. Thus, we can re-structure
the actor network as having some base layers followed by a
head-network f1, and one main network f2 that outputs the
real action a spawning from the output of a base network
f (which can be interpreted as a robust representation of
the state for the task under consideration). Thus, the actor
module consists of the base network f that takes in state s
as input and computes some representation r = f(s). The
first head-network f1 takes in the representation r as input
and computes the hypothetical action a(1). The other head
network f2 also takes in r as input and computes the action
a = f2(r). Note that this hypothetical action a(1) is not used
by the environment.

We construct the critic network in such a way that it takes
in state s, multiple action types (a(1) and a), and action mask
Ma as inputs, and then computes the Q(s, a) value. Let us
consider a neural network C1 that takes in the current state
s and the hypothetical action a(1) as inputs and predicts the
hypothetical next state (technically, the output of C1 need not
be in the space of next states. It could be of any dimensions
and in any representation space):

h1 = C1(s, a(1)).

Algorithm 1 TAC-FS

procedure ACTOR(R(1))
T ← f(R(1))
T ← T � Tmask
T ← GumbelSoftmax(T, τ)
Rmask ← Env.reaction type(T )
a← π(R(1), T )
return T, a,Rmask

procedure CRITIC(R(1), T ,Rmask a)
Pu ← Unet(R(1), T )
Pb ← Bnet(R(1), a, T )
P ← Pu × (1−Rmask) + Pb ×Rmask
return P , V (P )

procedure ENV.STEP(R(1), T, a)
R(2) ← GetValidReactants(T )
A← kNN(a,R(2))

R
(1)
t+1 ← ForwardReaction(R(1), T,A)

Rewards← ScoringFunction(R
(1)
t+1)

rt, R
(1)
t+1, done← arg maxRewards

return R(1)
t+1, rt, done

procedure BACKWARD(buffer minibatch)
Ti+1, ai+1, Rmaski+1

← Actor-target(R(1)
i+1)

ai+1 ← ai+1 + ε, ε ∼ clip(N (0, σ̃),−c, c)
Ai+1 ← {Ti+1, Rmaski+1 , ai+1}
Pi+1, Qi+1 ← minj=1,2 Critic-targetj(R

(1)
i+1, Ai+1)

yi ← ri + γQi+1

Pi, Qi ← CRITIC(R
(1)
i , {Ti, Rmaski , ai})

Lvalue ←
∑
i |yi −Qi)|2

Lauxil ← |Pi −R(1)
i+1|2

Lcritic ← Lvalue + αLauxil

Lpolicy ← −
∑
i CRITIC(R

(1)
i ,ACTOR(R

(1)
i ))

Lauxil-actor ← −
∑
i(T

(1)
i log(f(R

(1)
i )))

Lactor ← Lpolicy + βLauxil-actor
minLactor,Lcritic

procedure MAIN(f , π, U , B, V )
for episode = 1, M do

sample R(1)
0

for t = 0, N do
Tt, at, Rmaskt ← Actor(R(1)

t )
R

(1)
t+1, rt, done← ENV.STEP(R

(1)
t , Tt, at)

store (R
(1)
t , Tt, at, R

(1)
t+1, rt, Rmask, done) in

buffer
minibatch← random sample from buffer
BACKWARD(minibatch)

One such “hypothetical next state prediction modules”
(HyNeSP) can be assigned to process the action a as well:

h2 = C2(s, a).

The hypothetical next state h to be finally chosen from the
two hypothetical next states h1 and h2 is determined by the
action mask Ma which is a binary tensor. Similar to the drug
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discovery setting, we introduce a new network V that takes
in a hypothetical next state h as input and predicts it’s value
function.

To summarize, the critic module takes in state st, hypothet-
ical action a(1), action a and action mask Ma and computes
the action value Q(s, a). The Ci networks first predict the
hypothetical next state, These are then combined using the
action mask as follows:

h = h1 ×Ma + h2 × (1−Ma).

This hypothetical next state h is then passed through the
V -network to obtain the the corresponding value function
V (h).

After sampling a random minibatch from the buffer, the
actor and critic networks are updated as follows: The actions
for the next time step a(1)i+1 and ai+1 are computed by passing
the next state s′ through the target actor network:

a
(1)
i+1, ai+1 = Actor-target(si+1).

Unlike the drug discovery setting, the action maskMa cannot
be determined by the environment. Thus, we first set the
action mask Ma = 0 and compute the actual one-step TD
targets and then compute the corresponding value loss:

yi = ri + γ min
i=1,2

critic-target(si+1, a
(1)
i+1, ai+1, [0])

Lvalue = MSE(yi,CRITIC(si, a
(1)
i , ai, [0])),

where MSE is the mean squared error. We then set the action
mask Ma = 1 and perform the same computations to get
auxiliary loss Lcritic-auxil:

yiauxil = ri + γ min
i=1,2

critic-target(si+1, a
(1)
i+1, ai+1, [1])

Lcritic-auxil = MSE(yiauxil ,CRITIC(si, a
(1)
i , ai, [1])).

The overall critic loss is a weighted sum of value loss and
critic’s auxiliary loss:

Lcritic = Lvalue + β × Lcritic-auxil,

where β is a hyper parameter that could also be learned (for
example, in a meta learning setup). The parameters of the
critic networks (C1, C2, V ) are then updated by minimizing
this critic loss Lcritic.

Similarly, the overall actor loss is computed as follows:

Lpolicy = −CRITIC(si,ACTOR(si), [0])

Lactor-auxil = −CRITIC(si,ACTOR(si), [1])

Lactor = Lpolicy + β × Lactor-auxil.

All the actor networks (f , f1, f2) are updated by minimiz-
ing the actor loss Lactor. The complete algorithm is summa-
rized in Algorithm 2. While the entire discussion so far has
been only focused on having two action types, the algorithm
can be used for any number of layers and is detailed in the
Appendix.

Experiments
We first elaborate on the results in drug discovery setting and
then go over results on several OpenAI Gym environments.

Algorithm 2 TAC-generic

procedure ACTOR(s)
r ← base(s)
a(1) ← f1(r)
a← f2(r)
return a(1), a

procedure CRITIC(s, a(1), a Ma)
h(1) ← C1(a(1), s)
h(2) ← C2(a, s)
h = h(1) ×Ma + h(2) × (1−Ma)
return V (h′)

procedure ENV.STEP(st, at)
return st+1, rt, done

procedure BACKWARD(buffer minibatch)
a
(1)
i+1, ai+1 ← Actor-target(si+1)

yi ← ri + γcritic-target(si+1, a
(1)
i+1, ai+1, [0])

Lvalue ←MSE(yi,CRITIC(si, a
(1)
i , ai, [0]))

yiauxil ← ri + γcritic-target(si+1, a
(1)
i+1, ai+1, [1])

Lcritic-auxil ←MSE(yiauxil ,CRITIC(si, a
(1)
i , ai, [1]))

Lcritic = Lvalue + β × Lcritic-auxil
Lpolicy ← −CRITIC(si,ACTOR(si), [0])
Lactor-auxil ← −CRITIC(si,ACTOR(si), [1])
Lactor ← Lpolicy + β × Lactor-auxil
minLactor,Lcritic

procedure MAIN(f , f1 , f2, C1, c2, V )
for episode = 1, M do

for t = 0, N do
a
(1)
t , at ← ACTOR(st)
st+1, rt, done← ENV.STEP(st, at)

store (st, a
(1)
t , at, st+1, rt, done) in buffer

minibatch← random sample from buffer
BACKWARD(minibatch)

De Novo Drug Design
We compare the performance of the proposed TAC-FS algo-
rithm with five of the existing approaches: GCPN - graph
convolutional policy network (You et al. 2018a), JT-VAE
- junction tree variational auto encoder (Jin, Barzilay, and
Jaakkola 2018), MSO - molecular swarm optimization (Win-
ter et al. 2019b), PGFS, RS - random search baseline also in-
troduced by (Gottipati et al. 2020b), and the Enamine dataset
containing all the initial reactants used in this study. It is
important to note that only RS, PGFS and TAC-FS incorpo-
rates the reaction based synthesis in its molecule generation
framework, thus ensuring that all the generated molecules are
theoretically synthesizable based on the synthesis path that
is simultaneously generated by these methods. While QED
(measures drug-likeness) and clogP (measures lipophilicity)
are the standard metrics that are used to measure the perfor-
mance of any molecule generation algorithm, Gottipati et al.
(2020b) introduced three new performance metrics (based
on HIV targets) that attempt to mimic a real world use case
of drug discovery. We thus compare the performance on all
these five reward metrics.
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To ensure a fair comparison, TAC-FS is trained for only
400,000 time steps, same as that of PGFS and the results
included in the Tables 1 and 2 were obtained by fixing α = 0
and β = 1 for all the TAC-FS experiments. We noted much
better performance of TAC-FS when the parameters α and
β are tuned and are reported only in the Appendix. Finally,
while in PGFS, the authors performed hyper-parameter tun-
ing over the state feature representations, action feature repre-
sentations, policy noise and noise clip, we tuned only for pol-
icy noise and noise clip parameters. In Table 1, we computed
the highest reward achieved over the entire training process
of 400,000 time steps. We can observe that TAC-FS improved
over the existing state-of-the-art on all the tasks. In Table 2
we computed the mean and standard deviation of the top-100
rewards achieved over the entire training process. The val-
ues reported in Table 1 and Table 2 for ENAMINEBB, RS,
GCPN(You et al. 2018a), JT-VAE(Jin, Barzilay, and Jaakkola
2018), MSO (Winter et al. 2019a), PGFS (Gottipati et al.
2020b) are taken from Gottipati et al. (2020b). While for
HIV-RT, both TAC-FS and PGFS achieved similar results,
we see that for HIV-INT and HIV-CCR5, TAC-FS performed
significantly better than existing state-of-the-art. To further
prove the effectiveness of the proposed approach, we provide
the statistics of molecules obtained under the applicability
domain of the models for HIV-targets, inference reward re-
sults, plots of actor loss, critic loss, auxiliary losses, rewards,
inference rewards in the supplementary material.

Method QED clogP RT INT CCR5

ENAMINEBB 0.948 5.51 7.49 6.71 8.63
RS 0.948 8.86 7.65 7.25 8.86

GCPN 0.948 7.98 7.45 6.45 8.62
JT-VAE 0.925 5.30 7.58 7.25 8.23
MSO 0.948 26.10 7.76 7.28 8.77
PGFS 0.948 27.22 7.89 7.55 9.05

TAC-FS 0.948 28.97 7.92 7.75 9.17

Table 1: Comparison of maximum reward achieved over the
entire course of training.

Method RT INT CCR5

ENAMINEBB 6.87± 0.11 6.32± 0.12 7.10± 0.27
RS 7.39± 0.10 6.87± 0.13 8.65± 0.06

GCPN 7.07± 0.10 6.18± 0.09 7.99± 0.12
JT-VAE 7.20± 0.12 6.75± 0.14 7.60± 0.16
MSO 7.46± 0.12 6.85± 0.10 8.23± 0.24
PGFS 7.81± 0.03 7.16± 0.09 8.96± 0.04

TAC-FS 7.79± 0.018 7.54± 0.022 9.07± 0.05

Table 2: Comparison of mean (and standard deviation) of
top-100 rewards achieved over the entire course of training

TAC-Generic
We tested on ten gym environments: For each environment,
we ran the experiment for 1 million time steps and 5 ran-
dom seeds. Evaluation reward is computed after every 5000
steps by taking the average reward achieved over 10 episodes,

Figure 4: Performance comparison of generic TAC vs. TD3
averaged over 5 random seeds on 10 gym environments. We
can observe that generic TAC performed better than, or same
as TD3 on all the environments.

initialized with a fixed random seed that is not used during
training. For a fair comparison, we did not perform any hyper-
parameter tuning other than for the β parameter. The baseline
comparison we used is the TD3 algorithm with exactly same
network architecture as that of TAC, and exactly same param-
eters (discount factor, policy noise, noise clip etc..). Thus, the
only difference is the β parameter. For TD3, it is fixed at zero,
where as for TAC, it is tuned to compute an appropriate value
for the task under consideration. As we can observe from
Figure 4, TAC performed same or better than the baseline on
all the 10 environments we tested.

Conclusion And Future Work
In this work, we introduced a novel RL algorithm that solved
the severe limitation of the existing reaction based molecule
generation framework and demonstrated better results than
existing state-of-the-art on all the five tasks. We further ex-
amined the algorithm on MDPs that do not have any inherent
hierarchical structure and demonstrated comparable or better
performance over TD3 on a wide range of Gym environ-
ments.
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Röder, F.; Eppe, M.; Nguyen, P. D. H.; and Wermter, S. 2020.
Curious Hierarchical Actor-Critic Reinforcement Learning.
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