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Abstract
Magnetic resonance (MR) image acquisition is an inherently
prolonged process, whose acceleration by obtaining multiple
undersampled images simultaneously through parallel
imaging has always been the subject of research. In this
paper, we propose the Dual-Octave Convolution
(Dual-OctConv), which is capable of learning multi-scale
spatial-frequency features from both real and imaginary
components, for fast parallel MR image reconstruction. By
reformulating the complex operations using octave
convolutions, our model shows a strong ability to capture
richer representations of MR images, while at the same time
greatly reducing the spatial redundancy. More specifically,
the input feature maps and convolutional kernels are first
split into two components (i.e., real and imaginary), which
are then divided into four groups according to their spatial
frequencies. Then, our Dual-OctConv conducts intra-group
information updating and inter-group information exchange
to aggregate the contextual information across different
groups. Our framework provides two appealing benefits: (i)
it encourages interactions between real and imaginary
components at various spatial frequencies to achieve richer
representational capacity, and (ii) it enlarges the receptive
field by learning multiple spatial-frequency features of both
the real and imaginary components. We evaluate the
performance of the proposed model on the acceleration of
multi-coil MR image reconstruction. Extensive experiments
are conducted on an in vivo knee dataset under different
undersampling patterns and acceleration factors. The
experimental results demonstrate the superiority of our
model in accelerated parallel MR image reconstruction. Our
code is available at: github.com/chunmeifeng/Dual-OctConv.

Introduction
Magnetic resonance (MR) imaging has become increasingly
popular in radiology and medicine over the past decade,
thanks to its advantages of being non-radiative, having a
high spatial-resolution, and providing superior soft tissue
contrast (Sun et al. 2018). However, a major limitation of
MR imaging is that it requires a much longer acquisition
time than other imaging techniques, e.g., computed tomog-
raphy (CT), X-Ray, and ultrasound (Wang et al. 2020). Re-
cently, great efforts have been devoted to accelerated MR
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Figure 1: Previous methods utilize vanilla convolutions (a)
to process the real- and imaginary-valued parts of an MR
image independently or complex convolutions (b) to jointly
deal with the two parts. In contrast, we propose Dual-
OctConv, which is a generalization of complex convolutions,
to process complex-valued inputs in a multi-frequency space
for more effective feature representations.

image reconstruction, which is typically achieved by recon-
structing the desired full images from undersampled mea-
sured data (Aggarwal, Mani, and Jacob 2018).

Parallel MR imaging is considered as one of the
most important achievements in accelerated MR imag-
ing (Knoll et al. 2019; Wang et al. 2017). Most studies (e.g.,
SENSE (Pruessmann et al. 1999), GRAPPA (Griswold et al.
2002), SPIRiT (Lustig and Pauly 2010)) take advantage of
spatial sensitivity and gradient coding to reduce the amount
of data required for reconstruction, thereby shortening the
imaging time. Moreover, compressed sensing (CS) is an im-
portant technique for fast MR image reconstruction (Feng
et al. 2019), which recovers the desired signal from k-space
data sampled below the Nyquist rate. Typical CS-based ap-
proaches adopt a sparsity prior (Liu et al. 2019), low-rank
sparse sampling (He et al. 2016; Haldar and Zhuo 2016), or
manifold learning (Nakarmi et al. 2017) for reconstruction.

More recently, with the renaissance of deep neural
networks, deep learning techniques (Zhou et al. 2021;
Feng et al. 2021), especially convolutional neural networks
(CNNs), have been widely used for parallel MR imag-
ing (Ramani and Fessler 2010; Haldar and Zhuo 2016).
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Since models are trained offline over large-scale data, only
a few extra online samples are required for reconstruc-
tion. The model-based unrolling methods (Hammernik et al.
2018; Chen et al. 2019b) combine mathematical structures
(e.g., variational inference, compressed sensing) with deep
learning for fast MR image reconstruction. Moreover, ex-
tensive approaches (Kwon, Kim, and Park 2017; Schlemper
et al. 2019b,a; Sriram et al. 2020; Wang et al. 2020) pro-
pose end-to-end learnable models to remove the aliasing ar-
tifacts from images that are reconstructed from undersam-
pled multi-coil k-space data. The mapping between a zero-
filled k-space and fully-sampled MR image is automatically
learned by CNNs, requiring no sub-problem division.

Most of the above approaches directly borrow vanilla con-
volutions used in standard CNNs for k-space data in MR
image reconstruction. However, vanilla convolutions are de-
signed for real-valued natural images, and cannot deal with
complex-valued inputs. To solve this, early studies (Wang
et al. 2016) simply discarded the imaginary part or processed
the real and imaginary parts independently for real-valued
convolutions (see Fig. 1(a)). To avoid information loss, com-
plex convolution (Trabelsi et al. 2018) has recently been pro-
posed to process complex-valued inputs and encourages in-
formation exchange between real and imaginary values (see
Fig. 1(b)). Though impressive, existing complex convolution
operations ignore the intrinsic multi-frequency property of
MR images, leading to limited single-scale contextual infor-
mation and high spatial redundancy in final representations.

To address these limitations, we take a further step to-
wards exploring multi-frequency representation learning in
parallel MR image reconstrucion (see Fig. 1(c)). We propose
a novel Dual-Octave Convolution (Dual-OctConv), which
enables our model to learn multi-frequency representations
of multi-coil MR images (Chen et al. 2019a). Unlike com-
plex convolutions, our Dual-OctConv processes the real (or
imaginary) part of MR image features by factorizing it into
high- and low-frequency components. The low-frequency
component shares information across neighboring locations,
and can thus be efficiently processed in low-resolution to en-
large the receptive field and reduce the spatial redundancy.
Finally, we combine the features of the real and imaginary
parts for reconstruction. Benefiting from Dual-OctConv, our
model has a more powerful capability in multi-scale repre-
sentation learning, and can thus better capture soft tissues
(e.g., vascular, muscles) with varying sizes and shapes.

Our main contributions are three-fold: First, we propose
multi-frequency feature representations for accelerated par-
allel MR image reconstruction, and demonstrate their abil-
ity to capture multi-scale contextual information. Second,
we devise the Dual-OctConv to deal with complex-valued
inputs in a multi-frequency representation space, and en-
courages information exchange across various frequency do-
mains. The Dual-OctConv is a generalization of the stan-
dard complex convolution, and endows our model several
appealing characteristics (e.g., larger receptive field, higher
flexibility, and computationally more efficient). Third, our
model shows significant performance improvements against
state-of-the-art algorithms on an in vivo knee dataset.

Related Work
Deep Learning in MR image reconstruction. Ever since
the pioneering works introducing CNNs for computer vision
tasks, such as image classification and face recognition, re-
searchers have made substantial efforts to improve medical
and clinical practice using deep learning techniques. (Wang
et al. 2016) proposed the first deep learning based MR im-
age reconstruction framework, which learns the mapping be-
tween fully-sampled single-coil MR images and their coun-
terpart data reconstructed from a zero-filled undersampled
k-space. A large number of networks were then developed
for MR image reconstruction, especially non-parallel recon-
struction (Sun et al. 2019). For example, (Yang et al. 2020)
proposed a model-based unrolling method, which formu-
lates the algorithm within a deep neural network, and trained
the network with a small amount of data. (Han et al. 2018)
employed U-Net to model a domain adaptation structure
that removes aliasing artifacts from corrupted images. Sim-
ilar works have also used deep residual networks (Lee et al.
2018), recursive dilated network (Sun et al. 2018), and Gen-
erative Adversarial Network (Quan, Nguyen-Duc, and Jeong
2018; Yang et al. 2017) to restore high-resolution MR im-
ages from undersampled k-space data.

In parallel imaging, one representative network is the
variational network (VN-Net) (Hammernik et al. 2018),
which combines the mathematical structure of the varia-
tional model with deep learning for fast multi-coil MR
image reconstruction. Another model-based deep frame-
work (Chen et al. 2019b) was designed with a split Breg-
man iterative algorithm to achieve accurate reconstruction
from multi-coil undersampled k-space data. To obtain high-
fidelity reconstructions, GrappaNet (Sriram et al. 2020) was
proposed to combine traditional parallel imaging methods
with deep neural networks. Recently, complex-valued rep-
resentations have demonstrated superiority in processing
complex-valued inputs (Trabelsi et al. 2018). For exam-
ple, Wang et al. (2020) applied complex convolutions to
jointly process real and imaginary values for comprehen-
sive feature representations. In contrast, our approach rep-
resents complex-valued input features in a multi-frequency
space. The Dual-OctConv, proposed for processing such
multi-frequency data, can capture richer contextual knowl-
edge, leading to significant improvement in performance.
Multi-Scale Representation Learning. Multi-scale infor-
mation has proven effective in various computer vision tasks
(e.g., image classification, object detection, semantic seg-
mentation). Several strategies have been proposed for multi-
scale representation learning, yielding significant perfor-
mance improvement in a number of tasks. For example,
Ke, Maire, and Yu (2017) proposed a multi-grid network to
propagate and integrate information across multiple scales
for image classification. Multi-scale information has also
been proven effective in restoring image details for image
enhancement (Nah, Hyun Kim, and Mu Lee 2017; Ren et al.
2016; Li et al. 2018). In addition, various well-known tech-
niques (e.g., FPN (Lin et al. 2017) and PSP (Zhao et al.
2017)) have been proposed for learning multi-scale repre-
sentations in object detection and segmentation tasks (Zhou
et al. 2020b,a). Recently, the Octave convolution (Chen et al.
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Dual-Octave Convolution
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Figure 2: Detailed design of our Dual-OctConv. X∈Cc×h×w
represents the input complex-valued feature maps, and Y∈
Cc×h×w indicates the corresponding output feature maps,
modulated by the Dual-OctConv. u and p denote the upsam-
pling and average pooling operations, respectively. Please
see Eq. (5) for more details.

2019a) was proposed to learn multi-scale features based on
the spatial frequency model, greatly improving performance
in natural image and video recognition.

In this work, we demonstrate the appealing properties of
the Octave convolution for accelerated parallel MR image
reconstruction, which helps to capture multi-scale informa-
tion from multiple spatial-frequency features. Based on this,
we propose a novel Dual-OctConv for accelerated parallel
MR image reconstruction, which enables our model to cap-
ture details of vasculatures and tissues with varying sizes
and shapes, yielding high-fidelity reconstructions.

Methodology
Problem Formulation
MR scanners acquire k-space data through the receiver coils
and then utilize an inverse multidimensional Fourier trans-
form to obtain the final MR images. In parallel imaging,
multiple receiver coils are used to simultaneously acquire
k-space data from the target under scanning.

Let A = MF∈CM×N denote the undersampled Fourier
encoding matrix, where F is the multidimensional Fourier
transform, and M is an undersampled mask operator. In par-
allel imaging, the same mask is used for all coils. The un-

dersampled k-space data from each coil can be expressed as

yi = A(Six), (1)

where i = 1, 2, ..., c, with c denoting the number of coils,
x∈CN×1 is the ground truth MR image, yi ∈CM×1(M <
<N) is the undersampled k-space data for the i-th coil, and
Si is a complex-valued diagonal matrix encoding the sen-
sitivity map of the i-th coil. The coil sensitivities modulate
the k-space data, which is measured by each coil. The coil
configuration and interactions with the anatomical structures
under scanning can affect coil sensitivities, so Si changes
across different scans. In addition, the obtained image will
contain aliasing artifacts, if the inverse Fourier transform is
directly applied to undersampled k-space data.

We can reconstruct x̂ with prior knowledge of its proper-
ties, which is formulated as the following problem:

x̂ = arg min
x

c∑
i=1

‖yi −A(Six)‖22 + λΨ(x), (2)

where Ψ is a regularization function and λ controls the trade-
off between the two terms.

The problem presented in Eq. (2) can be effectively re-
solved using CNNs, which avoids time-consuming numeri-
cal optimization and the need of a coil sensitivity map. Dur-
ing training, we update the network weights as follows:

θ̂ = min
θ

1

N

N∑
n=1

‖x′(n)− fθ(y′(n))‖1, (3)

where y′(n) is the n-th multi-channel image obtained from
the zero-filled k-space data, x′(n) is the n-th ground truth
multi-channel image, N is the total number of training sam-
ples, and fθ(·) is an end-to-end mapping function parame-
terized by θ, which contains a large number of adjustable
network weights. Training with Eq. (3) can reconstruct the
expected MR images, but the original information of the
data acquired in the k-space cannot be well preserved. If we
incorporate the undersampled k-space data into the data fi-
delity at the training stage, the network can yield improved
reconstruction results. For this purpose, we add the data fi-
delity units in our network, as in (Wang et al. 2020). After
the network is trained, we obtain a set of optimal parameters
θ̂ for the reconstruction of multi-channel image, and predict
the multi-channel image via x̂′ = fθ̂(y′). Finally, we use
an adaptive coil combination method (Wang et al. 2020) to
obtain the expected MR image from x̂′.

Dual-Octave Convolution
To obtain rich multi-scale context information, we first rep-
resent the multi-channel input with complex filters, and then
decompose it into low and high spatial frequency parts.
Let X ∈ Cc×h×w be the the complex feature maps with
c, h, and w denoting the number of channels, height, and
width, respectively. As illustrated in Fig. 2, we convolve
X = Xr + iXi with a complex filter matrix K = Kr + iKi.
Mathematically, we have[

<(K ∗X)
=(K ∗X)

]
=

[
Kr −Ki

Ki Kr

]
∗
[

Xr

Xi

]
, (4)
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Figure 3: The Dual-OctConv kernels. Green and pink
squares denotes the imaginary and real kernels, respectively.

where the matrices Kr and Ki represent real and imaginary
kernels, and vectors Xr and Xi represent real and imaginary
feature maps. Note that all the kernels and feature maps are
expressed by real matrices since the complex arithmetics are
simulated by real-valued entities.

To effectively fuse the real and imaginary parts of data
(i.e., Xr and Xi), we split them into low and high spatial fre-
quency groups Xr =

{
XL

r ,X
H
r

}
, Xi =

{
XL

i ,X
H
i

}
, where

XH ∈C(1−α)c×h×w capture the high-frequency fine details
of the data and XL ∈ Cαc×0.5h×0.5w determine the low-
frequency image contrast. Here, α∈ [0, 1] controls the ratio
of channels that are allocated to low-frequency and high-
frequency feature maps. Note that the Dual-OctConv will
turn into the standard complex convolution (Trabelsi et al.
2018) when α = 0. As shown in Fig. 3, the complex fil-
ter matrix is further expressed as KH

r =
[
KH→L

r ,KH→H
r

]
,

KH
i =

[
KH→L

i ,KH→H
i

]
, KL

r =
[
KL→H

r ,KL→L
r

]
, KL

i =[
KL→H

i ,KL→L
i

]
to convolve with XL

r , XL
i , XH

r and XH
i .

We then have

YL
r =f(XL

r ;KL→L
r ) + u(f(XL

r ;KL→H
r ), 2)

+ f(XH
r ;KL→L

i ) + u(f(XL
r ;KL→H

i ), 2),

YL
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i ;KL→L
r ) + u(f(XL

i ;KL→H
r ), 2)

+ f(XH
i ;KL→L
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YH
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r ) + f(p(XH

i , 2);KH→L
r ))

+ f(XH
i ;KH→H

i ) + f(p(XH
i , 2);KH→L

i )),

(5)

where f(X;K) denotes the convolution with parameters K,
u(X, k) denotes the upsampling operation with a factor of k
via nearest interpolation, p(X, k) denotes the average pool-
ing with kernel size k×k, and c(·) denotes the concatenation
operation. The real and imaginary parts are fused with the
operations {L→ L,H→ H} and {H→ L,L→ H}, which
correspond to the information updating and exchanging be-
tween high- and low-frequency feature maps. Therefore, our
Dual-OctConv is able to enlarge the receptive fields of the
low-frequency feature maps both in the real and imaginary
parts. To put this into perspective, after convolving the low-
frequency feature maps of the real and imaginary parts ( XL

r ,
XL

i ) with k × k complex convolution kernels, the receptive
fields of both achieve a 2× enlargement compared to the

vanilla convolution. Thus, our Dual-OctConv has a strong
ability to capture rich context information at different scales.
Finally, we compute the final output feature maps as

Y = u(c(YL
r ·YL

i )) + c(YH
r ·YH

i ). (6)

In a nutshell, we first split the real and imaginary parts of
input feature map X into low and high spatial frequency
components. Then, all these components are convolved with
the corresponding complex filter to obtain the new compo-
nents, where the information is effectively fused. Finally,
these components are concatenated to obtain the final out-
put feature maps Y.

Detailed Network Architecture
Based on the proposed Dual-OctConv, we design an effec-
tive deep learning model for accelerated parallel MR image
reconstruction. As shown in Fig. 4, our network consists of
ten Dual-OctConv blocks, each of which is comprised of
five Dual-OctConv layers which are organized in a residual
form. Our network can be trained in an end-to-end manner
with the training data from y′(n) and x′(n). The input is
an undersampled multi-coil k-space measurement and the
output is the reconstructed MR image. We first transform
the k-space data to obtain aliased multi-channel images, be-
fore feeding them into the following Dual-OctConv blocks.
Following (Wang et al. 2020), we add a data fidelity unit be-
tween consecutive blocks to preserve the original k-space in-
formation during training. In each layer except the last one,
we use ReLU as the activation function.

Experiments
Datasets
We use the in vivo multi-coil fully-sampled MR knee dataset
that is acquired using a clinical 3T Siemens Magnetom
Skyra scanner with a sequence called ‘Coronal Spin Density
Weighted without Fat Suppression’(Hammernik et al. 2018).
The imaging protocol is detailed as follows: 15-channel knee
coil, matrix size 320×320×20, TR=2750 ms, TE=27 ms, and
in-plane resolution = 0.49×0.44 mm2. There are 20 subjects
in total: 5 female/15 male, age 15-76, and BMI 20.46-32.94.
We randomly select 14 patients for training, 3 for validation,
and 3 for testing.

The pre-defined undersampling masks are used to ob-
tain the undersampled measurements. In our experiments,
we adopt four different k-space undersampling patterns, in-
cluding 1D uniform, 1D Cartesian, 2D random, and 2D ra-
dial. Examples of the undersampling patterns are illustrated
in Fig. 5 and Fig. 6. For 1D uniform, 1D Cartesian, and 2D
random masks, the acceleration rate is set to 3 and 5. For the
2D radial mask, 4× and 6× accelerations are adopted.

Implementation Details
We implement our model using Tensorflow 1.14 and per-
form experiments using an NVIDIA 1080Ti GPU with a
11GB memory. Following (Wang et al. 2020), we initialize
the magnitude and phase of the complex parameters using
Rayleigh and uniform distributions, respectively. The net-
work is trained using the Adam optimizer (Wang et al. 2020)
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Figure 4: Architecture of our network for parallel MR image reconstruction. The input is a set of zero-filled multi-coil k-space
measurements, while the output is the reconstructed multi-channel MR image. IFT represents the 2D inverse Fourier transform.

1D Uniform 1D Cartesian 2D Random 2D Radial
3x 5x 3x 5x 3x 5x 4x 6x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filing 24.406 0.676 23.579 0.655 25.922 0.726 24.550 0.685 30.540 0.827 27.078 0.750 31.026 0.826 28.107 0.766
SPIRiT 29.385 0.700 28.300 0.676 32.310 0.801 31.222 0.782 32.179 0.786 32.258 0.812 30.308 0.720 29.061 0.702

L1-SPIRiT 29.815 0.847 27.353 0.788 33.346 0.887 30.912 0.837 38.597 0.937 34.071 0.887 37.004 0.919 34.149 0.881
VN-Net 35.436 0.907 32.730 0.858 36.364 0.912 33.236 0.866 38.409 0.956 35.734 0.923 37.956 0.930 34.609 0.907

ComplexMRI 34.989 0.909 32.803 0.873 35.957 0.916 34.126 0.876 39.563 0.946 37.315 0.908 38.098 0.933 35.768 0.904
Dual-OctConv 36.243 0.919 34.128 0.885 37.029 0.923 34.944 0.884 39.964 0.948 38.279 0.930 38.607 0.935 36.584 0.908

Table 1: Quantitative comparison of state-of-the-art methods under different undersampling patterns. Best results are marked in
red.

SPIRiT L1-SPIRiT VN-Net DeepComplex Dual-OctConv

28.997/0.684 27.712/0.834 35.258/0.905 35.506/0.913 37.045/0.9291D Uniform 3×

Ground truth

0.10

0.08

0.06

0.04

0.02

0.00

Figure 5: Comparison of different methods in terms of reconstruction accuracy, with 1D undersampling patterns and a 3× accel-
eration rate. Reconstruction results and error maps are presented with corresponding quantitative measurements in PSNR/SSIM.

with initial learning rate 0.001 and weight decay 0.95. The
batch size is set to 4 and convolutional kernel size is set to
3×3. Each complex convolutional layer has 64 feature maps,
except for the last layer, which is determined by the concate-
nated real and imaginary channels of the data. The spatial
frequency ratio α is set to 0.125 by default.

To demonstrate its effectiveness, we compare our Dual-
OctConv with a number of state-of-the-art parallel MR
imaging approaches, including traditional methods (SPIRiT
(Lustig and Pauly 2010) and L1-SPIRiT (Murphy et al.
2010)) as well as CNN-based methods (VN-Net (Ham-

mernik et al. 2018) and ComplexMRI (Wang et al. 2020)).
All these methods are trained on the same dataset with their
default settings. For CNN-based methods, we re-trained
them according to the specifications with TensorFlow, using
their default parameter settings.

Quantitative Evaluation
We use peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) (Wang et al. 2020) for
quantitative evaluation. Table 1 reports the average PSNR
and SSIM results with respect to different undersam-
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1D Cartesian 3X 40.319/0.96139.592/0.95539.731/0.95236.364/0.930 33.348/0.804

2D Random 5× 36.957/0.93134.639/0.92534.698 0.92534.050/0.88632.281/0.821
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0.02

0.00

30.744/0.769 39.451/0.95838.469/0.95532.721/0.962 37.013/0.9432D Radial 4×

SPIRiT L1-SPIRiT VN-Net DeepComplex Dual-OctConvGround truth
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0.06

0.04

0.02

0.00

Figure 6: Comparison of different methods in terms of reconstruction accuracy, with 2D undersampling patterns and 4× and
5× acceleration rates, respectively. Reconstruction results and error maps are presented with corresponding quantitative mea-
surements in PSNR/SSIM.

pling patterns and acceleration factors. As can be seen,
our Dual-OctConv obtains consistent performance improve-
ments against the baseline methods, across various settings.
Additionally, we observe that the undersampling patterns
greatly affect the quality of reconstruction. For instance, the
2D sampling masks generally outperform the 1D masks. An-
other important observation is that the reconstruction be-
comes more difficult when the acceleration rate increases.

In particular, our model significantly outperforms previ-
ous methods under extremely challenging settings (i.e., 2D
masks with 5× and 6× acceleration). This can be attributed
to the powerful capability of our Dual-OctConv in aggregat-
ing rich contextual information of real and imaginary data.
Moreover, we see that our model show strong robustness un-
der various undersampling patterns and acceleration rates.

Qualitative Evaluation
For qualitative analysis, we first show the reconstructed im-
ages and corresponding error maps for 1D uniform with a
3× acceleration rate in Fig. 5. In general, our method pro-
vides the best-quality reconstructed images and significantly

reduces prediction errors. In contrast, the baseline meth-
ods yield large prediction errors and show unsatisfactory
performance. In particular, compared with the CNN-based
method, the traditional methods show obvious errors, such
as SPIRiT and L1-SPIRiT.

We next examine the results for 2D radial masks with a
4× acceleration rate and 2D random masks with a 5× accel-
eration rate. As shown in Fig. 6, CNN-based methods signif-
icantly improve the results with less errors and clearer struc-
tures, in comparison with SPIRiT and L1-SPIRiT. In par-
ticular, our Dual-OctConv produces higher-quality images
with clear details and minimum artifacts. The superior per-
formance is owed to the fact that Dual-OctConv can effec-
tively aggregate the information of various spatial frequen-
cies present in the real and imaginary parts of an MR image.

Ablation Studies
Firstly, we study the effects of the proposed Dual-OctConv.
For comparison, we build a baseline model by setting α=0,
which turns the Dual-OctConv into a standard complex con-
volution. We conduct experiments on the test set with 60
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Figure 7: Quantitative comparison of Dual-OctConv and the
baseline model (α= 0) in terms of PSNR and SSIM. Note
that ratio α=0 is equivalent to the complexMRI model.

Figure 8: Analysis of spatial frequency ratio (α) in terms of
PSNR and SSIM.

complex-valued images under the uniform undersampling
mask with a 3× acceleration rate. As illustrated in Fig. 7, our
Dual-OctConv significantly outperforms the baseline model,
especially in terms of SSIM. This reveals the superiority of
the Dual-OctConv in improving the reconstruction.

Secondly, we investigate the influence of the spatial fre-
quency ratio α for reconstruction. The ratio determines the
receptive fields in both the real and imaginary parts, and
also influences the fusion of these parts at multiple spatial
frequencies. As shown in Fig. 8, our model shows the best
PSNR and SSIM scores at α = 0.125, which means that
12.5% of the channels in the real and imaginary parts are
reduced to a low spatial frequency. When α becomes larger,
the performance quickly degrades due to severe information
loss induced by over-large ratios.

The number of network parameters increases as the num-
ber of blocks (bn) increases. Therefore, it is necessary to
choose an appropriate number of blocks to ensure that the
network structure reaches the highest reconstruction accu-
racy without inducing higher computational and memory
requirements. Herein, we carry out various experiments us-
ing different numbers of blocks. The results are presented
in Fig. 9. As can be seen from the curves, our model can
successfully reconstruct the MR images at bn = 4, and the
reconstruction accuracy reaches the highest at bn=10.

Finally, we study the FLOPs of Dual-OctConv with re-
spect to different α in Fig. 10. The number below each point
is the value of α, and α=0 refers to the baseline model. As

Figure 9: Performance comparison of our network with re-
spect to the number of Dual-OctConv blocks.

Figure 10: FLOPs analysis with respect to spatial frequency
ratios (α). The number below each point is the value of α.
We see that, under varioous settings (0<α< 1), our Dual-
OctConv is always more efficient and accurate than the base-
line model (α=0).

can be observed, a small α leads to improved performance
with a higher FLOPs. Moreover, compared with the base-
line model (i.e., α=0), our model consistently shows better
performance with much lower FLOPs.

Conclusion
In this work, we focus on spatial frequency feature ex-
pression in complex-valued data for parallel MR image re-
construction. For this purpose, we propose a novel Dual-
OctConv operation to deal with the real and imaginary com-
ponents at multiple spatial frequencies. By convolving the
feature maps of both the real and imaginary components un-
der different spatial resolutions, our Dual-OctConv is able to
reconstruct higher-quality images with significantly reduced
artifacts. We conduct extensive experiments on an in vivo
knee dataset under different settings of undersampling pat-
terns and acceleration rates, and the results demonstrate the
advantages of our model against state-of-the-art methods in
accelerated MR image reconstruction.
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