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Abstract

Molecule optimization is a fundamental task for accelerat-
ing drug discovery, with the goal of generating new valid
molecules that maximize multiple drug properties while
maintaining similarity to the input molecule. Existing gen-
erative models and reinforcement learning approaches made
initial success, but still face difficulties in simultaneously
optimizing multiple drug properties. To address such chal-
lenges, we propose the MultI-constraint MOlecule SAm-
pling (MIMOSA) approach, a sampling framework to use in-
put molecule as an initial guess and sample molecules from
the target distribution. MIMOSA first pretrains two property-
agnostic graph neural networks (GNNs) for molecule topol-
ogy and substructure-type prediction, where a substructure
can be either atom or single ring. For each iteration, MIMOSA
uses the GNNs’ prediction and employs three basic sub-
structure operations (add, replace, delete) to generate new
molecules and associated weights. The weights can encode
multiple constraints including similarity and drug property
constraints, upon which we select promising molecules for
next iteration. MIMOSA enables flexible encoding of multiple
property- and similarity-constraints and can efficiently gen-
erate new molecules that satisfy various property constraints
and achieved up to 49.1% relative improvement over the best
baseline in terms of success rate.

1 Introduction
Designing molecules with desirable properties is a funda-
mental task in drug discovery. Traditional methods such
as high throughput screening (HTS) tests large compound
libraries to identify molecules with desirable properties,
which are inefficient and costly (Polishchuk, Madzhidov,
and Varnek 2013; Huang et al. 2020a,b). Two important ma-
chine learning tasks have been studied in this context:

• Molecule generation aims at creating new and diverse
molecule graphs with some desirable properties (Jin,
Barzilay, and Jaakkola 2018; You et al. 2018);

• Molecule optimization takes a more targeted approach
to find molecule Y with improved drug properties such
as drug likeness and biological activity given an input
molecule X (Jin et al. 2019; Zhou et al. 2019).
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Existing works on molecule optimization and molecule
generation tasks can be categorized as generative mod-
els (Kusner, Paige, and Hernández-Lobato 2017; Dai et al.
2018; Gómez-Bombarelli et al. 2018) and reinforcement
learning (RL) methods (You et al. 2018; Zhou et al. 2019).
Most existing works only optimize a single property, while
multiple properties need to be optimized in order to de-
velop viable drug candidates. Recently, (Jin, Barzilay, and
Jaakkola 2020b) proposed a molecule generation algorithm
that can optimize multiple properties which is a related but
different task than molecule optimization since they do not
take any specific input molecule as the anchor. Nigam et al.
(2020) proposed a genetic algorithm (GA) for molecule gen-
eration and optimization. In this work, we propose a sam-
pling based strategy to tackle the molecule optimization for
multi-properties.

To allow for flexible and efficient molecule optimization
on multiple properties, we propose a new sampling based
molecule optimization framework named MultI-constraint
MOlecule SAmpling (MIMOSA). MIMOSA uses the input
molecule as an initial guess and pretrains two graph neural
networks (GNNs) on molecule topology and substructure-
type predictions to produce better molecule embedding for
sampling, where substructure can be either an atom or a ring.
In each iteration, MIMOSA uses the prediction and employs
three basic substructure operations (add, replace, delete) to
generate new molecule candidates and associated weights.
The weights thus effectively encode multiple constraints in-
cluding similarity to the input molecule and various drug
properties, upon which we accept promising molecules for
next iteration sampling. MIMOSA iteratively produces new
molecule candidates and can efficiently draw molecules that
satisfy all constraints. The main contributions of our paper
are listed below.

• A new sampling framework for flexible encoding of mul-
tiple constraints. We reformulate molecule optimization
task in a sampling framework to draw molecules from the
target distribution (Eq. (1)). The framework provides flex-
ible and efficient encoding of multi-property and similar-
ity constraints as a target distribution (Section 3.1).

• Efficient sampling augmented by GNN pretraining. With
the help of two pretrained GNN models, we designed
a Markov Chain Monte Carlo (MCMC) based molecule
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sampling method that enables efficient sampling from a
target distribution (Section 3.2). This enables MIMOSA to
leverage vast amount molecule data in an unsupervised
manner without the need of any knowledge of molecule
pairs (i.e., an input molecule and an enhanced molecule)
as many existing methods do.

• Guaranteed unbiased sampling. We provide theoretical
analysis to show that the proposed MCMC method draws
unbiased samples from the target distribution, i.e., ex-
hibiting ergodicity and convergence (Section 3.3).

We compare MIMOSA with state-of-the-art baselines on op-
timizing several important properties across multiple set-
tings, MIMOSA achieves 43.7% success rate (49.1% relative
improvement over the best baseline GA (Nigam et al. 2020))
when optimizing DRD and PLogP jointly.

2 Related Work
Generative models for molecule optimization project an in-
put molecule to a latent space, then search in the latent
space for new and better molecules. For example, Gómez-
Bombarelli et al. (2018), Blaschke et al. (2018) utilized
SMILES strings as molecule representations to generate
molecules. Since string-based approaches often create many
invalid molecules, Kusner, Paige, and Hernández-Lobato
(2017) and Dai et al. (2018) designed grammar constraints
to improve the chemical validity. Recently, Nigam et al.
(2020) proposed to explore molecule generation using a ge-
netic algorithm. Another line of works focus on graph rep-
resentations of molecules, e.g., CGVAE (Constrained Graph
VAE) (Liu et al. 2018), JTVAE (Junction Tree VAE) based
approaches (Jin, Barzilay, and Jaakkola 2018; Jin et al. 2019;
Jin, Barzilay, and Jaakkola 2020a; Fu, Xiao, and Sun 2020;
Fu et al. 2020a, 2021). Although almost perfect on gener-
ating valid molecules, most of them rely on paired data as
training data.
Reinforcement learning for molecule optimization are also
developed on top of molecule generators for achieving de-
sirable properties. For example, Olivecrona et al. (2017),
Putin (2018), Popova, Isayev, and Tropsha (2018) applied
RL techniques on top of a string generator to generate
SMILES strings. They struggled with validity of the gener-
ated chemical structures. Recently, You et al. (2018), Zhou
et al. (2019) leverage deep reinforcement learning to gen-
erate molecular graph, achieving perfect validity. However,
all these methods require pre-training on a specific dataset,
which makes their exploration ability limited by the biases
present in the training data. More recently, Jin, Barzilay, and
Jaakkola (2020b) focused on molecule generation method
for creating molecules with multiple properties. However,
this approach can lead to arbitrary diverse structures (not
optimized for a specific input molecule) and assumes each
property is associated with specific molecular substructures
which are not applicable to all properties.

In this paper, we proposed a new molecule optimization
method that casts molecule optimization as a sampling prob-
lem, which provides an efficient and flexible framework for
optimizing multiple constraints (e.g., similarity constraint,
multiple property constraints) simultaneously.

3 The MIMOSA Method
3.1 Molecule Optimization via Sampling
Slightly different from general molecule generation that
focuses on generating valid and diverse molecules, the
molecule optimization task takes a molecule X as input, and
aims to obtain a new molecule Y that is not only similar to
X but also have more desirable drug properties than X .

We formulate a Markov Chain Monte Carlo (MCMC)
based sampling strategy. The MCMC methods are popular
Bayesian sampling approaches of estimating posterior dis-
tributions. They allow drawing samples from complex dis-
tributions with desirable sampling efficiency (Welling and
Teh 2011) as long as unnormalized probability density for
samples can be calculated.

Here to formulate molecule optimization that aim to op-
timize on similarity between the input molecule X and the
target molecules Y as well as M molecular properties of
Y , P1, · · · ,PM (the higher score the better). We propose to
draw Y from the unnormalized target distribution in Eq. (1).

pX(Y ) ∝ 1(Y ) exp

(
η0sim(X,Y ) + η1

(
P1(Y )− P1(X)

)
+ · · ·+ ηM

(
PM (Y )− PM (X)

))
(1)

where η0, η1, · · · , ηM ∈ R+ are the hyperparameters that
control the strength of various terms, 1(Y ) is an indica-
tor function measuring whether the molecule Y is a valid
molecule. It is added to ensure the validity of the generated
molecule Y . The target distribution is designed to encode
any number of type of constraints, including similarity con-
straint and multiple drug property constraints. Here the use
of exp is to guarantee pX(Y ) is valid probability distribu-
tion. Usually we define the similarity sim(X,Y ) as in Def. 1
and measured using Eq. (2).

Definition 1 (Tanimoto Similarity of Molecules). Denote
SX and SY as fragment descriptor1 sets of molecule X and
Y , respectively. The Tanimoto similarity between X and Y
is given by

sim(X,Y ) =
|SX ∩ SY |
|SX ∪ SY |

∈ [0, 1], (2)

where ∩,∪ represent the intersection and union of two bi-
nary vectors respectively; | · | denotes the cardinality of a
set. Higher value means more similar.

3.2 The MIMOSA Method for Molecule Sampling
Fig. 1 illustrates the overall procedure of MIMOSA, which
can be decomposed into the following steps: (1) Pre-
train GNN. MIMOSA pre-trains two graph neural networks
(GNNs) using a large number of unlabeled molecules, which
will be used in the sampling process. Then MIMOSA iterates

1Fragment descriptors, represent selected substructures (frag-
ments) of 2D molecular graphs and their occurrences in molecules;
they constitute one of the most important types of molecular de-
scriptors (Baskin and Varnek 2009).
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Figure 1: The Multi-constraint Molecule Sampling for Molecule Optimization(MIMOSA) framework illustrated using a single
molecule. In Step I (Pretrain GNN), MIMOSA pretrains two property-agnostic GNNs for molecule topology and substructure-
type prediction. Then, in Step II (Candidate Generation), MIMOSA uses the prediction and employs three basic substructure
operations (ADD, REPLACE and DELETE) to generate new molecule candidates. In Step III (Candidate Selection), MIMOSA
assigns weights for new molecule. The weights can encode multiple constraints including similarity and drug property con-
straints, upon which we accept promising molecules for next iteration. MIMOSA iteratively edits the molecule and can efficiently
draw molecule samples.

Notations short explanation
X , Y Input molecule, target molecule.

sim(X,Y ) ∈ [0, 1] Similarity of molecules X and Y .
pX(Y ) Target dist. when optimizing X , Eq. 1.
M # of properties to optimize.

γ0, γ1, · · · , γM ∈ R+ Hyperparameter in Target dist. pX(Y ).
P1, · · · ,PM Molecular properties to optimize.

1(Y ) Validity Indicator func. of molecule Y .
K Depth of GNN.

h
(k)
v ∈ R300 Node embedding v in the k-th layer.
C1/C2 # of all possible substructures/bonds.
v; sv/s

′
v node v; substructures of v.

fv/ge one-hot node/edge feature.
ŷv/mGNN(Y, v) substructure distribution. Eq. (6).
ẑv/bGNN(Y, v) probability of v will expand. Eq. (9).

yv/zv ground truth label of node v
Y/Y ′ current/next Sample.

Sadd, Sreplace, Sdelete sampling operation from Y to Y ′.

Table 1: Notations used in the paper.

over the following two steps. (2) Candidate Generation. We
generate and score molecule candidates via modification op-
erations (add, delete, replace) to the current molecule. (3)
Candidate Selection. We perform MCMC sampling to select
promising molecule candidates for the next sampling itera-
tion by repeating Step 2 and 3. Note that all modification
operations are on the substructure level, where a substruc-
ture can be either an atom or a single ring. The substructure
set includes all 118 atoms and 31 single rings.

(I) Pretrain GNNs for Substructure-type and
Molecule Topology Prediction
To provide accurate molecule representation, we propose to
pretrain molecule embeddings on large molecule datasets.
Since we consider molecules in graph representations where
each substructure is a node, we develop two GNN based
pretraining tasks to assist molecule modification. These two
GNNs will assess the probability of each substructure con-
ditioned on all the other substructures in the molecule graph.

Mathematically, in molecular graph Y = (V,E), we have
one-hot node feature fv ∈ {0, 1}C1 for every node v ∈ V
and one-hot edge feature ge ∈ {0, 1}C2 for every edge
e = (u, v) ∈ E. C1 and C2 are the number of substructures
and the number of bond types, respectively. In our experi-
ment, C1 = 149, including 118 atoms, 31 single rings, and
C2 = 4 correspond to the four bond types. The node and
edge features can be found in Fu et al. (2020b).

The two Graph Neural Networks (GNN) (Hu et al. 2019)
are learned with these node and edge features and the same
molecule graph to learn an embedding vector hv for every
node v ∈ V .

h(k)
v =ReLU

(
MLP

(
CONCAT

( ∑
u∈N (v)∪{v}

h(k−1)
u ,

∑
e=(u,v):u∈N (v)

g(k−1)
e

)))
,

(3)
where the layer k = 1, · · · ,K; CONCAT(·, ·) is the con-
catenation of two vectors;N (v) is the set of all neighbors of
v; h(0)

v is the initial node embedding fv . After K layers of
GNN, we have the final node embedding h

(K)
v for node v.

In our experiment, K = 5.
Using the same GNN architecture, we trained two GNN

models: one for substructure-type prediction called mGNN
and one for molecule topology prediction called bGNN: We
choose to train two separate GNNs instead of sharing a sin-
gle GNN because sufficient unlabeled molecule samples ex-
ist and the two tasks are very different in nature.

The mGNN model aims at multi-class classification for
predicting the substructure type of a masked node. The
mGNN model outputs the type of an individual substruc-
ture conditioned on all other substructures and their connec-
tions. We mask the individual substructure, replace it with
a special masked indicator following (Hu et al. 2019). Sup-
pose we only mask one substructure for each molecule dur-
ing training and v is the masked substructure (i.e., node), yv
is the node label corresponding to masked substructure type,
we add fully-connected (FC) layers with softmax activation

127



(Eq. (4)) to predict the type of the node v.

ŷv = Softmax
(
FC(h(K)

v )
)
. (4)

where ŷv is a C1 dimension vector, indicating the predicted
probability of all possible substructures. Multi-class cross
entropy loss (Eq. (5)) is used to guide the training of GNN:

L(yv, ŷv) = −
C1∑
i=1

(
(yv)i log(ŷv)i

)
, (5)

where yv is the groundtruth, one-hot vector. C1 is number
of all substructures (atoms and single rings), (yv)i is i-th
element of vector yv .

To summarize, the prediction of mGNN is defined as

ŷv , mGNN(Y,mask = v) = mGNN(Y, v), (6)

where in a given molecule Y the node v is masked, mGNN
predicts the substructure distribution on masked node v,
which is denoted ŷv .

The bGNN model aims at binary classification for predict-
ing the molecule topology. The goal of bGNN is to predict
whether a node will expand. To provide training labels for
bGNN, we set the leaf nodes (nodes with degree 1) with la-
bel zv = 0 as we assume they are no longer expanding. And
we set label zv = 1 on the non-leaf nodes that are adjacent
to leaf nodes as those nodes expanded (to the leaf nodes).
The prediction is done via

ẑv = Sigmoid
(
FC(h(K)

v )
)
, (7)

where FC is two-layer fully-connected layers (of 50 neurons
followed by 1 neuron). h(K)

v is defined in Eq. (3), the node
embedding of v produced by GNN. Binary cross-entropy
loss is used to guide the training:

L(zv, ẑv) = −zv log(ẑv)− (1− zv) log(1− ẑv). (8)

Since the total number of unlabeled molecules is large, when
training bGNN we randomly select one substructure v for
each molecule to speed up the pretraining.

In sum, prediction of bGNN is defined as

ẑv , bGNN(Y, v), (9)

where v is a node in molecule Y , ẑv is the probability that v
will expand.

(II) Candidate Generation via Substructure
Modification Operation
With the help of mGNN and bGNN, we define substructure
modification operations namely replace, add or delete on
input molecule Y :

• Replace a substructure. At node v, the original substruc-
ture category is sv .

1. We mask v in Y , evaluate the substructure distribution
in v via mGNN, i.e., ŷv = mGNN(Y, v), as Eq. (6).

2. Then we sample a new substructure s′v from the
multinomial distribution ŷv , denoted by s′v ∼
Multinomial(ŷv).

3. At node v, we replace the original substructure sv with
new substructure s′v to produce the new molecule Y ′.

The whole operation is denoted as

Y ′ ∼ Sreplace(Y
′|Y ). (10)

• Add a substructure. Suppose we want to add a substruc-
ture as leaf node (denoted as v) connecting to an existing
node u in current molecule Y . The substructure category
of v is denoted sv , which we want to predict.

1. We evaluate the probability that node u has a leaf node
v with help of bGNN in Eq. (9), i.e.,

ẑu = bGNN(Y, u) ∈ [0, 1].

2. Suppose the above prediction is to add a leaf node v.
We then generate a new molecule Y ′ via adding v to Y
via a new edge (u, v).

3. In Y ′, sv , the substructure of v is unknown. We
will predict its substructure using mGNN, i.e., ŷv =
mGNN(Y ′, v), following Eq. (6).

4. We sample a new substructure s′v from the multinomial
distribution ŷv and complete the new molecule Y ′.

The whole operation is denoted as

Y ′ ∼ Sadd(Y ′|Y ). (11)

• Delete a substructure. We delete a leaf node v in current
molecule Y . It is denoted

Y ′ ∼ Sdelete(Y
′|Y ). (12)

In the MCMC process, S∗(Y ′|Y ) indicates the sequential
sampling process from previous sample Y to next sample
Y ′. And the very first sample is the input X .
Handling Bond Types and Rings. Since the number of
possible bonds are small (single, double, triple, aromatic),
we enumerate all and choose the one with largest pX(Y ).
In some case, basic operation would generate invalid
molecules. Based on the indicator function in target distri-
bution in Eq. (1), the density is equal to 0. Thus, we perform
validity check using RDKit (https://www.rdkit.org/) to fil-
ter out the new molecule graphs that are not valid. When
adding/replacing a ring, there might be multiple choices to
connect to its neighbor. We enumerate all possible choices
and retain all valid molecules.

(III) Candidate Selection via MCMC Sampling
The set of generated candidate molecules can be grouped
as three sets based on the type of substructure modification
they received, namely, replace set Sreplace, add set Sadd, and
delete set Sdelete. MIMOSA uses the Gibbs sampling (Ge-
man and Geman 1984), a particular type of MCMC, for
molecule candidate selection. Gibbs sampling algorithm
generates an instance from the distribution of each variable
in sequential or random order (Levine and Casella 2006),
conditional on the current values of the other variables.
Here molecules from the three sets will be sampled with
different sampling weights. Their weights are designed
to satisfy the detailed balance condition (Brooks et al. 2011).
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Sampling Sreplace. For molecules produced by the “replace”
operation, the weight in sampling wr is given by Eq. (13).

wr =
pX(Y ′) · [mGNN(Y, v)]s′v
pX(Y ) · [mGNN(Y, v)]sv

, (13)

where PX(·) is the unnormalized target distribution for
optimizing X , defined in Eq. (1), [mGNN(Y, v)]sv is the
predicted probability of the substructure sv in the prediction
distribution mGNN(Y, v). The acceptance rate in the
proposal is min{1, wr}. If the proposal is accepted, we use
the new prediction s′v to replace origin substructure sv in
current molecule Y and produce the new molecule Y ′.

Sampling Sadd. For molecules produced by the “add” oper-
ation, the weight in sampling is given by Eq. (14).

wa =
pX(Y ′) · bGNN(Y, u) · [mGNN(Y ′, v)]sv

pX(Y ) · (1− bGNN(Y, u))
, (14)

where The acceptance rate in the proposal is min{1, wa}.
Sampling Sdelete. For these molecules produced by “delete”
operation, the weight in sampling is given by Eq. (15).

wd =
pX(Y ′) ·

(
1− bGNN(Y ′, u)

)
pX(Y ) · bGNN(Y ′, u) · [mGNN(Y, v)]sv

, (15)

where v is the deleted node, leaf node (with degree 1) in
molecular graph of Y . u and v are connected in Y . The ac-
ceptance rate in the proposal is min{1, wd}.
Soft-constraint Encoding. For these operations, any number
or type of constraints (e.g., here the similarity and drug prop-
erty constraints) can be encoded in pX(Y ) and pX(Y ′) and
thus reflected in the weights wr, wa, wd.

For a single-chain MCMC, we construct the transition
kernel as given by Eq. (16).

Y ′ ∼


Sreplace(Y

′| Y ), prob γ1, accept w. min{1, wr},
Sadd(Y ′| Y ), prob. γ2, accept w. min{1, wa},
Sdelete(Y

′| Y ), prob. γ3, accept w. min{1, wd},
(16)

where γ1, γ2, γ3 ∈ R+ are hyperparameters that determine
the sampling probabilities from the three molecule sets. In
Section 3.3, we show the transition kernel will leave the tar-
get distribution pX(Y ) invariant for arbitrary γ1, γ2, γ3 sat-
isfying γ1 + γ2 + γ3 = 1 and γ2 = γ3. After molecules
are sampled, they will be accepted with their corresponding
acceptance rates related to wr, wa, wd.

The MIMOSA method is summarized in Algorithm 1. To
accelerate the sampling procedure, we also deploy a multi-
chain strategy (Liu, Liang, and Wong 2000): during each
step, we use N samples for each state, with each sample
generating multiple proposals. Also, during burn-in period
(Step 12 in Algorithm 1), we pick the molecules with high-
est density for efficiency (Brooks et al. 2011). We retain N
proposals in iterative sampling.

3.3 Analysis of the MCMC Algorithm
Our MCMC method draws unbiased samples from the target
distribution, i.e., exhibiting ergodicity and convergence. The
proofs of Lemma 1 and 2 can be found in Fu et al. (2020b).

Algorithm 1 MIMOSA for Molecule Optimization

1: Input: molecule X , # of Particle N , max # of sampling
iter. Tmax, # of burn-in iter. Tburnin

2: Output: Generated molecules Φ.
3: # Step (I) Pretrain GNN
4: Train mGNN (Eq.6), bGNN (Eq.9).
5: Candidate set Θ = {X}, Output set Φ = {}.
6: for iter = 1, · · · , Tmax do
7: # Step (II) Candidate Generation.
8: Candidate Pool Ψ = {}.
9: for molecule Z in Θ do

10: Generate candidates Z ′ via editing Z using sub-
structure operations; validity check; add Z ′ in Ψ.

11: end for
12: Θ = {}.
13: # Step (III) Candidate Selection.
14: if iter < Tburnin then
15: Select N molecules with highest density value

(Eq. 1) from Ψ and add them into Θ.
16: else
17: Draw N molecules from Ψ using importance sam-

pling (∝ weight wr in Eq. (13), wa in Eq. (14) or
wd in Eq. (15)) and add to Θ.

18: end if
19: Φ = Φ ∪Θ.
20: end for

Theorem 1. Suppose {Y1, Y2, · · · , Yn} is the chain of
molecules sampled via MCMC based on transition ker-
nel defined in Eq. (16), with initial state X , then the
Markov chain is ergodic with stationary distribution pX(Y )
in Eq. (1). That is, empirical estimate (time average over
Y1, Y2, · · · , Yn) is equal to target value (space average over
pX(Y )), i.e., lim

n−→+∞
1
n

∑n
i=1 f(Yi) =

∫
f(Y )pX(Y )dY

holds for any integratable function f .

Proof Sketch. We split the proof into Lemma 1 and 2.
First, regarding the ergodicity, it is sufficient to prove the
irreducibility, aperiodicity of the Markov chain (Lemma 1).
Then, to show that pX(Y ) is maintained invariant for the
whole chain, in Lemma 2, we show that detailed balance
condition holds for any neighboring samples (Yi and Yi+1).
Then we strengthen this results on the whole chain.

Lemma 1. The Markov chain of the sampled molecules
({Y1, · · · , Yn}, starting at X , based on transition kernel in
Eq. (16)) is ergodic over the target distribution pX(Y ).

Lemma 2. pX(Y ) is maintained as the invariant distribu-
tion for the whole Markov chain produced by MCMC tran-
sition kernel defined in Eq. (16).

4 Experiment
4.1 Experimental Setup
Dataset and Molecular Properties. We use 2 million
molecules from ZINC database (Sterling and Irwin 2015;
Hu et al. 2019) to train both mGNN and bGNN. Follow-
ing (You et al. 2018; Jin et al. 2019; Zhou et al. 2019; Jin,
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Barzilay, and Jaakkola 2020b; Fu, Xiao, and Sun 2020; Fu
et al. 2020a), we focus on the molecular properties below.
For all scores, the higher the better.
• QED (Quantitative Estimate of Drug likeness) is an indi-

cator of drug-likeness (Bickerton et al. 2012).
• DRD (Dopamine Receptor) measures a molecule’s bio-

logical activity against a biological target dopamine type
2 receptor (Comings, Muhleman, and Gysin 1996).

• PLogP (Penalized LogP) is the log of the partition ratio of
the solute between octanol and water minus the synthetic
accessibility score and number of long cycles (Ertl and
Schuffenhauer 2009).

Note that PLogP is more sensitive to the change of local
molecule structures, while DRD and QED are related to both
local and global molecule structures. For chemically valid
molecules, their QED and LogP scores can be evaluated us-
ing the RDkit package (https://www.rdkit.org/). DRD2 can
be evaluated using well-trained model (Jin et al. 2019; Fu,
Xiao, and Sun 2020; Fu et al. 2020a).
Baseline Methods. We compare MIMOSA with the following
molecule optimization baselines. The parameter setting of
these methods are provided in Fu et al. (2020b).
• JTVAE (Junction Tree Variational Auto-Encoder) (Jin,

Barzilay, and Jaakkola 2018) is a generative model that
learns latent space to generate desired molecule. It also
uses an encoder-decoder architecture and leverage a junc-
tion tree to simplify molecule generation procedure.

• VJTNN (Variational Junction Tree Encoder-Decoder) (Jin
et al. 2019) improves over JTVAE by leveraging adversar-
ial learning and attention.

• GCPN (Graph Convolutional Policy Network) (You et al.
2018). GCPN is state-of-the-art reinforcement learning
based approach on molecule optimization.

• GA (Genetic Algorithm) (Nigam et al. 2020) is a genetic
algorithm that explores chemical space efficiently.

Details on Implementation, Features, Dataset Construction,
Evaluation Strategies are in Fu et al. (2020b).

Metrics We consider the following metrics for evaluation.
• Similarity between the input and generated molecule,

measured by Tanimoto similarity over Morgan finger-
prints (Rogers and Hahn 2010), defined in Eq. (2).

• Property Improvement of generated molecule in QED,
DRD, and PLogP. It is defined as the difference of the
property score between generated molecules Y and input
molecule X , i.e., property(Y )− property(X).
• Success Rate (SR) based on similarity and property im-

provement between input molecule X and generated
molecule Y . We follow the same definitions of SR as in
(Jin et al. 2019) (See details in Fu et al. (2020b)).

4.2 Results
Exp 1. Optimize Multiple Properties
To evaluate model performance on optimizing multiple drug
properties, we consider the following combinations of prop-
erty constraints:

(1) optimize QED (drug likeness) and PLogP (solubility);
(2) optimize DRD (biological activity against dopamine type
2 receptor ) and PLogP (solubility).

Optimizing PLogP and QED
Method Similarity PLogP-Imp. QED-Imp. Success
JTVAE 0.16±0.08 0.14±0.27 0.01±0.10 0.4%
VJTNN 0.17±0.06 0.46±0.35 0.02±0.09 1.0%
GCPN 0.25±0.15 0.56±0.25 0.06±0.08 11.3%
GA 0.35±0.16 0.93±0.67 0.09±0.07 24.9%
MIMOSA 0.42±0.17 0.93±0.48 0.10±0.09 32.0%

Optimizing PLogP and DRD
Method Similarity PLogP-Imp. DRD-Imp. Success
JTVAE 0.18±0.08 0.20±0.18 0.18±0.09 0.8%
VJTNN 0.18±0.08 0.55±0.16 0.27±0.05 3.4%
GCPN 0.23±0.12 0.38±0.25 0.25±0.11 20.4%
GA 0.38±0.16 0.68±0.49 0.20±0.16 29.3%
MIMOSA 0.54±0.16 0.75±0.48 0.35±0.20 43.7%

Table 2: Exp 1. Optimizing Multiple Properties.

From Table 2, MIMOSA has significantly better and stable
performance on all metrics, with 28.5% relative higher suc-
cess rate in optimizing both QED and PLogP, and 49.1% rel-
ative higher success rate in optimizing both DRD and PLogP
compared with the second best algorithm GA. The GA al-
gorithm uses genetic algorithm for local structure editing,
hence is expected to work well on optimizing properties that
are sensitive to local structural changes, such as joint opti-
mizing both QED and PLogP where PLogP is related to the
polarity of a molecule and is sensitive to the change of lo-
cal structure. Because of the local editing of GA, GA does
not perform well on optimizing both DRD and PLogP since
DRD is less sensitive to the change of local structures.

Optimizing QED
Method Similarity QED-Improve Success
JTVAE 0.30±0.09 0.17±0.12 17.4%
VJTNN 0.37±0.11 0.20±0.05 37.6%
GCPN 0.32±0.14 0.20±0.09 26.5%
GA 0.43±0.17 0.17±0.11 42.5%
MIMOSA 0.50±0.30 0.20±0.14 47.8%

Optimizing DRD
Method Similarity DRD-Improve Success
JTVAE 0.31±0.07 0.34±0.17 25.6%
VJTNN 0.36±0.09 0.40±0.20 40.5%
GCPN 0.30±0.07 0.35±0.20 27.8%
GA 0.46±0.14 0.25±0.10 37.5%
MIMOSA 0.57±0.29 0.43±0.29 48.3%

Optimizing PLogP
Method Similarity PLogP-Improve Success
JTVAE 0.30±0.09 0.28±0.17 2.9%
VJTNN 0.38± 0.08 0.47±0.24 14.3%
GCPN 0.32± 0.07 0.33±0.19 7.8%
GA 0.53±0.15 0.99±0.54 92.8%
MIMOSA 0.56± 0.17 0.94±0.47 94.0%

Table 3: Exp 2. Optimizing Single Property.
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(a) Input Molecule X;
QED:0.72; PLogP:-
3.60

(b) sim: 0.66; QED:
0.93; PLogP: -1.2

(c) sim: 0.59; QED:
0.93; PLogP: -1.1

(d) sim: 0.57; QED:
0.92; PLogP:-1.6

(e) Input Molecule X;
QED: 0.71; PLogP: -
3.9

(f) sim: 0.837; QED:
0.90; PLogP: -0.6

(g) sim: 0.872; QED:
0.89; PLogP: -1.2

(h) sim: 0.812; QED:
0.88; PLogP: -1.4

Figure 2: Exp 3. Examples of “QED & PLogP” optimization. (Upper), the imidazole ring in the input molecule (a) is replaced
by less polar rings thiazole (b and c) and thiadiazol (d). Since more polar indicates lower PLogP, the output molecules increase
PLogP while maintaining the molecular scaffold. (Lower), the PLogP of input molecule (e) is increased by neutralizing the
ionized amine (g) or replacing with substructures with less electronegativity (f and h). These changes improve the QED.

Exp 2. Optimize Single Property
Since most baseline models were designed to optimize sin-
gle drug properties, we also conduct experiments to com-
pare MIMOSA with them on optimizing the following single
properties: (1) DRD; (2) QED and (3) PLogP.

From the results shown in Table 3, we can see that when
optimizing a single drug property, MIMOSA still achieved
the best performance overall, with 12.5% relative higher
success rate in optimizing QED compared with the second
best model GA, and 28.8% relative higher success rate in
optimizing both DRD compared with the second best algo-
rithm VJTNN. Among the baseline models, algorithms such
as JTVAE, VJTNN, and GCPN that were designed to op-
timize single property have good performance in property
improvement as expected, however they generate molecules
that have lower similarity hence the final success rates. Also,
GA has the lowest QED and DRD improvement maybe due
to its limitation in capturing global properties. High simi-
larity between the output and input molecules is a unique
requirement for the molecule optimization task, on which
MIMOSA significantly outperformed the other baselines.

Exp 3. Case Study
To further examine how MIMOSA can also effectively im-
prove properties that are sensitive to local structural change,
e.g., PLogP, we show two examples in Fig. 2. For the first
row, the imidazole ring in the input molecule (a) is replaced
by less polar five-member rings thiazole (b and c) and thiadi-
azol (d). Since PLogP is related to the polarity of a molecule:
more polar indicates lower PLogP. The generation results in
the increase of PLogP while maintaining the molecular scaf-
fold. For the second row, the PLogP of input molecule (e) is
increased by neutralizing the ionized amine (g) or replac-
ing with substructures with less electronegativity (f and h).
These changes would also help improve the drug likeness,

i.e., QED value.
Sampling Efficiency. The sampling complexity is O(NN2)
whereN the size of candidate set (e.g., 20) andN2 is the size
of the possible proposal set (< 200). Empirically, this entire
sampling process takes about 10-20 minutes for optimizing
one source molecule, which is very acceptable for molecule
optimization. And MCMC can directly operate with an un-
normalized distribution which is more efficient. Note that
all the existing methods for molecule optimization also uti-
lize RDKit in their learning process, either in preprocessing
steps for creating training data (Jin, Barzilay, and Jaakkola
2018; Jin et al. 2019), or inside their training procedure such
as using RDKit to evaluate reward for reinforcement learn-
ing (You et al. 2018; Popova, Isayev, and Tropsha 2018;
Zhou et al. 2019).

5 Conclusion
In this paper, we proposed MIMOSA, a new MCMC sam-
pling based method for molecule optimization. MIMOSA
pretrains GNNs and employs three basic substructure opera-
tions to generate new molecules and associated weights that
can encode multiple drug property constraints, upon which
we accept promising molecules for next iteration. MIMOSA
iteratively produces new molecule candidates and can effi-
ciently draw molecules that satisfy all constraints. MIMOSA
significantly outperformed several state of the arts baselines
for molecule optimization with 28.5% to 49.1% improve-
ment when optimizing PLogP+QED, and PLogP+DRD, re-
spectively.
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