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Abstract

The immunohistochemistry (IHC) test of biopsy tissue is
crucial to develop targeted treatment and evaluate prognosis
for cancer patients. The IHC staining slide is usually
digitized into the whole-slide image (WSI) with gigapixels
for quantitative image analysis. To perform a whole image
prediction (e.g., IHC scoring, survival prediction, and
cancer grading) from this kind of high-dimensional image,
algorithms are often developed based on multi-instance
learning (MIL) framework. However, the multi-scale infor-
mation of WSI and the associations among instances are
not well explored in existing MIL based studies. Inspired
by the fact that pathologists jointly analyze visual fields
at multiple powers of objective for diagnostic predictions,
we propose a Pathologist-Tree Network (PTree-Net) to
sparsely model the WSI efficiently in multi-scale manner.
Specifically, we propose a Focal-Aware Module (FAM) that
can approximately estimate diagnosis-related regions with
an extractor trained using the thumbnail of WSI. With the
initial diagnosis-related regions, we hierarchically model
the multi-scale patches in a tree structure, where both the
global and local information can be captured. To explore
this tree structure in an end-to-end network, we propose a
patch Relevance-enhanced Graph Convolutional Network
(RGCN) to explicitly model the correlations of adjacent
parent-child nodes, accompanied by patch relevance to
exploit the implicit contextual information among distant
nodes. In addition, tree-based self-supervision is devised
to improve representation learning and suppress irrelevant
instances adaptively. Extensive experiments are performed
on a large-scale IHC HER2 dataset. The ablation study
confirms the effectiveness of our design, and our approach
outperforms state-of-the-art by a large margin.

Introduction
Breast cancer (BC) is the most prevalent type of cancer
among females worldwide, especially affecting women aged
20-59 years (Loibl and Gianni 2017). By revealing the pro-
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Figure 1: Typical patterns cropped from IHC stained WSIs
with 0 to 3+ HER2 scores. The intensity and completeness of
cell membrane staining are key evidence for HER2 scoring.

teins amplification in the cells and on cell surfaces, the im-
munohistochemistry (IHC) test of biopsy tissue is recom-
mended to measure the severity of BC, which is decisive
for the further treatment and prognosis of patients. Particu-
larly, human epidermal growth factor receptor 2 (HER2) is
a typical IHC diagnostic marker, which is widely used as
a therapeutic target. However, the diagnosis of BC requires
pathologists to perform visual inspection under the micro-
scope, which is tedious and time-consuming. Moreover, the
diagnostic accuracy and both inter-/intra-observer reliability
are affected by the pathologists’ experience.

Recently, several deep learning based approaches (Zhu
et al. 2017; Tokunaga et al. 2019; Xie et al. 2020) have
been developed to assess the whole-slide images (WSIs).
WSI is created from glass slides using specialized scan-
ning machines (Farahani, Parwani, and Pantanowitz 2015),
which can preserve the IHC slides for reproducible diag-
nosis. A typical WSI usually contains gigapixels, which
makes it difficult to be processed by convolutional neural
networks (CNNs) directly. To overcome this challenge, ex-
isting works adopted multi-instance learning (MIL), where
each WSI is divided into a bag of image patches to esti-
mate the target of the whole slide. In fact, the tissue re-
gions (e.g., invasive tumor regions in HER2 scoring) that
contribute to the diagnosis are usually sparse, compared
with the large-size WSI. Some works (Wang et al. 2019;
Zhao et al. 2020) required regions-of-interest (ROIs) an-
notations for WSI dataset, which is impractical in applica-
tion scenarios. On the other hand, some other works ran-
domly extracted patches (Courtiol et al. 2018; Hashimoto
et al. 2020) or integrated all patches of tissue (Campanella
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et al. 2019) to conduct the diagnosis. However, the discrim-
inative patches may be overwhelmed by massive diagnosis-
irrelevant patches. Moreover, it is still challenging to capture
both global and local structural information with the selected
image patches, although some instance fusion methods (e.g.,
graph-learning, MinMax pooling, and bag-of-words) have
been employed to integrate the local patches to represent the
whole slide globally.

In this study, we would like to develop a method that au-
tomatically identifies the task-related regions and informa-
tively represents the whole slide for IHC scoring. Motivated
by the fact that pathologists jointly analyze visual fields
across different powers of objective to perform diagnosis,
we propose a focal-aware Pathologist-Tree Network (PTree-
Net) to simulate the scenario of reading slide by patholo-
gists. First, a preliminary CNN is trained with thumbnails
of WSI pyramid using the slide-level labels (i.e., HER2
scores) to achieve an overall perception of WSI. Then, the
Focal-Aware Module (FAM) is devised to revisit the fea-
ture maps of each thumbnail from the network, and gener-
ate a heatmap that highlights the task-related regions in the
WSI. The heatmap indicates where should be seen, which is
similar to the scenario that pathologists scan the slide us-
ing a low-power objective to discover the informative re-
gions. With the identified attentive regions, we crop image
patches layer-by-layer from the WSI pyramid in a coarse-to-
fine manner. The cropped patches from high resolution lay-
ers provide detailed local information, which is similar to the
scenario that pathologists check the cell-level staining con-
dition using a higher-power objective. In order to effectively
train a deep learning model using the extracted multi-scale
patches, we hierarchically model them in a tree structure by
considering the inclusive relationship among the thumbnail
of WSI and the multi-scale patches. To explicitly model the
tree-structured relationship, we propose a patch Relevance-
enhanced Graph Convolutional Network (RGCN) to process
coherence among patches. Also, we employ tree-based self-
supervision to improve the representation learning and sup-
press the potential interference of irrelevant patches. In ad-
dition, we build the connection between FAM and RGCN to
consistently update the selection of task-related regions. By
doing so, the WSI can be explored by our PTree-Net follow-
ing the habits of pathologists.

The main contributions of our work are summarized as
follows.

1. We present a Pathologist-Tree Network (PTree-Net) 1 to
efficiently capture and exploit multi-scale features of WSI
pyramid, which simulates the scenario of reading slide by
pathologists. To the best of our knowledge, our work rep-
resents the first attempt to leverage the WSI pyramid in a
tree structure.

2. We propose a Focal-Aware Module (FAM) to discover
the task-related regions. With multi-scale patches cropped
at attentive regions, a patch Relevance-enhanced Graph
Convolutional Network (RGCN) is devised to model the

1The codes are available at https://github.com/franciszchen/
PTree-Net.

explicit correlations of adjacent parent-child nodes and
exploit the implicit relation among distant nodes.

3. To overcome the information bottleneck of MIL frame-
work, we propose the tree-based self-supervision, includ-
ing semantic consistency and sparse constraint, to im-
prove the representation learning and suppress the contri-
butions of potential irrelevant patches. We also unify the
FAM and RGCN to jointly guide the region selection.

4. The extensive experiments on the dataset with 1, 105 WSI
of IHC HER2 slides demonstrate the effectiveness of our
PTree-Net, which outperforms other multi-instance learn-
ing methods.

Related Works
HER2 Scoring
The IHC test indicates the cancer severity, and HER2 is a
targeted IHC diagnostic marker for breast cancer, which is
significant to conduct treatment and prognosis. The HER2
slides can be classified into four scores (i.e., 0, 1+, 2+, and
3+) according to the American Society of Clinical Oncol-
ogy and the College of American Pathologists (ASCO/CAP)
guidelines (Wolff et al. 2018). Specifically, the tissues scor-
ing 0 or 1+ contain no or faint membrane staining in less
than 10% invasive tumor cells respectively, which are clas-
sified as negative. A score of 3+ represents more than 10%
invasive tumor cells are observed with intense and complete
circumferential staining membrane. As the borderline of two
cases, those tissues with more than 10% weak membrane
staining or no more than 10% strong complete membrane
staining in tumor areas, are regarded as equivocal with a
score of 2+. Examples of these four HER2 scores are demon-
strated in Fig. 1.

Recently, there are a few studies that attempted to achieve
automatic HER2 scoring. For example, Saha et al. (Saha and
Chakraborty 2018) conducted cell segmentation and HER2
scoring using Trapezoidal LSTM units on 2048 × 2048
patches, rather than the entire WSI. Qaiser et al. (Qaiser
and Rajpoot 2019) also achieved the patch-level HER2 scor-
ing with the help of reinforcement learning. To achieve the
diagnosis of gigapixels WSI, Vandenberghe et al. (Vanden-
berghe et al. 2017) and Khameneh et al. (Khameneh, Razavi,
and Kamasak 2019) predicted the HER2 status using the
results of cell classification and cell membranes segmenta-
tion, respectively. It is worth noting that both of these two
works required additional pixel-wise annotations and em-
ployed human-designed rules to integrate the output of net-
works into the HER2 score prediction, while our PTree-Net
handles the entire WSI in an end-to-end manner using only
the slide-level labels.

Multi-Instance Learning
Multi-instance learning (MIL) is a typical form of weakly-
supervised learning, where the label is assigned to a bag of
instances while each instance within the bag has no specific
label (Zhou and Xu 2007; Wang et al. 2018). Ilse et al. (Ilse,
Tomczak, and Welling 2018) introduced two kinds of atten-
tion mechanisms into MIL framework for the first time to
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Figure 2: The framework of PTree-Net. Pl represents the set of patches extracted from the l-level WSI pyramid P . Under the
guidance of FAM, attentive patches are extracted from P hierarchically, followed by level-wise feature extraction networks f ,
and a tree structure T is constructed based on the topology among patches. The RGCN g iteratively processes and updates
the node features of the tree T . Finally, level-wise semantic features {sl}3l=1 are integrated from T and aggregated into the
diagnosis ŷ. Note that PTree-Net in the figure uses L=3 levels of WSI pyramid.

adaptively adjust the importance of each instance. The MIL
framework is suitable for the diagnosis of WSI slides, espe-
cially when no pixel-level/cell-level annotation is available.
Specifically, Campanella et al. (Campanella et al. 2019)
adopted a Recurrent Neural Network (RNN) to integrate
the extracted features of each patches into the prediction of
WSI. Wang et al. (Wang et al. 2019) combined global and
local information to recalibrate the importance of each in-
stance, but the localization network required the pixel-level
annotations by pathologists. Hashimoto et al. (Hashimoto
et al. 2020) randomly cropped multi-scale patches of WSI
pyramid and applied instance-wise attention to aggregate the
features of scale-specific extractor networks. In the experi-
ment, we compared our work with these state-of-the-art WSI
works based on MIL framework.

PTree-Net
Generally, pathologists scan the slide using a low-power ob-
jective to discover the informative regions and further check
the cell-level staining condition using a higher-power ob-
jective. To simulate such reading scenario, we propose a
PTree-Net to automatically discover the task-related regions
and sparsely represent the WSI with tree-structured image
patches, which can avoid the problem of exhaustively in-
specting the entire WSI. Specifically, given a histopathol-
ogy WSI pyramid P , our PTree-Net explores regions-of-
interest from top to bottom of WSI pyramid and predicts the
WSI label y by jointly considering discriminative patches
{pk}Kk=1 ⊆ P . The overview of our PTree-Net is illustrated
in Fig. 2.

As niduses usually distribute sparsely within tissues, we
devise a focal-aware module (FAM) to process the thumb-
nail of slide at a low-power objective and figure out the most
attentive regions related with diagnostic task, by utilizing the

spatial information retained in the feature maps of CNNs.
With the attentive regions indicated by FAM, informative
patches at different magnifications are extracted from the
WSI pyramid P to provide more details for further investi-
gation. It is worth noting that there is an explicit relationship
among the thumbnail and these patches, where the hierar-
chical structure suggests a parent-child relationship between
low-power objective one and high-power objective one. The
global context and local appearance can be jointly captured.

Note that without ambiguity, the thumbnail is also de-
scribed as a patch in some cases. Hence, we build a tree
structure T to model this inter-patch relationship, where the
thumbnail of WSI is regarded as the root node of the tree,
and the attentive patches of higher-power objective serve as
the child nodes, and so on. In this way, the child node rep-
resents the zoom-in visual field of the parent node. In this
section, we are going to introduce how PTree-Net inves-
tigates the tree-structure in detail, including FAM, RGCN,
tree-based self-supervision, and loss functions.

Focal-Aware Module
Benefiting from the spatial information retrained in the
feature maps of pretrained CNNs, previous work (Zhou
et al. 2016) indicated the importance of regions contribut-
ing to a specific category prediction by class activation
maps (CAM). Specifically, the localization map mc for
category c (1 ≤ c ≤ C) is calculated as mc(x, y) =∑

k w(c, k)Fk(x, y), where F is feature maps and w is pa-
rameters of the following fully-connected layer, and k rep-
resents the channel dimension. In the HER2 scoring task,
instead of category-wise maps, a heatmap is expected to in-
dicate where is the most informative for diagnosis, which
guides the further patch cropping at higher resolutions.

With WSI thumbnails as input, a CNN f is trained to pre-
dict the HER2 scores. Since HER2 scoring is determined by
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the cell membrane staining of invasive tumor regions in the
entire slide, the thumbnail downsampled by an appropriate
scale contains color and structural information to produce
a roughly acceptable prediction2, which satisfies the limi-
tation of hardware resources. For each position (x, y), we
apply a softmax function on the category-wise importance,
as m

′

c = exp(mc)∑
c exp(mc)

, where m
′

c represents the confidence
to classify this position into category c. Considering that
the discriminative regions contribute to definitive diagnosis
while the irrelevant areas tend to produce ambiguous results,
we adopt the standard deviation of category-wise confidence
to measure the spatial importance towards diagnosis.

FAM(x, y) =

√∑C
c=1

(
m′c − 1

C

)2
C

, (1)

where 1
C represents the average of normalized importance

scores. The position with larger FAM score contains more
task-related information and requires further investigation of
higher-power objective details.

Patch Relevance Enhanced GCN
To leverage the tree-topology in networks, we employ the
Graph Convolution Network (GCN) (Kipf and Welling
2017) to exploit the features of adjacent nodes. Denote the d-
dimensional feature vector of each node sent to GCN as x ∈
Rd, and features of all nodes are packed into X ∈ RK×d.
Specifically, the graph is constructed with the nodes of tree,
V(T ). Since the edges of tree, E(T ), represent the parent-
child relationship among connected parent patch and child
patch, the adjacency matrix A ∈ {0, 1}K×K is generated as
follows:

A(m,n) =

{
1 if (xm,xn) ∈ E(T )
0 otherwise. (2)

Consequently, the graph with adjacency matrix A reveals
the tree topology of WSI pyramid, and GCN can explic-
itly integrate multi-scale features using the expanded form
of tree structure. However, the global dependencies among
distant nodes are ignored. To overcome this bottleneck, we
devise the patch relevance to enrich GCN with implicit de-
pendencies among distant nodes. Specifically, the affinity
ϕij is first calculated between every two nodes xi and xj

at the semantic space:

ϕij = (W1xi)
T ·W2xj , (3)

where W1 and W2 are learnable parameters, and · denotes
the matrix multiplication. To refine nodes with the knowl-
edge of entire tree, the patch relevance ri for i-th node is
generated by accumulating features of all nodes weighted
by the normalized affinity:

ri = σ(
K∑
j=1

exp(ϕij)∑K
j=1 exp(ϕij)

W3xj), (4)

where ri ∈ Rd and W3 is learnable parameters. To impose
the inter-node relationship into GCN, we concatenate the

2The TN+CNN with kappa of 0.8 in Table 1 and Table 2.

node features (i.e., xi and relevance ri) and adopt a fully-
connected layer WFC to reduce the feature dimension, as
x
′

i = WFC[xi, ri]. By introducing the patch relevance to
GCN, our RGCN is enhanced with the global contextual in-
formation as:

Z = σ
(
D̂−

1
2 ÂD̂

1
2X

′
W
)
, (5)

where Â = A+I is the adjacency matrix A with self-loops,
D̂ =

∑
j Âi,j is diagonal degree matrix, and W ∈ Rd×d

′

is a learnable matrix for any graph convolutional layer. σ is
a non-linear function (i.e., ReLU operation in our method).
According to the tree structure T in Fig. 2, Z is further in-
tegrated into level-wise semantic features, which are used to
generate the final prediction.

Tree-based Self-Supervision
For a conventional WSI classification task, the number of
samples are limited, but the image size are huge. There-
fore, it is difficult to learn a robust model with the image-
level label only. To address such a problem, we expect to
build a self-supervision mechanism utilizing the local prop-
erties of the tree structure to alleviate the insufficiency of
supervision information. For a parent node zp and its child
nodes {zc

q}
Q
q=1, as they present the same image region at

different scales, it is intuitive to have the assumption that
they hold consistent semantic information towards the diag-
nosis. Specifically, we calculate attention-based importance
weights wp ∈ RQ for child nodes of the parent node zp,
as wp = h((Zc)T )

‖h((Zc)T )‖F
, where ‖·‖F is the Frobenius norm

and h is a 1 × 1 convolutional layer with output channel of
Q. The Q is fixed in our implementation and the parameters
of h layer are shared among subtrees, which brings a neg-
ligible overhead to PTree-Net. To suppress the interference
of diagnosis-irrelevant patches, we impose the sparse con-
straint on the importance weights wp of the entire tree T
using the L1-norm (Liu et al. 2017), as follows:

Lsparse =
∑
∀T

‖wp‖1. (6)

Then, we apply the local semantic consistency between
the weighted features of child nodes and their parent node:

Llocal =
∑
∀T

∥∥∥∥∥zp −
Q∑

q=1

wp
qz

c
q

∥∥∥∥∥
2

, (7)

where wp
q is a scalar importance for q-th child node zc

q of
parent node zp. By doing this, the multi-scale input from the
same region tends to maintain consistent semantic informa-
tion. In addition, we further investigate the global semantic
consistency between different levels of tree:

Lglobal =
L∑

l=1

‖sl − sl+1‖2 , (8)

where sl is the semantic feature vector of the l-th level,
which can be calculated by weighted accumulating all
nodes of the l-th level to reduce the instance dimension, as
sl =

∑
∀Pl−1

∑Q
q=1 w

p
qz

c
q . Particularly, the thumbnail node

serves as the semantic feature vector of the top-level.
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Algorithm 1: The pipeline of training PTree-Net.

Input : The WSI dataset {Pi, yi}Ni=1;
The feature extraction network f ;
The RGCN g;
Loss factors λlocal, λglobal and λsparse;

Output: The trained PTree-Net;

1 Initialize f(θFAM) for FAM;
2 while f(θFAM) reaches convergence do
3 for each P and y in {Pi, yi}Ni=1 do
4 Extract thumbnail p1 from WSI P;
5 Inference on f(p1, θFAM);
6 Minimize LCE(f(p1, θFAM), y).
7 end
8 end
9 Initialization: θ1, θ2, · · · , θL := θFAM;

10 while g reaches convergence do
11 for each P and y in {Pi, yi}Ni=1 do
12 Extract thumbnail p1 from WSI P;
13 Obtain FAM map by inference of

f(p1, θFAM);
14 Extract patches from different levels of P

according to FAM map, as {pk}Kk=1 ⊆ P;
15 Generate adjacency matrix A during patch

extraction;
16 Obtain features of all patches X using

corresponding {f(θl)}Ll=1;
17 Conduct diagnosis of P with inference of

g(X,A);
18 Minimize L(g(X,A), y) in Eq. 10;
19 Update FAM by minimizing Eq. 11.
20 end
21 end
22 The PTree-Net with f and g is well-trained.

Aggregation and Loss Functions
After obtaining the semantic feature vectors of all levels
{sl}Ll=1, we concatenate them in channel dimension and
generate the diagnostic prediction ŷ using a fully-connected
layer. Also, each semantic feature vector sl is equipped with
an auxiliary classifier and obtains ŷ

l
to ameliorate the train-

ing. To achieve the task of HER2 scoring, we employ cross
entropy loss LCE on these predictions with label y:

LCE = LCE(ŷ, y) +
L∑

l=1

LCE(ŷl
, y). (9)

Therefore, the loss function of RGCN is defined as follows:

L = LCE + λlocalLlocal + λglobalLglobal + λsparseLsparse,
(10)

where λlocal, λglobal, and λsparse are trade-off factors to ad-
just the importance of loss components. Considering RGCN
with multi-scale inputs can produce more accurate predic-
tion, we further update FAM with the semantic features of
RGCN as well as the scoring supervision, as follows:

LFAM = LCE(ŷFAM
, y) + λFAM ‖fFAM − fRGCN‖F , (11)

where fFAM and fRGCN are the feature maps generated by
independent branches derived from FAM and RGCN.

Through optimizing RGCN with Eq. 10 and FAM with
Eq. 11 respectively, our PTree-Net can obtain the remarkable
performance only using the weakly slide-level labels. The
training pipeline is summarized in Algorithm 1.

Experiment
Dataset
Our HER2 scoring dataset consists of 1, 105 HER2-stained
WSI slides, including 410 slides of 0/1+, 522 slides of
2+, and 173 ones of 3+. The sections were collected from
KingMed Diagnostics and scanned with multiple image
scanners. All tissues and data were retrieved under the per-
mission of the institutional research ethics board of the insti-
tution. Region cropping is implemented to remove massive
background while preserving tissues. All WSIs are standard-
ized into a 3-level pyramid of uniform magnifications, where
the magnifications of the bottom-level (l=3), the middle-
level (l=2) and thumbnail (l=1) are 10× (1.0µm/pixel),
5× (2.0µm/pixel) and 1.25× (8.0µm/pixel), respectively.
The bottom-level resolution of WSI slide is up to 40, 500×
21, 000 and the average resolution is 14, 130× 11, 030 pix-
els. Correspondingly, the average resolution of thumbnails
is 1, 767×1, 379. Each WSI is marked with a HER2 scoring
label by an experienced pathologist. The comparison exper-
iment was implemented in four-fold cross validation.

Implementation and Evaluation Strategy
Considering the medical significance of HER2 scoring,
we conduct 3-category prediction, namely negative (0/1+),
equivocal (2+) and positive (3+), which is consistent with
previous works (Vandenberghe et al. 2017; Khameneh,
Razavi, and Kamasak 2019). We adopt the ResNet-18 (He
et al. 2016) for the feature extraction network as f , which
converts patches into 512-dimensional features X. The
RGCN is conducted with two graph convolutional layers of
Eq. 5, which processes node features into 128 dimensions
and 32 dimensions, respectively. The semantic feature vec-
tor s is 32-dimensional for each level. The features to up-
date FAM, fRGCN and fFAM, are 64 dimensions generated
by two fully-connected layers. According to the intensity of
FAM map, we crop patches from unselected regions in turn,
which are limited to no more than 10% WSI area and no
more than 8 patches. The size of cropped patches at bottom-
level and middle-level is fixed as 512×512, and each parent
node contains Q = 4 child nodes. To avoid over-fitting, the
child nodes of the same parent node are shuffled, which re-
sults in the permutation-invariant attribute for PTree-Net. In
addition, we apply a foreground mask based on the threshold
at RGB space to bound the heatmap generated by FAM.

All models in the experiment are implemented in PyTorch
(Paszke et al. 2019) and trained until convergence on a single
NVIDIA P40 GPU. The networks are optimized by Adam
(Kingma and Ba 2015) with the batch size of 16. The learn-
ing rate is initialized as 1×10−4 and divided by 10 after ev-
ery 10 epochs. We empirically set λlocal, λglobal and λsparse
as 10, and λFAM as 5.
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0/1+

3+
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Figure 3: The visualization of FAM and detailed patches at high-power objective. Note that the heatmap of FAM and NAM
(Feng et al. 2017) are generated using the same network with the same parameters. Note that the red box represents the
suppressed region of FAM map, which is not utilized by the PTree-Net.

The algorithms in our experiment are evaluated by four
kinds of statistical metrics, including the accuracy, the F1
score, Cohen’s kappa, and Matthews correlation coeffi-
cient (MCC). Specifically, the accuracy indicates the overall
agreement between predictions and labels across categories.
The F1 score is first calculated in each category and then
conducted in a macro average. Considering the progressive
relationship of HER2 scores, we calculate Cohen’s kappa
with quadratic weighting, which has been widely used in
similar tasks (Bulten et al. 2019). The MCC represents the
consistency between predictions and labels.

Qualitative Analysis of Region Selection
To verify the effectiveness of our FAM, we demonstrate the
heatmap of FAM and Nodule Activation Map (NAM) (Feng
et al. 2017) at cases of various scores. In Fig. 3 (a) and
(b), compared with NAM, the heatmap produced by FAM
highlights sparse attentive regions and suppresses massive
irrelevant areas (e.g., background and stroma cells), which
is in line with the characteristics of WSI. We suppose that
the softmax of category-wise importance maps can restrain
noise, and the second-order information across categories
is utilized in Eq. 1. In the last two columns of Fig. 3, the
most attentive regions and random crops of the suppressed
area are extracted from a higher-power objective. For exam-
ple, the details of Fig. 3 (c) confirm the presence of intense
and complete staining membrane, which provide significant
information for the decision of 3+. On the other hand, the
patch of suppressed area contains no epithelial cells. The
other examples in Fig. 3 also confirm to this observation.

Quantitative Comparison
We evaluate the proposed PTree-Net by comparing it with
other state-of-the-art methods (Courtiol et al. 2018; Ilse,

Tomczak, and Welling 2018; Campanella et al. 2019; Wang
et al. 2019; Hashimoto et al. 2020). As the RMDL method
(Wang et al. 2019) requires pixels-level annotations to train
a patch-selection network, we reproduce the RMDL in two
cases, including the random cropping and FAM-based patch
selection.

As shown in Table 1, our PTree-Net achieves the best
performance on four evaluation metrics, including the ac-
curacy of 89.70%, F1 of 90.77%, kappa of 89.28% and
MCC of 83.34%. Compared with the baseline ResNet-18
using thumbnails of WSI, the multi-scale information and
tailor-made architecture bring a 7.44% F1 and 11.83% MCC
improvement to PTree-Net. The more than 2% kappa gap
between the MinMax method (Courtiol et al. 2018) and
attention-based MIL (Ilse, Tomczak, and Welling 2018)
confirms the the contribution of instance features aggre-
gation to WSI diagnosis, as MinMax layer discards abun-
dant information while attention mechanism adaptively re-
fines instances. The two rows of RMDL prove our FAM
can provide the diagnosis-related regions for down-stream
networks, with an increase of 3.12% in MCC over random
cropping. Based on the attention mechanism in (Ilse, Tom-
czak, and Welling 2018), multi-scale patches further bring a
1.62% improvement of F1 to MS-DA-MIL (Hashimoto et al.
2020). Following these comparison, our PTree-Net explores
multi-scale information more reasonably and integrates the
features of each instance more effectively, which achieves
the outperforming performance in HER2 scoring.

Ablation Study
We analyze the contributions of PTree-Net components in
Table 2. The experiment is conducted on one of the four-fold
divisions. Our PTree-Net achieves the accuracy of 89.74%,
F1 of 90.85% and kappa of 89.57%. The comparison be-
tween w/o FAM and PTree-Net indicates that FAM brings
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Methods Accuracy (%) F1 (%) Kappa (%) MCC (%)
Thumbnail (TN) + CNN 82.51± 0.55 83.33± 1.35 80.29± 2.05 71.51± 0.88

MinMax (Courtiol et al. 2018) 84.71± 0.96 85.14± 1.41 84.11± 1.26 75.79± 1.90
Attention MIL (Ilse, Tomczak, and Welling 2018) 86.45± 0.67 86.85± 0.58 86.86± 0.87 78.78± 1.11

Gated Attention MIL (Ilse, Tomczak, and Welling 2018) 86.81± 0.52 87.86± 0.78 86.75± 1.44 79.49± 1.48
MIL-RNN (Campanella et al. 2019) 86.18± 0.95 87.05± 1.26 85.64± 1.09 77.79± 1.53
Random+RMDL (Wang et al. 2019) 85.44± 1.28 85.49± 2.30 83.80± 1.90 76.02± 2.10

FAM+RMDL (Wang et al. 2019) 87.18± 0.79 87.82± 1.05 86.44± 1.29 79.14± 1.41
MS-DA-MIL (Hashimoto et al. 2020) 87.09± 0.81 88.47± 0.55 86.24± 1.18 79.07± 1.15

PTree-Net 89.70± 1.22 90.77± 1.29 89.28± 1.33 83.34± 1.92

Table 1: The comparison between PTree-Net and state-of-the-art methods. Average and standard deviation are calculated based
on the results in four-fold cross validation

Methods Acc (%) F1 (%) Kappa (%) MCC (%) Param (107)
TN+CNN 82.78 82.58 80.24 71.73 1.12
w/o FAM 87.18 87.92 86.67 79.16 3.39
fixed FAM 88.65 89.21 87.85 81.49 4.52
w/o RGCN 86.81 87.42 86.92 79.15 4.48
w/o Relev. 87.91 88.56 87.56 80.44 4.49

w/o TS 89.01 89.70 88.91 82.48 4.51
PTree-Net 89.74 90.85 89.57 83.64 4.52

Table 2: Ablation study of PTree-Net.

Target
Predict 0/1+ 2+ 3+

0/1+ 88.01±7.58 11.99±7.58 0.00±0.00
2+ 9.38±2.71 89.16±3.43 1.46±1.13
3+ 0.00±0.00 4.76±5.09 95.24±5.09

Table 3: 4-fold confusion matrix of PTree-Net.

a 2.93% F1 increase over random cropping, and the knowl-
edge of RGCN to update FAM improves kappa with 1.72%.
We also replace RGCN with fully-connected layers to pro-
cess node features of tree, which proves that the usage of
tree topology contributes a 3.43% improvement to F1. The
patch relevance and the tree-based self-supervision (abbre-
viated as TS) result in a 3.20% and 1.16% improvement of
MCC, respectively. Moreover, the proposed PTree-Net com-
ponents are efficient, with a slight overhead of parameters.

Discussion
We further present the confusion matrix of four-fold cross
validation in Table 3. PTree-Net can confidently distinguish
WSIs with 3+ HER2 score, with 95.24% WSIs of 3+ are
classified correctly. As the equivocal cases, 89.16% WSIs of
2+ are classified correctly, and the misjudgment between 2+
and 0/1+ is the bottleneck of performance, where 11.99%
of 0/1+ samples are misjudged into 2+ and 9.38% in turn.
Thus, we present two examples of these mistakes in Fig. 4.
In Fig. 4 (a), PTree-Net found the region with intense and
complete cell membrane staining and predicted the WSI as
2+, although the attentive red regions are very sparse. How-
ever, the proportion of this area is not enough to report the
slide as HER2 2+, which inspired us to explicitly model

WSI DetailsFAM TargetPredict

2+ 0/1+

2+0/1+

(a)

(b)

Figure 4: Misjudgment of PTree-Net between 0/1+ and 2+.

region proportion in the future. The Fig. 4 (b) presents the
moderate to intense basolateral/lateral staining membranes,
which is relatively rare but should be diagnosed as HER2
2+. In our experiment, it is not easy to capture such subtle
patterns with not enough training samples.

Considering Vandenberghe et al. (Vandenberghe et al.
2017) and Khameneh et al. (Khameneh, Razavi, and Ka-
masak 2019) required additional annotations, we are not able
to reproduce these two works. Particularly, Vandenberghe
et al. (Vandenberghe et al. 2017) achieved kappa of 69%
on 71 WSIs, and Khameneh et al. (Khameneh, Razavi, and
Kamasak 2019) resulted in a 79% kappa on 52 WSIs. In
contrast, our PTree-Net obtains 89.28% on four-fold cross
validation of 1, 105 WSIs. We attribute the performance ad-
vantage of PTree-Net to fully exploit the information of
the entire WSI in an end-to-end manner, instead of human-
designed features or rules.

Conclusion
In this paper, we propose a PTree-Net to hierarchically
exploit the multi-scale features of WSI pyramid. Specifi-
cally, FAM is first supervised by slide labels to estimate the
diagnosis-related regions. With more detailed patches from
attentive regions, we devise RGCN to explore the tree struc-
ture of multi-scale patches from explicit and implicit per-
spectives. Finally, PTree-Net is optimized by tree-based self-
supervision to improve the representation learning and sup-
press the contributions of potential irrelevant patches. Ex-
tensive experiments show that our PTree-Net outperforms
the state-of-the-art on a large-scale IHC HER2 dataset.
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