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Abstract

A single image captures the appearance and position of mul-
tiple entities in a scene as well as their complex interactions.
As a consequence, natural language grounded in visual con-
texts tends to be diverse — with utterances differing as fo-
cus shifts to specific objects, interactions, or levels of de-
tail. Recently, neural sequence models such as RNNs and
LSTMs have been employed to produce visually-grounded
language. Beam Search, the standard work-horse for decod-
ing sequences from these models, is an approximate infer-
ence algorithm that decodes the top-B sequences in a greedy
left-to-right fashion. In practice, the resulting sequences are
often minor rewordings of a common utterance, failing to
capture the multimodal nature of source images. To address
this shortcoming, we propose Diverse Beam Search (DBS),
a diversity promoting alternative to BS for approximate in-
ference. DBS produces sequences that are significantly dif-
ferent from each other by incorporating diversity constraints
within groups of candidate sequences during decoding; more-
over, it achieves this with minimal computational or memory
overhead. We demonstrate that our method improves both di-
versity and quality of decoded sequences over existing tech-
niques on two visually-grounded language generation tasks
— image captioning and visual question generation — particu-
larly on complex scenes containing diverse visual content. We
also show similar improvements at language-only machine
translation tasks, highlighting the generality of our approach.

1 Introduction

A picture is often said to be worth a thousand words, ow-
ing this high valuation to its capability to simultaneously
capture multiple objects and their interactions precisely.
Communicating this rich information in natural language
requires providing many details about the scene at vary-
ing levels of granularity, resulting in a great deal of diver-
sity in visually-grounded language. Recently, automated ap-
proaches for generating visually-grounded language based
on neural sequence models have been studied (Vinyals et al.
2015; Venugopalan et al. 2015; Mostafazadeh et al. 2016;
Das et al. 2017); however, in practice, utterances generated
from these models often tend to be generic and fail to re-
cover the diversity observed in human annotations.
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Modeling Visually-Grounded Language. Recurrent Neu-
ral Networks (RNNs), Long Short-Term Memory networks
(LSTMs), or more generally, neural sequence models have
been extensively used for modeling time-series in a data-
driven manner — including, standard sequence-to-sequence
problems such as speech recognition (Graves, Mohamed,
and Hinton 2013), machine translation (Bahdanau, Cho, and
Bengio 2014), and conversation modeling (Vinyals and Le
2015). More recently, neural sequence models have been
applied to visually-grounded language generation tasks like
image and video captioning (Vinyals et al. 2015; Venu-
gopalan et al. 2015), question generation (Mostafazadeh et
al. 2016), and dialog (Das et al. 2017). In these tasks, neural
sequence models are typically trained to estimate the likeli-
hood of a sequence of output tokens y = (y1, ..., yr) from
a finite vocabulary V), conditioned on some input x. For ex-
ample, in image captioning, the input x is a continuous rep-
resentation of a source image as encoded by a Convolutional
Neural Network (CNN) and the output y is a natural lan-
guage description of the scene depicted in the source image.

Inference in RNNs. At test time, Maximum a Posteriori
(MAP) inference must be performed to decode the most
likely sequence given an input image. However, the space of
all T length sequences consists of |V|T possibilities; there-
fore, exact inference is intractable even for modestly sized
tasks. Instead, approximate inference algorithms like Beam
Search (BS) are commonly used to decode likely sequences.

BS is a heuristic graph-search algorithm that maintains
the B most-likely partial sequences expanded in a greedy
left-to-right fashion (Fig. 1 (middle) shows a sample search
tree). Despite its widespread usage, it is generally known to
produce generic or “safe” outputs. For example, generic cap-
tions like “Animals standing in the field” or responses such
as “I can’t tell” in dialog are applicable to a wide range of
images and hence, are largely uninformative. Equally prob-
lematic, the top-B outputs from BS lack diversity and typi-
cally express an identical sentiment through minor reword-
ings (often only in the last few words). While this behavior is
disadvantageous for many reasons (including being compu-
tationally wasteful), we argue that the most adverse effects
occur in cases where Pr(y|x) truly is multimodal; as is often
the case in language generation tasks where there is gener-
ally not a single ‘correct’ utterance.

Fig. 1 highlights these deficiencies in an example image
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Figure 1: Comparing image captioning outputs decoded by BS (top) and our method, Diverse Beam Search (middle) — we notice
that BS captions are near-duplicates with similar shared paths in the search tree and minor variations in the end. In contrast,
DBS captions are significantly diverse and similar to the variability in human-generated ground truth captions (bottom).

captioning task. The human captions (top) show a range of
phrasings and focus on different objects (table, plant, fruit,
kettles), relationships (on, in, above) and granularity (kitchen
vs. objects in the kitchen). The BS based captions (middle-
top) in contrast are generic captions that complete a single
root sentence with various objects typically found on a table
(bowls, food, bottles, plates, flowers), though many of them
are not present on this table. It is clear that producing B
nearly identical, generic captions is woefully inadequate to
reflect the space of relevant descriptions.

Overview and Contributions. To address this shortcoming,
we propose Diverse Beam Search (DBS) — a general frame-
work for decoding a set of diverse sequences that can be
used as an alternative to BS. At a high level, DBS decodes
diverse lists by dividing candidate solutions into groups and
enforcing diversity between groups. DBS decoded captions
in Fig. 1 (bottom) show higher variability in phrasing and
focus more on objects actually in the scene. Drawing from
work in the probabilistic graphical models literature on Di-
verse M-Best (DivMBest) MAP inference (Batra et al. 2012;
Prasad, Jegelka, and Batra 2014; Kirillov et al. 2015), we op-
timize an objective comprised of two terms — the sequence
likelihood under the neural sequence model and a dissimi-
larity term that encourages sequence across groups to differ.
This diversity-augmented model score is optimized in a dou-
bly greedy manner — greedily maximizing both along time
(like BS) and across groups (like DivMBest).

We report results on two visually grounded tasks — im-
age captioning and visual question generation and machine
translation. Our experiments show that DBS consistently
outperforms baseline methods in terms of both diversity-
related and task-specific quality metrics. Moreover, we find
that both these improvements and human preference for
DBS decoded outputs increase on tasks grounded in more
complex images (i.e. those requiring a greater deal of diver-
sity). We also show improvements over BS on non-visual
machine translation tasks. Overall, our algorithm decodes
high-quality, diverse sequence sets while being simple to
implement and comparable to BS in terms of computation
and memory requirements. To aid transparency and repro-
ducibility, our code for DBS is available at https://github.
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com/ashwinkalyan/dbs. A demo of our method is available
at http://dbs.cloudcv.org/.

2 Related Work

Diverse M-Best Lists. The task of generating diverse struc-
tured outputs from probabilistic models has been stud-
ied extensively (Kirillov et al. 2016; Batra et al. 2012;
Kirillov et al. 2015; Prasad, Jegelka, and Batra 2014). Batra
et al. (2012) formalized this task for Markov Random Fields
as the DivMBest problem and presented a greedy approach
which solves for outputs iteratively, conditioning on previ-
ous solutions to induce diversity. Kirillov et al. (2015) show
how these solutions can be found jointly for certain kinds of
energy functions; however, these techniques are not directly
applicable to decoding from RNNs.

Most related to our proposed approach is the work of
Gimpel et al. (2013), who apply DivMBest to machine trans-
lation using beam search as a black-box inference algo-
rithm. Specifically, in this approach, DivMBest knows noth-
ing about the inner-workings of BS and simply makes M
sequential calls to BS to generate M diverse solutions. This
approach is rather wasteful because BS is run from scratch
every time and although each call to BS produces B solu-
tions, only one solution is retained by DivMBest. In contrast,
the approach developed in this paper (DBS) avoids these
shortcomings by integrating diversity within BS such that
no beams are wasted. By running multiple beam searches in
parallel and at staggered time offsets, we obtain large time
savings, making our method comparable to a single run of
classical BS and M times faster than (Gimpel et al. 2013).
One potential disadvantage of our method with respect to
(Gimpel et al. 2013) is that sentence-level diversity metrics
cannot be incorporated in DBS as diversity is encouraged
amongst groups before waiting for them to completely de-
code a sentence. However, as observed empirically by us
and (Li et al. 2015), initial words tend to disproportionately
impact the diversity of the resulting sequences — suggesting
that later words may not be important for inducing diversity.

Diverse Decoding for RNNs. Efforts have been made by Li
et al. (2015) and Li and Jurafsky (2016) to produce diverse
decodings from recurrent models for conversation model-



ing and machine translation by introducing novel heuristics
within the Beam Search (BS) algorithm.

Li and Jurafsky (2016) proposes a BS diversification
heuristic that discourages beams from sharing common
roots, implicitly resulting in diverse lists. Introducing diver-
sity through a formal objective (as in DBS) rather than via a
procedural heuristic provides the flexibility to incorporate
different notions of diversity and control the exploration-
exploitation trade-off. Furthermore, we find that DBS sig-
nificantly outperforms this approach in our experiments on
multiple datasets. Li et al. (2015) introduce a novel decoding
objective that maximizes mutual information between in-
puts and predictions to penalize generic sequences. The goal
is to penalize utterances that occur frequently (i.e. generic
decodings) rather than penalizing similarity between gen-
erated sequences — which in principle is complementary to
both DBS and (Li and Jurafsky 2016). Furthermore, evaluat-
ing the ‘genericness’ of a sequence requires training a new
input-independent language model for the target language
while DBS just requires a measure of diversity between se-
quences. Combining these complementary techniques is left
as interesting future work.

Sequence Optimization. In an orthogonal line of work,
(Wiseman and Rush 2016) directly learn to search in the
exponential output space to fix the shortcomings of using
seq2seq models. They integrate both the seq2seq architec-
ture and the search problem of finding the top-sequence via
optimizing for both the negative log-likelihood and search-
based losses to obtain significant improvements over the
standard training and inference pipeline. In contrast, our ap-
proach is an inference-only technique that does not require
any re-training that works in a model-agnostic fashion.

3 Preliminaries: RNNs, Beam Search, and
DivMBest

We begin with a refresher on Beam Search for inference in
RNNs and DivMBest before detailing our approach. For no-
tational convenience, we denote the set of natural numbers
from 1 to n with [n] and use v(,,; = [v1,...,v,]T to index
the first n elements of a vector v € R™.

RNNs are neural sequence models trained to estimate the
likelihood of sequences of tokens from a finite dictionary
V given an input x. The RNN updates its internal state
and estimates the conditional probability distribution over
the next output given the input and all previous output
tokens, log Pr(y:|y[:—1],x). We write the log probability
of a sequence y € V7T of length T as Op(y;x) =
ZtE[T] log Pr(y:|y(s—1],%). The decoding problem is then
the task of finding a sequence y that maximizes O7(y; x).
As each output is conditioned on all the previous outputs,
decoding the optimal length-7" sequence in this setting can
be cast as MAP inference on a T-order Markov chain with
nodes corresponding to output tokens at each time step. Not
only does the size of the largest factor in such a graph grow
as [V|T, but computing these factors also requires repeti-
tively evaluating the sequence model. Thus, approximate in-
ference algorithms are employed, with the most prevalent
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method being Beam Search (BS).

Beam Search is a heuristic search algorithm which stores
the top- B highest scoring partial solutions at each time step;
where B is known as the beam width. At time ¢, BS con-
siders all possible single token extensions of existing beams
and retains the B highest scoring extensions.

Let us denote the set of B solutions held by BS at
the end of time t—1 as Y1) = {y1,p-1]s - ¥YB,[t—1]}-
At each time step, BS considers all possible single
token extensions of these beams given by the set
Ve = {y | y-11 € Y1 A yr € V} and retains the
B highest scoring extensions. More formally, at each step
the beams are updated as

)

Y = argmax
Y1, YBEVt
——

Z O (¥, (15 %)
be[B]

pick top-B
st. YiFYj

non-identical beams

Vi#jandi,j € [B].

The above objective can be trivially maximized by sorting
all Bx|V| members of ); by their log probabilities and se-
lecting the top B. This process is repeated until time 7" and
the complete beams are sorted by log probabilities.

While this method allows for multiple sequences to be
explored in parallel, most completions tend to stem from a
single highly valued beam (Li and Jurafsky 2016)— result-
ing in outputs that are often only minor perturbations of a
single sequence. To make the decoded lists reflect the varia-
tion present in human-generated language, we show how the
beam search objective can be augmented to include a diver-
sity constraint.

DivMBest. Batra et al. (2012) formalize the task of generat-
ing M diverse but likely solutions as the DivMBest problem
and develop a greedy incremental approach which solves for
one solution at a time conditioned on the previous ones.

Let S(y; x) measure the quality of a solution y € ) and
A(+, -) measure dissimilarity between elements of ). In this
greedy approach, solutions are found sequentially through a
dissimilarity-constrained maximization with respect to pre-
vious solutions,

y" =argmax S(y;z) s.t. Aly,y") >k Vi<m (2)

yey
which enforces that new solutions must be sufficiently far
from existing ones by factors k={k;|i€[m—1]}.

In general, this problem is NP-hard and Batra e al. in-
stead formulate the Lagrangian relaxation of this objective,

m—1

i=1
where A = {)\;|i € [m — 1]} is the set of Lagrange mul-
tipliers which scale the cost of violating each constraint. In
practice, setting distance limits k is unintuitive; however, the
authors note that tuning X directly is analogous to maximiz-
ing g(-) with respect to A for some unknown set of limits and
represents a more intuitive linear trade-off between quality
and dissimilarity of solutions.

g(A) = max S(y;x) (3)

ye
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Figure 2: Diverse beam search operates left-to-right through time and top to bottom through groups. Diversity between groups
is combined with joint log probabilities, allowing diverse continuations to be found efficiently.

With fixed values of X and prior solutions y!, ... y™ !,

the inner maximization over ) inside ¢(-) is a function only
of y. Given an algorithm capable of maximizing the original
S(y;z), the next diverse solution can be found by apply-
ing the same approach on the diversity-augmented criteria
Salyiz) = S(y;z) + Xy MA(y, y').

Gimpel et al. (2013) apply DivMBest to machine transla-
tion by using beam search to maximize this objective, gener-
ating M diverse solutions by performing M complete beam
searches (with B beams), keeping the highest ranked so-
lution from each, and discarding the remaining B—1 se-
quences each time. The root cause of this inefficiency is the
treatment of BS as a black-box optimizer and the implemen-
tation of DivMBest as a naive outer-for-loop around it. In
the next section, we present Diverse Beam Search, which
directly incorporates diversity within beam search itself to
improve diversity without incurring this expense.

4 Approach: Diverse Beam Search (DBS)

In this section, we present Diverse Beam Search, an algo-
rithm that tightly integrates diversity within the BS search
process to efficiently produce diverse sequences.

Overview and Intuitions. To induce diversity in the selec-
tion of beam completions during beam search, we consider
augmenting the objective in Equation 1 with a DivMBest
style dissimilarity term, AA(+). This formulation would en-
courage all beams to differ from one another, with each seek-
ing out a different mode of the output distribution. However,
BS is greedy through time and a single beam may be insuffi-
cient to find highly-likely sequences from each mode, so we
further propose dividing the set of beams into groups and en-
couraging diversity only between groups and not within. By
dividing our beam budget in this way, we can vary the num-
ber of groups to balance between exploration of the space
(more groups with fewer beams) and exploitation of local
maximum (fewer groups with more beams).

Figure 2 displays a snapshot of the proposed method on an
image captioning task with G=3 groups comprised of B’=2
beams each. Each group can be viewed as a smaller, inde-
pendent beam search operating under a diversity augmented
objective based on previous groups’ search paths. As each
group must wait for the prior groups to be processed at each
time step, groups are extended forward in time along a stag-
gered beam-front. In the graphic, the third group is being
stepped forward at time step ¢ = 4 and the previous groups
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have already been extended for this time step. In this exam-
ple, we use hamming distance to measure diversity which
rewards using different words from those used by previous
groups at the same time step — ‘birds’, ‘the’, and ‘an’ in the
example. After the diversity-augmented log-probabilities are
computed like in DivMBest, the top B’ extensions for the
third group can be found by a standard beam search step.
Thus, our approach is doubly greedy — both along time like
BS and across groups like DivMBest. Specifically, the algo-
rithm proceeds in a ‘column-major’ fashion, greedily opti-
mizing all the groups at each time step. We now detail our
approach which we refer to as Diverse Beam Search (DBS).

DBS Formulation. More formally, consider a partition of
the beams, Y}, into G' groups Y[f],ge[G] each containing
B’'=B/G beams (a non-uniform beam distribution is pos-
sible in practice). At each time step ¢, we greedily update
each group g by selecting extensions of currently held par-
tial solutions Y[f]:{yim, ... 7ygB,,[t]} that maximize a lin-
ear combination of sequence likelihood and diversity with
respect to previous groups, similar to DivMBest.

We begin by defining a diversity function A(y[t],Y[f])
which measures the dissimilarity between a sequence yi
and group Y[f] While A(-,-) can take many forms, for
simplicity we define one broad class that decomposes across
beams within a group. We write the general form as

sum over all previous group beams

B’

A(y[ﬂ’y[f]): > 5(Y[Mi,m)

b=1 S——

dissimilarity

“4)

where d(-, ) is a measure of sequence dissimilarity — e.g. a
negative cost for each co-occurring n-gram in two sentences
or distance between distributed sentence representations.

In analogy to DivMBest approaches, we optimize each
group while holding previously extended groups fixed, in-
corporating the diversity term A(+,-) into the BS objective
presented in (1). For time step ¢, we can write this diversity-
augmented optimization for updating group g as



g—1
9 _ g g h
Y, %rgmix E (SH (yb,[t]) + A E A (ybm , Y[t]) 5)
Yiro Y/ bE[B'] N——_—r h=1
score of extensions
select top-B diversity w.r.t. previous groups

st. A >0, yz[t] # y]g.y[t]Vi +3
—_———

non-identical extensions

This modified objective is a trade-off between the likelihood

of the completions and their diversity with respect to pre-

viously extended groups. As the previous groups are held
fixed, Eq. 5 is only a function of the possible extensions. As
such, the log-probabilities of the completions can be aug-

mented with the diversity term — reducing this problem to a

standard BS step with can be solved by sorting the extension

scores. We repeat this for each group at each time step.

Our approach is formalized in Alg. 1 and consists of two
main steps performed for each group at each time step —

1) augmenting the log probabilities of all possible exten-
sions with the diversity term computed from previously
advanced groups (Algorithm 1, Line 7) and,

2) running one step of a smaller BS with B’ beams using
the augmented log probabilities to select extensions for
the current group (Algorithm 1, Line 9).

After all sequences have been extended to a preset max

length or otherwise terminated, all solutions from each

group are combined and sorted by log probability.

There are a number of advantages worth noting about this
approach. By encouraging diversity between beams at each
step (rather than just between highest ranked solutions like
in (Gimpel et al. 2013)), our approach rewards each group
for spending its beam budget to explore different parts of
the output space rather than repeatedly chasing sub-optimal
beams from prior groups. Furthermore, the time-staggered
group structure enables each group beam search to be per-
formed in parallel with a time offset. This parallel algorithm
completes in 7"+ G time steps compared to 7" * GG running
time for a black-box approach of Gimpel er al. (Gimpel et
al. 2013). Finally, we note that as the first group is not con-
ditioned on other groups, DBS is guaranteed to perform at
least as well as a beam search of size B’'.

4.1 Analysis of Hyper-parameters

Here we discuss the impact of the number of groups,
strength of diversity, and various forms of diversity for lan-
guage models. Note that the parameters of DBS (and other
baselines) were tuned on a held-out validation set for each
experiment. Further discussion and full experimental results
are detailed in the supplement.

Number of Groups (G). Setting G=DB allows for the max-
imum exploration of the search space, while setting G=1
reduces DBS to BS, resulting in increased exploitation of
the search-space around the 1-best decoding. Empirically,
we find that maximum exploration correlates with improved
oracle accuracy and hence use G=B to report results.

Diversity Strength ()\). The diversity strength \ specifies
the trade-off between the model score and diversity terms.
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Algorithm 1: Diverse Beam Search

1 Diverse Beam Search with G groups using B beams
2fort=1, ... Tdo

// perform one step of beam search

3 Y[}} € argmaxy Yoo ) Zbe[B’] @t(ya[t])

4 s.t. yil’m + y]{[t] Vi # j
5 forg=2, ... Gdo

// augment log probabilities
6 Gt(yg,[t]) <
-1
O:(yy 1) + A0 AW 1y Y[?})
7 for b€ [B'],y}] ;) € Y/ and A >0
// perform one step of beam
search
8 Y[f] <
argmax(yq‘[t] ..... y%,,[t]) ZbE[B/] et(yg,[t])
o L LY F Yy VAT

10 Return set of B solutions, Y|7) = Ule Y[g,]

As expected, we find that a higher value of A produces a
more diverse list; however, very large values of A can over-
power model score and result in grammatically incorrect
outputs. We set \ via grid search over a range of values to
maximize oracle accuracies achieved on the validation set.
We find a wide range of \ values (0.2 to 0.8) work well for
most tasks and datasets with which we experimented.

Choice of Diversity Function (A). We defined A(y,Y) as
a dissimilarity function between a sequence y and a set of
sequences Y. In Section 4, we illustrated a simple hamming
diversity of this form that penalizes selection of tokens pro-
portionally to the number of time it was used in previous
groups. However, this factorized diversity term can take var-
ious forms, encoding different notions of diversity — with
hamming diversity being the simplest.

For language models, we consider various forms like cu-
mulative diversity (time-averaged hamming diversity), n-
gram diversity (discourages n-grams occurring in previous
groups) and neural embedding based diversity functions that
softly compute dissimilarity using average distances in a se-
mantic space (specifically Word2Vec (Mikolov et al. 2013)
space). While all diversity functions result in DBS signif-
icantly outperforming BS, we empirically find that the de-
fault hamming diversity function to be most effective (see
Fig. 3) and report results based on this diversity measure.

Beam Size (B). While larger beam sizes often lead to better
exploration of the search space, it is computationally expen-
sive. We find that promoting diversity in the decoded lists
via DBS leads to a more efficient usage of the beam budget
— for instance, to achieve a SPICE score of ~10.89 DBS re-
quires a beam size of 40 compared to the 100 needed by BS.
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Figure 3: On the PASCAL-50S dataset, we compare the or-
acle CIDEr@k (Vedantam, Lawrence Zitnick, and Parikh
2015) for lists sampled using a beam size of 20. While all
variants of DBS significantly outperform DBS, we find that
using simple hamming diversity performs best. We find sim-
ilar results across other metrics.

S Experiments

In this section, we evaluate our approach on image caption-
ing, visual question generation and machine translation tasks
to demonstrate both its effectiveness against baselines and
its general applicability to any inference currently supported
by beam search. Further, we explore the role of diversity in
generating language from complex images. We first explain
the baselines and evaluations used in the following sections.

Baselines. Apart from classical beam search (BS), we com-

pare our method with two related methods;

- Li and Jurafsky (2016) modify BS by introducing an
intra-sibling rank. For each partial solution, the set of
|V| beam extensions are sorted and assigned intra-sibling
ranks k € [|V|] in order of decreasing log probabilities.
The log probability of an extension is then reduced in pro-
portion to its rank, and continuations are re-sorted under
these modified log probabilities to select the top B ‘di-
verse’ beam extensions, and

- Li et al. (2015) train an additional unconditioned target
sequence model U(y) and perform BS decoding on an
augmented objective P(y|z) — AU (y), penalizing input-
independent decodings.

We compare to our own implementations of these methods

as none are publicly available. Both (Li and Jurafsky 2016)

and (Li et al. 2015) develop and use re-rankers to pick a sin-

gle solution from the generated lists. Since we are interested
in evaluating the quality and diversity of the entire set of
decoded outputs, we simply rank by log-probability.

Hyperparameters. We set all hyperparameters for DBS and
the baseline methods by maximizing oracle SPICE via grid-
search on a held out validation set for each experiment.

Evaluation Metrics. We evaluate the performance of the
generated lists using the following two metrics:

- Sequence Metrics: Task-specific metrics that measure the
quality of a sentence against ground truth sequences. We
use SPICE (Anderson et al. 2016) for image captioning
and BLEU (Papineni et al. 2002) for machine translation.

- Oracle Performance: Oracle or top k performance w.r.t.
some sequence metric is the maximum value of the metric
achieved over a list of k potential solutions. Oracle per-
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formance is an upper bound on the performance of any
re-ranker, measuring the possible impact of diversity.

- Distinct n-Grams: We count the number of distinct n-
grams present in the list of generated outputs. Similar to
(Li et al. 2015), we divide these counts by the total num-
ber of words generated to bias against long sentences.

Simultaneous improvements in all metrics indicate that out-

put sequences have increased in diversity without sacrificing

fluency or correctness with respect to the target tasks.

5.1 Estimating Image Complexity

One implicit thesis of this work is that language grounded
in complex scenes is more diverse. To evaluate this claim,
we assess if diversity in language generation leads to larger
improvements on more complex images.

One notion of image complexity is studied by Ionescu et
al. (Ionescu et al. 2016), defining a difficulty score as the
human response time for solving a visual search task for
images in PASCAL-50S (Vedantam, Lawrence Zitnick, and
Parikh 2015). Using the data from (Ionescu et al. 2016), we
train a Support Vector Regressor on ResNet (He et al. 2016)
features to predict this difficulty score. This model achieves
a 0.41 correlation with the ground truth (comparable to the
best model of (Ionescu et al. 2016) at 0.47).

To evaluate the relationship between image complexity
and performance gains from diverse decoding, we use this
trained predictor to estimate a difficulty score s for each im-
age in the COCO (Lin et al. 2014) dataset. We compute the
mean (1 = 3.3) and standard deviation (¢ = 0.61) and
divide the images into three bins, Simple (s < p — 0),
Average (u—o > s < pu+o0), and Complex (s > pu+ o)
consisting of 745, 3416 and 839 images respectively.

Figure 3 shows some sample Simple, Average, and
Complex images from the PASCAL-50S dataset. While
simple images like close-up pictures of cats may only be
described in a handful of ways by human captioners (first
column), complex images with multiple objects and interac-
tions will be described in many different ways depending on
what is the focus of the captioner (last column).

In the following experiments, we show that improvements
from DBS are greater for more complex images.

5.2 Image Captioning

We begin by validating our approach on the COCO (Lin et
al. 2014) image captioning task consisting of five human
generated captions per image. We use the public splits as
in (Karpathy and Fei-Fei 2015) and train a captioning model
(Vinyals et al. 2015) using the neuraltalk2! codebase.
We compare decoding methods on this model.

Results by Image Complexity. Each approach produces
B = 20 candidates that are ranked by log-probability to
compute Oracle SPICE@F for different values of k. We note
that at £ = 1 this is directly the standard SPICE evalu-
ation metric. From Table 1, we can see that as the com-
plexity of images increases DBS outperforms standard beam
search (difference shown in parentheses) and other baselines

"https://github.com/karpathy/neuraltalk2
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Complex

A black sheep dog watches over a black sheep.
A dog and lamb are playing in a fenced area.

A black dog looking at a brown sheep in a field.
A dog is standing near a sheep.

A double-decker bus is pulling into a bus station.
People walking past a red and white colored bus.
A double-decker bus pulls into a terminal.
People walk down the sidewalk at a bus station.

A dog sitting on the ground next to a fence.

A black and white dog standing next to a sheep.
A dog is sitting on the ground next to a fence.
A black and white dog standing next to a dog.

A red double decker bus driving down a street.

A double decker bus parked in front of a building.

A double decker bus driving down a city street.

A double decker bus is parked on the side of the street.
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] A propeller plane is flying overhead

E A old time airplane perform in the air show.

= A small plane is flying through the air.

= The biplane with the yellow wings flew in the sky.
A blue and yellow biplane flying in the sky.

E’& A small airplane is flying in the sky.

[ A blue and yellow biplane flying in the sky.
A small airplane flying in the blue sky.

@ A small airplane flying through a blue sky.

g A blue and yellow biplane flying in the sky.

- There is a small plane flying in the sky.

A/ An airplane flying with a blue sky in the background.

There is a dog that is sitting on the ground.

An animal that is laying down in the grass.

There is a black and white dog sitting on the ground.
Two dogs are sitting on the ground with a fence.

A red double decker bus driving down a street.
The city bus is traveling down the street.

People are standing in front of a double decker bus.
The city bus is parked on the side of the street.

Figure 4: A) Sample PASCAL-50S images of different difficulty. Simple images are often close-ups of single objects while
complex images involve multiple objects in a wider view. B) Random human captions for the black-bordered images. Complex
images have more varied captions than simpler images. C) which are not captured well by beam search compared to D) DBS.

by larger margins for all values of k. For example, at Ora-
cle Spice@20, DBS achieves significant improvements over
BS of 0.67, 0.91, and 1.13 for Simple, Average, and
Complex images respectively. While DBS improves over
BS in all settings, complex images benefit even more from
diversity-inducing inference than simple images.

Overall Results. The top half of Table 1 shows results and
distinct n-gram statistics on this task. We observe that DBS
outperforms BS and Li et al. (2015) while being compa-
rable to or slightly better than Li and Jurafsky (2016) that
uses an additional language model. DBS also generates more
distinct n-grams than other baselines and produces slightly
longer captions (an almost 300% increase in the number of
4-grams and +0.97 words on average w.r.t. BS).

Evaluating Under Greater Human Supervision. While
the COCO dataset’s size enables powerful captioning mod-
els to be trained, with only five captions per image it repre-
sents a sparse sample that may miss much of the diversity
in visually grounded natural language. So we also evaluate
our COCO trained model on the PASCAL-50S (Vedantam,
Lawrence Zitnick, and Parikh 2015) dataset which consists
of 1000 images with 50 captions each. Having ten times
as many captions per image than COCO, the PASCAL-50S
dataset captures greater diversity in human annotations and
we would expect to see diverse decoding have a greater im-
pact in this setting. We keep 200 random images as a valida-
tion set for tuning and evaluate on the remaining images.
Table 2 shows results on this transfer task. As expected,
we observe that gains over standard decoding on PASCAL-
50S are more pronounced than on COCO (2.74% vs. 6.33%
improvement over BS in SPICE@20 using DBS). As in the
above experiments, we find that DBS outperforms the base-
line methods and produces more diverse captions. More-
over, we note that DBS finds top-1 solutions with higher
log-probability on average — obtaining an average maximum
log probability of -6.53 opposed to -6.91 found by BS at the
same beam width. This empirical evidence suggests that us-
ing DBS instead of BS may lead to lower approximate infer-
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Method SPICE Oracle SPICE@k Distinct n-Grams
@5 @10 @20 n=1 2 3 4
BS 1627 2296 25.14 2734 040 151 325 5.67
8 Li and Jurafsky (2016)  16.35 2271 2523 2759 0.54 240 5.69 894
8 DBS 16.783 23.08 26.08 28.09 0.56 2.96 7.38 13.44
Li et al. (2015) 16.74 2327 26.10 2794 042 137 346 6.10
Method SPICE Oracle SPICE@F (Gain over BS)
@5 @10 @20
BS 17.28 (0) 24.32 (0) 26.73 (0) 28.7 (0)
2. Liand Jurafsky (2016) 17.12 (-0.16) 24.17 (-0.15) 26.64 (-0.09) 29.28 (0.58)
é DBS 17.42 (0.14)  24.44(0.12)  26.92 (0.19) 29.37 (0.67)
Li et al. (2015) 17.38 (0.1)  24.48 (0.16)  26.82(0.09) 29.21(0.51)
o BS 15.95 (0) 22.51 (0) 24.8 (0) 26.55 (0)
& Liand Jurafsky (2016) 1619 (0.24) 2259 (0.08)  24.98(0.18) 27.23 (0.68)
2 DBS 16.28 (0.33)  22.65(0.14)  25.08 (0.28) 27.46 (0.91)
Lietal. (2015) 16.22(0.27)  22.61(0.1)  25.01(0.21) 27.12(0.57)
9 BS 16.39 (0) 22.62 (0) 24.91 (0) 27.23 (0)
< Liand Jurafsky (2016)  16.55 (0.16) 22,55 (-0.07) 25.18 (0.27) 27.57 (0.34)
§ DBS 16.75 (0.36)  22.81(0.19) 25.25(0.34) 28.36 (1.13)
Lietal. (2015) 16.69 (0.3)  22.69 (0.07) 25.16 (0.25) 27.94 (0.71)

Table 1: Top: Oracle SPICE@F and distinct n-grams on the
COCO image captioning task at B = 20. While we report
SPICE, we observe similar trends in other metrics (reported
in the supplement). Bottom: Breakdown of results by diffi-
culty class, highlighting the relative improvement over BS.

ence error in some cases in addition to improved diversity.

Human Preference by Difficulty. To further establish the
effectiveness of our method, we evaluate human preference
between captions decoded using DBS and BS. In this forced-
choice test, DBS captions were preferred over BS 60%
of the time by human annotators. Further, they were pre-
ferred about 50%, 69% and 83% of the times for Simple,
Average and Difficult images respectively. Further-
more, we observe a positive correlation (p = 0.73) between
difficulty scores and humans preferring DBS to BS. Further
details about this experiment are provided in the supplement.



Method SPICE Oracle SPICE@k Distinct n-Grams
@5 @10 @20 n=1 2 3 4
§ BS 4.93 7.04 794 874 0.12 057 135 250
. Liand Jurafsky (2016)  5.08 724 809 891 015 097 243 531
é DBS 5.357 7.357 8269 9.293 0.18 1.26 3.67 7.33
12}
é Lietal. (2015) 5.12 7.17 816 856 0.13 1.15 3.58 8.42

Table 2: Oracle SPICE@E and distinct n-grams PASCAL-
50S at B = 20. While we report SPICE, we observe similar
trends in other metrics.

Beam Search Diverse Beam Search

Input Image

What color is the man’s shirt?
‘What is the man holding?
‘What is the man wearing on his head?
Is the man wearing a helmet
What is the man in the white shirt doing?

What sport is this?
‘What sport is being played?
‘What color is the man’s shirt?
What color is the ball?
What is the man wearing?

How many zebras are there?
How many zebras are in the photo?
How many zebras are in the picture?
How many animals are there?
How many zebras are shown?

How many zebras are there?
How many zebras are in the photo?
‘What is the zebra doing?
What color is the grass?

Is the zebra eating?

Figure 5: Qualitative results on Visual Question Generation.
DBS generates more varied question types than BS.

5.3 Visual Question Generation

We also report results on Visual Question Generation (VQG)
(Mostafazadeh et al. 2016), where a model is trained to pro-
duce questions about an image. Generating visually focused
questions requires reasoning about multiple problems that
are central to vision — e.g., object attributes, relationships
between objects, and natural language. Similar to caption-
ing, there are many sensible questions for a given image.

The VQG dataset (Mostafazadeh et al. 2016) consists of 5
human-generated questions per image for 5000 images from
COCO (Lin et al. 2014). We use a model similar to the one
used for captioning, except that it is now trained to output
questions rather than captions. Similar to previous results,
using beam search to sample outputs results in similarly
worded question while DBS decoded questions ask about
multiple details of the image (see Fig. 5).

We show quantitative evaluations in Table 3 for the VQG
dataset as a whole and when partitioned by image difficulty.
We find DBS significantly outperforms the baseline methods
on this task both on standard metrics (SPICE) and measure
of diversity. We also observe that gap between DBS and the
baseline methods is more pronounced than in the caption-
ing task and attribute this to the increased variety of possible
visually grounded questions compared to captions which of-
ten describe only a few major salient objects. The general
trend that more complex images benefit more from diverse
decoding also persists in this setting.

5.4 Machine Translation

Dataset and Models. We use the English-French parallel
data from the europarl corpus as the training set. We report
results on news-test-2013 and news-test-2014 and use the
newstest2012 to tune DBS parameters. We train a encoder-
decoder architecture as proposed in (Bahdanau, Cho, and
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Oracle SPICE@k Distinct n-Grams

Method SPICE
@5 @10 @20 n=1 2 3 4
BS 15.17 2196 23.16 2674 031 136 3.15 523
©  Liand Jurafsky (2016) 1545 2241 2523 27.59 034 240 569 894
9 DBS 1649 23.11 2571 2794 043 217 649 12.24
Lietal. (2015) 1634 2292 2512 27.19 035 156 3.69 7.21
Method SPICE Oracle SPICE@F (Gain over BS)
@5 @10 @20
BS 16.04 (0) 21.34 (0) 23.98 (0) 26.62 (0)
2 Liand Jurafsky (2016) 16.12(0.12) 21.65 (0.31) 24.64 (0.66) 26.68 (0.04)
5 DBS 16.42 (0.38) 22.44 (1.10) 24.71(0.73) 26.73 (0.13)
Lietal. (2015) 16.18 (0.14)  22.18 (0.74) 24.16(0.18) 26.23 (-0.39)
. BS 15.29 (0) 21.61 (0) 24.12 (0) 26.55 (0)
%” Li and Jurafsky (2016) 16.20 (0.91)  21.90 (0.29) 25.61 (1.49) 27.41 (0.86)
;ﬁ DBS 16.63 (1.34) 22.81 (1.20) 24.68 (0.46) 27.10 (0.55)
Lietal. (2015) 16.07 (0.78) 22.12 (-0.49) 2434 (0.22) 26.98 (0.43)
y BS 15.78 (0) 22.41 (0) 24.48 (0) 26.87 (0)
%_ Li and Jurafsky (2016) 16.82 (1.04) 23.20(0.79) 25.48 (1.00) 27.12(0.25)
E DBS 17.25 (1.47) 23.35(1.13) 26.19 (1.71) 28.01 (1.03)
o
Lietal. (2015) 17.10 (1.32)  23.31(0.90) 26.01 (1.53) 27.92 (1.05)

Table 3: Top: Oracle SPICE@F and distinct n-grams on the
VQG task at B = 20. Bottom: Results by difficulty class,
highlighting the relative improvement over BS.

Oracle BLEU-4@k Distinct n-Grams

Method BLEU-4
@5 @10 @20 =1 2 3 4
BS 13.52 16.67 17.63 1844 0.04 075 210 3.23
Li and Jurafsky (2016) 13.63 17.11 17.50 1834 0.04 0.81 292 4.6l
DBS 13.69 17.51 17.80 18.77 0.06 0.95 3.67 5.54
Lietal. (2015) 13.40 17.54 1797 1886 0.04 086 276 431

Table 4: Quantitative results on En-Fr machine translation
on the newstest-2013 dataset (at B = 20). We find similar
trends hold for other BLEU metrics as well.

Bengio 2014) using the d14mt-tutorial® code repos-
itory. The encoder consists of a bi-directional recurrent net-
work (Gated Recurrent Unit) with attention. From Table 4,
we see that DBS consistently outperforms standard baselines
with respect to both quality and diversity — highlighting the
general applicability of DBS to sequence decoding tasks.

6 Conclusion

In this work, we propose Diverse Beam Search that mod-
ifies classical Beam Search decoding with a diversity-
augmented sequence decoding objective. Our algorithm is
a ‘doubly greedy’ approximate algorithm that minimizes
this augmented objective to produce diverse sequence de-
codings. DBS consistently outperforms beam search and
other baselines across all our experiments without substan-
tial extra computation or any task-specific overhead. DBS
is task-agnostic and we demonstrate the effectiveness of our
method on two visually grounded language generation tasks
— captioning and question generation — as well as on a ma-
chine translation task. In the interest of transparent and re-
producible research, our implementation in multiple deep
learning frameworks will be made publicly available.

“https://github.com/nyu-dl/d14mt-tutorial
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