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Abstract

Shared on-demand mobility holds immense potential for ur-
ban transportation. However, finding ride matches in real-
time at urban scale is a very difficult combinatorial optimiza-
tion problem and mostly heuristic methods are applied. In this
work, we introduce a principled approach to this combinato-
rial problem. Our approach proceeds by constructing suitable
representations for rides and driver routes capturing their es-
sential spatio-temporal aspects in an appropriate vector space,
and defining a similarity metric in this space that expresses
matching utility. This then lets us mathematically model the
problem of finding ride matches as that of Near Neighbor
Search (NNS). Exploiting this modeling, we devise a novel
randomized spatio-temporal search algorithm for finding ride
matches based on the theory of Locality Sensitive Hashing
(LSH). Apart from being highly efficient, our algorithm en-
joys several practically useful properties and extension pos-
sibilities. Experiments with large real-world datasets show
that our algorithm consistently outperforms state-of-the-art
heuristic methods thereby proving its practical applicability.

Introduction

In this paper, we consider shared on-demand mobility. Its
importance for planning urban transportation lies in its
promise to provide a solution for the serious urban chal-
lenges of reducing excessive traffic congestion, resource
consumption and air pollution while providing efficient,
flexible and affordable mobility to people (Arnott and Small
1994; Caiazzo et al. 2013; Pant and Harrison 2013; Carrion
and Levinson 2012).

Real-time information and monitoring of urban mobility
and the ability to do large scale computation on the cloud
efficiently allow on-demand shared mobility platforms (e.g.
transportation network companies, on-demand microtransit
companies, etc., referred to as ridesharing platforms here) to
enable sharing of rides to unprecedented levels. A number of
works (Agatz et al. 2011; Santi et al. 2014; Friedrich, Hartl,
and Magg 2018) have studied urban traffic and confirmed the
tremendous potential of real-time urban-scale shared mobil-
ity to reduce the burden on urban transportation. In order to
exploit this potential, the cost of sharing (detours, increased
travel time, loss of privacy etc.) needs to be balanced with
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its utility (reduced traffic congestion, reduced resource con-
sumption, reduced air pollution, cheaper rides, use of high-
occupancy lanes etc.). Thus, ability to match rides minimiz-
ing cost while maximizing utility is of paramount impor-
tance for the success of shared mobility.

However, the urban scale and real-time nature of this
combinatorial problem make it extremely difficult to tackle.
Among all the solution approaches, those based on the
graph-theoretic framework of shareability network, intro-
duced in (Santi et al. 2014), have been most successful.
These approaches owe their success to the systematic mod-
eling of the match pool in a graph-theoretic setting which
then unlocks a rich set of techniques from graph theory to
tackle the challenge. The nodes of the network are either
rides or driver routes. An edge between two ride nodes rep-
resents feasibility of matching them together while an edge
between a ride node and and a driver route node represents
feasibility of adding the ride to the driver route. Here, feasi-
bility means that the platform-defined user experience con-
straints (e.g. maximum pickup wait, maximum detour etc.)
are satisfied for all the rides concerned.

The basic building block of shareability network is the
foundation for the highly influential work of (Alonso-Mora
et al. 2017) which provided a framework for high-capacity
ridesharing by computing cliques in the network and solving
an Integer Linear Program (ILP) over them. Their computa-
tionally prohibitive framework was subsequently simplified
in (Simonetto, Monteil, and Gambella 2019) relying on bi-
partite matching instead of solving an ILP, while still basing
their methodology on the shareability network. Subsequent
works of (Alonso-Mora, Wallar, and Rus 2017), (Yu and
Shen 2020) and (Shah, Lowalekar, and Varakantham 2020)
have all relied on the shareability network as their basis.

Computing the shareability network in real-time, how-
ever, is a computationally intensive task, and none of these
prior works effectively tackled this question in a principled
way. Comparing nodes pairwise for feasibility has a time
complexity of O(n?) and requires O(n?) calls to a routing
service for a match pool with n nodes. For a ridesharing
platform, it is common to have tens of thousands of nodes
in the match pool for a large urban region at peak commute
times. These platforms also employ several features to fur-
ther thicken the match pool, such as batching of arriving ride
requests, swapping already made matches, etc. To generate



the shareability network by a quadratic complexity search is
therefore ruled out.

Heuristic-based methods have been proposed and, unfor-
tunately, comprise the state-of-the-art to deal with this com-
binatorial challenge (Balardino and Santos 2015; Alonso-
Mora et al. 2017). For example, (Alonso-Mora et al. 2017)
suggests the heuristic of connecting a node with only a small
number of close-by nodes. However, it is not uncommon to
find large number of co-located ride requests at roughly the
same time (e.g outside train stops when trains arrive, outside
event venues when events end). Moreover, a service that lets
riders wait longer for cheaper rides or lets riders schedule
rides in advance needs to make matches even between far-
away nodes. Another class of heuristics often used in prac-
tice involves computing Haversine overlap between nodes to
approximate the true utility of matching them. However, the
feasibility and utility of matching is highly dependent on the
physical road network, and ignoring this knowledge yields
poor matching decisions.

Apart from ignoring the physical road network, another
common drawback of almost all the heuristic methods is that
they approximate the costs of routes (and hence match util-
ity) in terms of distances. However, the cost of a route de-
pends on the combination of a variety of factors such as dis-
tance, duration, tolls and taxes incurred along the route etc.
Inability to account for these various cost factors not only
renders the heuristic methods sub-optimal but also makes
them unable to cope with changing real-time traffic condi-
tions.

Our Contributions

In this work, we devise an efficient randomized spatio-
temporal search algorithm to construct a sparse, utility-
aware shareability network. In doing so, we directly tackle
the combinatorial difficulty at the heart of most of the recent
approaches to ride matching which prevents them from be-
ing effective in practice. The proposed algorithm can be used
with any of these approaches to enable efficient urban-scale
on-demand shared mobility.

In order to efficiently construct a high utility sparse share-
ability network, we must efficiently find a small set of high
utility potential matches for each node; and we do so using
the theory of locality sensitive hashing (LSH).

At a high level, our approach works by finding suitable
vector representations for the ride and driver route nodes in
a high-dimensional ambient vector space, that capture both
their spatial aspects (e.g. route in the physical road network)
and their temporal aspects (e.g. arrival time, service time
constraints, etc.). Next, we define a similarity metric for this
vector space in terms of inner product that respects matching
utility: larger similarity between the vector representations
of nodes imply higher matching utility between the nodes.
With this similarity metric in hand, the search for high-
utility potential matches reduces to the problem of similarity
search, which we solve using LSH techniques. For this, We
combine the asymmetric LSH construction of (Shrivastava
and Li 2015) for Maximum Inner Product Search (MIPS)
and the cross-polytope LSH construction of (Andoni et al.
2015) for Maximum Cosine Similarity Search (MCSS) to
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construct a locality sensitive hashing data structure for stor-
ing these vector representations that allows efficient search
for similar vectors: we can find k£ (say 10) approximately
most-similar nodes (according to our similarity measure) for
each of the n nodes in the match pool efficiently in time
O(n'*?(k + logn)logk) and space O(n'**logk) for a
small p < 1. Combining these ingredients lets us efficiently
construct a sparse utility-aware shareability network by con-
necting nodes to their most-similar nodes. In the process, we
only make n calls to a routing service, one for each node
while constructing its vector representations, which is all we
need to enable our algorithm to exploit the knowledge of the
physical road network.

In order to demonstrate the practicality and effectiveness
of our algorithm, we conduct large-scale experiments using
publicly available NY yellow taxi trip datasets under varying
traffic patterns and varying load. The results show that our
algorithm consistently outperforms even the best state-of-
the-art heuristic method by as much as 6 percentage points
in terms of matching utility, which translates to significant
savings for the riders, drivers and the platform and signifi-
cant socio-economical and environmental value for cities.

Like most techniques in Artificial Intelligence, effective
use of LSH techniques is as much an art as it is a sci-
ence requiring right tuning of parameters and effective use
of domain knowledge. We describe several techniques and
insights that we employed and valuable learning that we
obtained while carrying out our experiments in a later sec-
tion. We believe they will aid reproducability of our results.
Moreover, the reader might find them useful in applying
LSH techniques to other problem domains.

We note that while this work, unlike (Dutta and Shol-
ley 2017; Huang et al. 2018b; Ashlagi et al. 2019), does
not attempt to provide an understanding of the complexity-
theoretic aspects of the ride matching problem, it does make
significant practical progress on the problem by making
some novel mathematical contributions for tackling it:

1. A mathematical representation for rides and driver routes
capable of summarizing their essential spatial and tempo-
ral aspects relevant for matching, exploiting the knowl-
edge of the physical road network. (This accounts for the
effectiveness of our algorithm as shown by our experi-
ments.)

2. A mathematical metric on the space of these representa-

tions that can express the utility of matching and brings
the rich theory of efficient neighbor search at our dis-
posal. (This accounts for the runtime efficiency of our al-
gorithm.)

Our algorithm enjoys several useful properties and can
be extended in several interesting ways. First, it works for
matching utility defined in terms of any cost function that
is linear in the route. Here, linearity means total cost of the
route is the sum of costs incurred along the segments of the
route. Examples include travel duration, travel distance, tolls
and taxes along the route etc., or any linear combination
thereof. Second, it can handle time-varying cost functions
(e.g. varying with traffic), which static methods (e.g. those
based on Haversine distance) can not. Third, it can work



for a hybrid ridesharing platform that provides on-demand

rides as well as pre-scheduled ones. Lastly, it can even be

adapted to allow incremental computation of the shareability

network. All these extensions are sketched in a later section.
To summarize, our technical contributions include:

1. A novel principled approach and an efficient randomized
algorithm for constructing a sparse utility-aware share-
ability network.

2. Theoretical proof of correctness and runtime efficiency of
the proposed algorithm.

3. Demonstration of the practical utility of the algorithm via
large-scale experiments and quantitatively establishing
the effectiveness of our approach against various heuris-
tics and a theoretical optimal.

4. Several techniques and insights for applying LSH tech-
niques to the ride matching and potentially other problem
domains.

5. Several interesting and useful extensions to the proposed
algorithm that make it even more practically appealing.

Related Literature

Traditionally, most of the studies related to mobility-
on-demand consider services that do not share rides,
e.g (Spieser et al. 2016; Schreieck et al. 2016; Masoud and
Jayakrishnan 2017; Dickerson et al. 2018; Zheng, Chen, and
Ye 2018; Zhao et al. 2019; Lesmana, Zhang, and Bei 2019;
Amirmahdi and Masoud 2020). However recently, there has
been a lot of research interest in carpooling and associated
challenges after several studies analyzed urban traffic and
estimated huge potential for sharing rides (Agatz et al. 2011;
Santi et al. 2014; Friedrich, Hartl, and Magg 2018).

Heuristic-based solutions to matching rides were pro-
posed in (Ma, Zheng, and Wolfson 2013; Balardino and
Santos 2015). (Alonso-Mora et al. 2017) proposed a frame-
work for high-capacity ridesharing by extending the frame-
work of shareability networks first proposed in (Santi et al.
2014). Simonetto et al. (Simonetto, Monteil, and Gambella
2019) subsequently simplified the framework. Other ap-
proaches for ride matching have been proposed in (Koide,
Tadokoro, and Yoshimura 2015; Bei and Zhang 2018; Al-
Abbasi, Ghosh, and Aggarwal 2019).

Nearest Neighbor Search (NNS) is a problem of major
importance in several areas of science and engineering. Ap-
proximate nearest neighbor search techniques based on Lo-
cality Sensitive Hashing (LSH) was introduced in (Indyk
and Motwani 1998; Gionis, Indyk, and Motwani 1999). Ow-
ing to being parallelizable and suitable for high dimensional
data, these techniques have found widespread use in re-
search and industrial practice (Georgescu, Shimshoni, and
Meer 2003; Jgou, Douze, and Schmid 2011; Sundaram et al.
2013). However, these techniques had not been introduced
to ride matching prior to this work.

The approximate Maximum Inner Product search (MIPS)
is a fundamental problem with variety of applications in ar-
eas such as recommendation systems (Li et al. 2017), deep
learning (Spring and Shrivastava 2017), etc. The concept of
Asymmetric LSH (ALSH) was proposed in (Shrivastava and
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Li 2014) and several ALSH schemes for MIPS have been
proposed since (Shrivastava and Li 2014, 2015; Huang et al.
2018a).

Preliminaries

For simplicity of exposition, we only consider ride nodes in
the rest of the paper. Handling driver route nodes is exactly
the same conceptually.

A gentle discussion on LSH and its use in solving prob-
lems such as NNS and MIPS can be found in (Shrivastava
and Li 2014).

Potential Match Search

Let p1,p2,...p; be points on the physical road network.
Let C(< p1,p2,...,p; >) denote the minimum cost of a
route that starts at point pi, traverses ps, ...p;—1 in order
and ends at p;. Given a ride 7, let r5 and r; denote its pick-
up and drop-off locations respectively. The cost of the ride
r, which we denote by C(r) abusing notation, is defined
as C(< rg,7m¢ >). The cost can be measured in terms of
travel distance, travel duration or any other metric linear in
the route.

Fix a linear route cost function. The utility of matching
two rides comes from the cost savings achieved by serving
them together compared to serving them individually. More
formally, abusing notation, let C({r,r'}) denote the cost of
serving rides r and r’ together:

C({T,T/}) =
min{C(< rs, 7, e, 14 >), C(< 1g, 7o, 74,70 >),
C(<rlrs,ryre >),C(< 1l rs,me, 7 >) )

The feasibility of matching two rides together is expressed
by the feasibility function F: F({r,r'}) is 1 if it is feasible
to match r and 7/, O otherwise. The matching utility U of
matching rides r and r’ together is then defined as:

U({r.r'}) = (C(r) + C(') — Cl{r,r'}) = F({r,r'}).

Note that in order to maximize the total matching util-
ity from all the matches made, it may not be desirable to
match a given ride with the one with which it has the highest
matching utility. Therefore, the approximate potential match
search problem is to find k& potential matches for every ride
with approximately highest matching utilities, for a small
enough k. From this, a sparse, utility-aware shareability net-
work can be constructed. An optimal matching in this sparse
shareability network instance constructed then yields near-
optimal total matching utility.

Definition 1 (Approximate Potential Match Search (PMS)).
Let P be a pool of rides. Let S be the similarity measure
between two rides defined as the matching utility between
them. The (c,s,k)-approximate Potential Match Search
(PMS) for ¢ < 1 with failure probability f is to construct a
data structure over P supporting the following query: given
any query ride q, if there exists k rides r1,72,...,7, € P
such that S(q,7) > s Vr € {ri,ro,...,7r5}, then re-
port some k rides vy, rh, ..., € P such that S(q,r") >
esVr' e {ry,rh, ..., .}, with probability 1 — f.



Figure 1: Two rides r and 7’. The route for r is <
s,a,b,c,d,t >and forr’ is < s',a’,b’,c, t’ >.

Heuristic Methods

To the best of our knowledge, search for potential ride
matches has not been formalized before this work and there
are no principled methods known for the same. The state-of-
the-art heuristic methods include:

e CLOSEBY: £ closest rides to the given ride with respect
to pickup location are chosen as potential matches.

o HAVERSINE: & rides with highest Haversine matching
utilities with the given ride are chosen as the potential
matches. Haversine matching utility is defined with re-
spect to Haversine cost function which is the Haversine
distance between two points.

e CLOSEBY-HAVERSINE: A hybrid approach of the
above two, often used in practice. A sufficiently large
number of rides closest to the given ride with respect to
pickup location are first shortlisted, and the £ among them
with highest Haversine matching utilities with the given
ride are then chosen as potential matches.

Algorithm for Approximate PMS
Ride Representation and Similarity

Consider two rides r and 7’ as shown in Figure 1. For
brevity, we denote the pickup rs and dropoff r; for ride
r simply as s and ¢ respectively. Similarly, the pickup and
dropoff of ride 7’ are denoted by s’ and ¢’ respectively. Let
< s,a,b,c,d,t > and < s',a’,b',c,t' > denote shortest
routes of rides r and 7’ respectively.

For simplicity, in this paper, we assume it is feasible to
match r and 7’ together. This assumption is relaxed in the
full version. Given the feasibility assumption, the matching
utility between r and ', which is the cost savings by match-
ing them together, is approximately the sum of the costs
of roughly overlapping edges. Intuitively, since points a, b
and c¢ are close to points a’, b’ and ¢’ respectively, this is
approximately C(< a,b >) + C(< b,¢ >). In order to
capture the notion of spatial proximity, we discretize space
and represent each point of the route by the discretized spa-
tial block it falls in. We can use discretization using geo-
hashes or S2 cells for this purpose. As shown in Figure 2,
let< S, A, B,C,D, T >and < S’ A, B,C, T’ > represent
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Figure 2: Rides 7 and 7’/ from Figure 1. The space-
discretized route for r is < S, A, B,C, D, T > and for 1’ is
<S8, A, B,C,T" >. The space-discretization is shown with
dotted lines and the discretized spatial blocks are shown in
capital letters.

space-discretized shortest routes of rides r and r’ respec-
tively.

For relaxing the assumption on matchability, we annotate
route points with the time of reaching there if served without
any delay. Similar to discretizing space, we discretize time
using an appropriate time interval to capture temporal prox-
imity. This gives us a sequence of space-time-discretized
points representing the route of each ride. Since we are in-
terested in the cost of the overlapping edges, we represent a
ride by the set of space-time-discretized edges in its route
which we call its spatio-temporal set representation. The
cost of a space-time-discretized edge can be approximated
as the cost between the mid-points of the corresponding dis-
cretized spatial blocks when traveled during the discretized
time interval. This approximation works well in practice if
we have sufficiently fine space discretization. Representing
rides by their set of edges has the added benefit that we get
directionality for free. For example, two rides with exactly
reversed routes of each other will have no edges in common.

Let overlap between two rides be defined as the sum of the
costs of the edges in the intersection of their spatio-temporal
set representations. Our solution strategy for approximate
PMS is via solving approximate Overlapping Match Search:

Definition 2 (Approximate Overlapping Match Search
(OMS)). Let P be a pool of rides. Let S be the similarity
measure between two rides defined as the overlap between
them. The (c, s, k)-approximate Overlapping Match Search
(OMS) for ¢ < 1 with failure probability f is to construct a
data structure over P supporting the following query: given
any query ride q, if there exists k rides r1,7ro,...,7x € P
such that S(q,7) > s Vr € {ri,ro,...,r5}, then re-
port some k rides v, rh, ..., € P such that S(q,r") >
esVr' e {ri,rh, ..., 7.}, with probability 1 — f.

For simplicity, let us further assume that the cost of each
edge is unit. This assumption is somewhat justified if it can
be ensured that the routing engine returns routes with ap-
proximately equidistant adjecent points. However, this as-
sumption is relaxed in the full version. With this unit cost
assumption, the overlap between two rides is simply the car-



Algorithm 1: Algorithm for approximate OMS.

Input: A pool P of n rides.
Output: For eachride r € P, aset S, C P with
|Sr| = k.
Let U = 0.75 (consult (Shrivastava and Li 2015));
for each ride r in P do
Construct the preprocessing vector representation
prof r;
Normalize the vector p,. to have ||p,||2 < U;
Apply the preprocessing transformation of
(Shrivastava and Li 2015) on p,. to get P(p,.) with
m = 2 (consult (Shrivastava and Li 2015));

end

Construct the LSH dataset using cross-polytope LSH of
(Andoni et al. 2015) with vectors P(p,.), Vr € P;

for each ride r in P do

Construct the query vector representation ¢, of r;

Normalize the vector g, to have ||g,||2 = 1;

Apply the query transformation of (Shrivastava and
Li 2015) on g, to get Q(g, ) with m = 2;

Construct S, by retrieving k nearest neighbors of
Q(g) from the LSH dataset using cross-polytope
LSH of (Andoni et al. 2015);

end

dinality of their intersection. Since cardinality of set inter-
section can be computed as the inner product between the
characteristic vectors of the sets, we represent each ride r
by two spatio-temporal vector representations. The ambient
vector space is a high-dimensional space where each dimen-
sion is indexed by a space-time-discretized edge. The reason
for using two vector representations is to facilitate relaxing
the unit cost assumption.

e Preprocessing vector representation (p,): A vector with
all 0’s except for along dimensions for which the index-
ing edge is in the spatio-temporal set representation of the
ride, in which case it is the cost of that edge.

e Query vector representation (q,): A vector with all 0’s
except for along dimensions for which the indexing edge
is in the spatio-temporal set representation of the ride, in
which case it is 1.

Solving approximate OMS, which is our plan to solve ap-
proximate search for potential matches, can now be achieved
by solving approximate Maximum Inner Product Search
(MIPS) as shown in the next subsection.

The Algorithm

With all the necessary ingredients in place, our algorithm is
formally presented in Algorithm 1.

The following theorem, the proof of which is deferred to
the full version, establishes the correctness and runtime effi-
ciency of our algorithm.

Theorem 1. Given a set R of n rides, Algorithm 1 solves
(¢, s, k)-approximate OMS requiring O(n?(k+logn)log k)
time per query and O(n'** log k) total space for some p <
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1 depending on c and s. Therefore, the total running time for
the algorithm is O(n**(k + logn) log k).

Experiments

In order to validate our approach, we conducted exten-
sive experimentation comparing our algorithm with heuristic
methods and a theoretical optimal. After presenting a brief
outline of our experiment setup and the results, we devote
this section to a discussion of the results.

Setup

Our experiments were carried out on a machine with a 2.4
GHz Intel 19 processor and 64 GB RAM. Routes were com-
puted using the Open Source Routing Machine (OSRM).

We used the publicly available New York city yellow
taxi trip datasets for our experiments (available from https://
www l.nyc.gov/site/tlc/about/tlc-trip-record-data.page). To
evaluate our algorithm under varying traffic patterns, we
constructed two experiment scenarios: (i) Morning com-
mute, consisting of 21310 rides requested on 2016-06-08
(Wed) between 8:00 AM and 9:00 AM local time, and (ii)
Evening commute, consisting of 19610 rides requested on
the same day between 6:00 and 7:00 PM local time. For
varying load, we sub-sampled the rides in each scenario at
sub-sampling rates of 20%, 40%, 60%, 80% and 100% (full
dataset).

For our experiments, we chose travel duration to be the
cost function. Match feasibility was obtained by enforcing a
matching constraint for maximum allowable pickup delay of
10 minutes. We allowed £ = 10 potential matches per ride
to construct the sparse shareability network.

We implemented! our algorithm (which we call LSH)
along with the three benchmark state-of-the-art heuristic
methods described earlier: CLOSEBY, HAVERSINE, and
CLOSEBY-HAVERSINE. For the LSH algorithm, a space
discretization of geohash-7 and time discretization of 20
minutes were chosen. The CLOSEBY method was imple-
mented using the Ball-Tree algorithm for near-neighbor
search using Haversine distance between pickup locations
as the distance measure. For the CLOSEBY-HAVERSINE
method, 1000 candidate matches were first shortlisted using
the CLOSEBY heuristic, out of which &k potential matches
were chosen using the HAVERSINE heuristic. An utility-
optimal approach was also implemented by an exhaustive
search for k feasible potential matches with highest utility
with a given ride (which was computationally extremely ex-
pensive). The total matching utilities achieved by various
methods were evaluated against this optimal.

Given a shareability network, the total matching utility
was computed by first computing the true utlility for each
edge of the shareability network using OSRM, and then
computing an optimal non-bipartite matching on this net-
work by solving an Integer Linear Program.

'Code  available at
ridematch_Ish

https://github.com/chinmoy-dutta/
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Figure 3: Matching utility as a fraction of the optimal for the
morning commute scenario under varying load.
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Figure 4: Shareability network computation time for the
morning commute scenario under varying load.

Results

Matching utilities obtained and the time to compute the
shareability network using different methods under varying
load for the morning commute scenario are presented in Fig-
ure 3 and Figure 4 respectively. Results for the evening com-
mute scenario are very similar and deferred to the full ver-
sion.

Discussion

For each scenario and each load factor, the optimal matching
utility was found to be around 40% of the total ride cost, sug-
gesting huge potential for sharing rides and reducing cost.
Out of the four methods, CLOSEBY is the fastest as
it simply needs to find near-neighbors based on Haversine
distance between pickup locations. Not surprisingly, it per-
forms the worst in terms of matching utility. HAVERSINE is
impractically slow, being required to perform an exhaustive
search on a quadratic search space, even if without routing
calls. Perhaps surprisingly, even with this exhaustive search,
its performance in terms of matching utility is worse than
that of CLOSEBY-HAVERSINE. This is because an exhaus-
tive search finds matches that may have better Haversine
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overlap with a given ride but not feasible to match with it
due to the matching constraint. CLOSEBY-HAVERSINE is
better at filtering those out.

In each scenario and for each load factor, LSH consis-
tently outperforms all the heuristic methods. It achieves
about 6 parentage points higher matching utility compared
to the next best method, CLOSEBY-HAVERSINE. This can
generate significant cost savings that can be shared by the
riders, the drivers and the platform, and can contribute to sig-
nificant reduction in traffic congestion, resource consump-
tion and air pollution. It is important to note that CLOSEBY-
HAVERSINE misses this opportunity not because of re-
stricted computation time or limited shortlisted candidate
matches. This can be confirmed by noting that the match-
ing utility achieved by this heuristic stays almost constant
at slightly over 90% of optimal even when load decreases
to 20% but the number of shortlisted candidate matches
stays constant at 1000. This means the heuristic cannot
achieve additional matching utility even when it searches
over a higher fraction of total rides. The reason CLOSEBY-
HAVERSINE consistently misses out on achievable match-
ing utility is that it relies on Haversine overlap between rides
and thus suffers from its inherent lack of knowledge of the
underlying physical road network.

We further note that the computation time for LSH, al-
though slightly larger than CLOSEBY-HAVERSINE for
higher loads, is still very practical. Moreover, the algorithm
is highly parallelizable, and the computation time of about
300 secs can be brought down to under 30 secs with 10 par-
allel workers even for a gigantic match pool of about 20000
rides. Such parallelization is a very common practice for
production grade on-demand mobility platforms. One can
also employ dimensionality reduction and incremental com-
putation techniques mentioned in the next section for further
improving efficiency in real-time operation.

Alternate routes. Having access to alternate routes for a
ride helps the LSH algorithm to find better matches. A ride
often has multiple routes with almost similar route costs. A
feasible match may have a very good overlap with one of the
routes that is not the minimum cost one. The computation
time does increase with number of alternate routes, however.
In our experiments, we used up to one additional alternate
route whenever available (available for about 40% of rides).
Figure 5 compares LSH performance with exactly one route
and up to two routes.

Discretization. It is important to choose the space dis-
cretization for the LSH algorithm carefully. Choosing a dis-
cretization too coarse improves computation time as the di-
mension of the vector space decreases. But it hurts matching
utility by finding spurious route overlaps (edges too dissim-
ilar might look the same with coarser space discretization)
as well as missing some genuine ones (endpoints of an over-
lapping edge might fuse with coarser space discretization).
Choosing a discretization too fine increases the computation
time significantly. In some cases, it might also hurt matching
utility by causing the algorithm to miss some useful over-
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Figure 5: Matching utility as a fraction of the optimal with
alternate routes.
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Figure 6: Matching utility as a fraction of the optimal with
varying geohash discretization.

laps. Figure 6 compares performance with different space
discretizations. In general, choosing a space discretization
proportional to the typical length of a route edge works well
(e.g. geohash-7 in our case). For time discretization, it is
best to choose a reasonably large interval proportional to
the maximum allowable delay. This avoids missing feasible
matches, but can lead to some infeasible matches which can
later be filtered out.

Optimizations and Extensions

In this section, we present several useful optimizations and
extensions for a real-world implementation of our algorithm.

Optimizations

Number of tables. Increasing the number of tables in the
LSH data structure improves success probability for finding
nearest neighbors but also increases the space requirement
and the query time. It is advisable to first choose a suitable
value based on space availability and the dataset size.

Number of hash functions. Increasing the number of
hash functions per table causes fewer hash collisions im-
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proving query time but also decreases the success proba-
bility for finding nearest neighbors and necessitates larger
number of tables. This parameter should be chosen roughly
equal to the logarithm of the dataset size and further tuning
should be done via parameter search jointly with the number
of query probes, as explained next.

Multi-probe query. Itis possible to query a table multiple
times using multi-probe query strategies to improve success
probability without increasing the number of tables. The to-
tal number of probes across all table per query should be
chosen jointly with number of hash functions per table. This
can be achieved by iterating over the latter, and for each
value doing a binary search over the former to achieve de-
sired success probability and query time efficiency.

Dimension reduction. The ride representations are ex-
tremely sparse. This is because most rides happen around
busy areas while the remote areas only see few rides. Thus,
we can boost runtime efficiency significantly without hurt-
ing success probability for finding good potential matches
by employing dimensionality reduction techniques to trans-
form the ride vectors to a lower dimensional space before
storing them in the LSH data structure.

Normalization. Centering the ride vectors along each di-
mension boosts success probability significantly.

Useful Properties and Extensions

General linear cost function. Our algorithm works for
any linear route cost function. This is useful as the cost of
serving a ride is often estimated by a linear combination of
travel duration, travel distance and other factors.

Time varying cost function. Our approach can naturally
adapt to time-varying route costs. For example, travel dura-
tions vary significantly at different times, a smart transporta-
tion system might impose time-varying tolls to regulate traf-
fic flow. In contrast, none of the heuristic methods can adapt
to these changes intelligently.

Incremental computation. Our algorithm can be imple-
mented to do incremental computation of the shareability
network where the LSH data structure is persisted, and gets
updated as new rides come (by adding them to the data struc-
ture) and rides get matched (by replacing them with the com-
bined driver route). Dynamic LSH schemes are excellent
candidates for such an implementation.

Hybrid rideshare. A shared mobility platform can have
a ride pool with on-demand as well as pre-scheduled rides.
Since our algorithm employs a spatio-temporal search, it can
intelligently match rides from such hybrid pools respecting
matching constraints. Heuristic methods cannot make such
intelligent choices.



Ethics Statement

This paper develops and evaluates a novel algorithm to en-
able sharing of rides efficiently in real-time while dealing
with a vast urban-scale ride pool of tens of thousands of
rides. We devote this section to discussing the societal im-
plications of our work.

Efficient mobility is not only important for economic de-
velopment of cities and ensuring quality of life for its pop-
ulation, but equitable access to affordable, convenient and
efficient mobility is also key to providing equal access to
education, employment, healthcare and other civic facilities.
The senior and elderly population, who often live on limited
income and have restricted mobility options, especially need
convenient point-to-point on-demand transportation. How-
ever, mobility has become an immense technological, soci-
etal and environmental challenge for cities worldwide, espe-
cially the growing and densely-populated ones (Arnott and
Small 1994; Caiazzo et al. 2013; Pant and Harrison 2013).
The challenge arises from conflicting objectives of provid-
ing convenient and flexible on-demand point-to-point trans-
portation; ensuring it is efficient; ensuring it is economical
and affordable for all; ensuring it can be supported by the
available transportation infrastructure which mostly has lim-
ited, if any, potential to grow; and making it environmentally
sustainable. The magnitude of the cost of vehicular traffic
congestion imposed on cities can be understood by noting
that (Arnott and Small 1994) estimated it to be about USD
60 Billion for the 83 largest urban areas of US alone mea-
sured in terms of wasted time and fuel, and World Health
Organization estimated more than 1 million deaths annu-
ally worldwide are caused by air pollution which, in turn,
is largely caused by traffic congestion (Caiazzo et al. 2013).

High-capacity shared mobility has tremendous potential
to cater to the societal need for mobility while effectively
addressing the infrastructural and environmental concerns.
By enabling efficient urban-scale ride matching in real-time,
this work can foster convenient and flexible point-to-point
on-demand mobility while ensuring it is highly resource-
efficient resulting from the high level of sharing. This can
further ensure affordability creating equity among all sec-
tions of society in access to convenient and flexible mobility;
reduction in traffic congestion saving wasted time in traf-
fic for individuals and businesses; easing of the burden on
transportation infrastructure of cities; and environmentally
sustainability.

We also discuss the scope and nature of this work in
relation to several recent studies that have concluded that
ridesharing platforms, in fact, increase traffic congestion.
Furthermore, some studies have also found the cost of using
ridesharing services to be even larger than personal car own-
ership, and its usage to be highly skewed towards more afflu-
ent and higher educated segments of the population, raising
questions on its ability to provide affordable and convenient
mobility for all. We note that an increase in ride demand
as a result of convenience of hailing a ride, roaming empty
vehicles, and sparingly used vehicle capacity are cited as
causes for increased traffic and costs in these studies. Our
work precisely tackles some of these very causes by filling
up empty vehicle seats and fostering an optimal usage of ve-
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hicle capacity. It, therefore, can not only help reduce traffic
congestion and air pollution, but also reduce the cost of rides
making them more affordable.

Moreover, the methodology and its extensions presented
in this work are not restricted to any particular form of on-
demand shared mobility service. It is applicable to the op-
erations of any mobility service, platform or transportation
agency that desires to provide smart, flexible and convenient
on-demand shared mobility while ensuring it is resource ef-
ficient and affordable. We believe this work fits within the
range of growing urban mobility innovations that promise
to tackle the mobility challenge using principled approaches
leading to efficient, socially useful technologies.
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