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Abstract

Person re-identification (re-ID) tasks aim to identify the same
person in multiple images captured from non-overlapping
camera views. Most previous re-ID studies have attempted
to solve this problem through either representation learning
or metric learning, or by combining both techniques. Repre-
sentation learning relies on the latent factors or attributes of
the data. In most of these works, the dimensionality of the
factors/attributes has to be manually determined for each new
dataset. Thus, this approach is not robust. Metric learning op-
timizes a metric across the dataset to measure similarity ac-
cording to distance. However, choosing the optimal method
for computing these distances is data dependent, and learn-
ing the appropriate metric relies on a sufficient number of
pair-wise labels. To overcome these limitations, we propose
a novel algorithm for person re-ID, called semi-supervised
Bayesian attribute learning. We introduce an Indian Buffet
Process to identify the priors of the latent attributes. The di-
mensionality of attributes factors is then automatically deter-
mined by nonparametric Bayesian learning. Meanwhile, un-
like traditional distance metric learning, we propose a re-
identification probability distribution to describe how likely
it is that a pair of images contains the same person. This tech-
nique relies solely on the latent attributes of both images.
Moreover, pair-wise labels that are not known can be esti-
mated from pair-wise labels that are known, making this a
robust approach for semi-supervised learning. Extensive ex-
periments demonstrate the superior performance of our algo-
rithm over several state-of-the-art algorithms on small-scale
datasets and comparable performance on large-scale re-ID
datasets.

Introduction

In the field of computer vision, the study of person re-ID
has attracted considerable attention in recent years (Zheng,
Yang, and Hauptmann 2016). The main goal of re-ID is to
use a probe set of images that capture a person from one
camera view and re-identify that same person in a gallery
set of images captured by other non-overlapping camera
views. However, because the camera views do not overlap,
there may be uncontrollable and/or unpredictable variations
among the images in appearance, such as body pose, view
angle, occlusion, illumination conditions, and so on. As a
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result, re-ID performance often degrades (Zheng, Yang, and
Hauptmann 2016).

Existing approaches to re-ID have mainly focused on
representation learning and/or metric learning to overcome
these challenges. In representation learning, many frame-
works learn a factor-based representation to enhance re-
ID task performance (Kodirov, Xiang, and Gong 2015;
Liu et al. 2014). Several recent works have turned to attribute
learning methods for further improvement (Lin et al. 2017).
In Re-ID, attributes are mid-level features shared by multi-
ple instances, such as hair color or wearing/not wearing a
dress. Overall, the general idea behind these methods is that
there are only a certain number of feature subsets that con-
tribute to image matching performance. In metric learning,
algorithms learn a suitable metric in the given set of data,
which is then used to measure similarity (Xiong et al. 2014;
Hirzer et al. 2012).

Previous studies have demonstrated some exciting results,
but there are still challenges associated with each approach.
Determining the number of latent factors in factor-based rep-
resentation models is a common problem. Typically, cross-
validation forms the solution, where the model evaluates
various numbers of latent factors that are manually pre-
defined. However, this is a time-consuming task for large
re-ID datasets, limiting the scalability of these methods. An-
other solution is to manually annotate the attributes to en-
hance learning performance (Lin et al. 2017; Su et al. 2016).
However, on large-scale datasets, this method has high hu-
man labor costs.

Metric learning re-ID methods also have drawbacks. Be-
cause they rely on learning a metric suitable to the re-ID tar-
gets, the performance is sensitive to the given dataset. Addi-
tionally, choosing the optimal method for calculating simi-
larity distances, e.g., using �1 norm or �2 norm, can be prob-
lematic (Wang, Nie, and Huang 2014). Moreover, metric
learning methods rely on pair-wise label information, such
that performance suffers when there are only a few labels
(Yang, Jin, and Sukthankar 2012).

A few previous works have attempted to jointly ap-
ply both representation and metric learning to re-ID prob-
lems. Some use each technique independently to accom-
plish a specific goal. For instance, in (Liao et al. 2015;
Zhang, Xiang, and Gong 2016), researchers use represen-
tation learning methods in pre-processing stage to generate
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useful features that can then be used in metric learning. Oth-
ers combine both methods into a deep learning architecture.
However, these methods still rely on pre-annotated attributes
(Lin et al. 2017; Su et al. 2016) or labeled data (Ahmed,
Jones, and Marks 2015).

To overcome these limitations with re-ID tasks, we pro-
pose a semi-supervised Bayesian attribute learning algo-
rithm (SBAL). SBAL combines an Indian buffet process
(IBP) (Ghahramani and Griffiths 2006) prior in an infinite la-
tent factor model that enables adaptively learning attributes
for re-ID (Broderick, Kulis, and Jordan 2013). Additionally,
inspired by statistical relation learning, we also propose re-
ID probability, which has been successfully used in knowl-
edge graph learning on large-scale datasets, such as social
networks (Nickel et al. 2016). Wrapped within a Bayesian
framework, SBAL automatically determines the latent fac-
tors and simultaneously estimates a re-identification proba-
bility. The contributions of our work are as follows:
• We introduce IBP as the prior of latent factors for learning

binary representations. A dictionary of attributes is adap-
tively determined using an efficient estimation method.
Thus, our algorithm does not require the dimensionality of
latent factors to be pre-defined, nor the attribute informa-
tion to be pre-annotated for training, which are two major
limitations of the existing frameworks.

• We propose a re-identification probability for predicting
pair-wise relations in re-ID. The re-ID probability does
not rely on distance computation and avoids the problem
of determining the optimal method for computing dis-
tances inherent in traditional metric learning.

• We propose a Bayesian framework unifies representation
learning and re-ID probability estimation and can simul-
taneously optimize both learning tasks.

• Our algorithm is also able to estimate unknown pair-wise
labels using the probability distributions learned from
known pair-wise labels, making our algorithm robust in
semi-supervised learning scenarios.

Related Work

Various classical and state-of-the-art machine learning mod-
els have been proposed to solve problems with re-ID, such
as (Ma and Li 2014; Xiao et al. 2016; Ahmed, Jones, and
Marks 2015). Most existing re-ID methods can be classi-
fied into two categories: representation learning and metric
learning. Representation learning methods aim to learn ap-
propriate representations of captured images from different
camera views to enhance re-ID.

One straightforward solution in representation learning is
to learn the most representative features directly from im-
ages. Factor-based representation, such as dictionary learn-
ing (Kodirov, Xiang, and Gong 2015; Karanam, Li, and
Radke 2015), has shown promising performance. Addi-
tionally, in recent years, some approaches have begun to
incorporate deep learning (Xiao et al. 2016) with even
better results. In some recently works (Lin et al. 2017;
Su et al. 2015), it proposed manually annotating attributes
for use in a deep learning framework. In (Su et al. 2016;

Schumann and Stiefelhagen 2017), deep learning models
were designed to be trained on separate datasets with at-
tribute labels, then fine-tuned on target datasets without at-
tribute labels. However, pre-training such algorithms is still
limited by the number and type of attributes in the datasets
that have been manually annotated.

Metric learning methods comprise distance metric learn-
ing (Hirzer et al. 2012; Liao et al. 2015; Liao and Li
2015) and learning-to-rank methods (Prosser et al. 2010;
Paisitkriangkrai, Shen, and van den Hengel 2015). Metric
learning aims to learn a metric that brings images of the
same person closer together than images of different people.
Learning-to-rank methods aim to rank the gallery of images
given a probe dataset according to the likelihood that the
same person is pictured. Both methods are highly reliant on
pair-wise labeled data, and performance may degrade heav-
ily when lacking of labeled pairs.

Previous studies have seldom considered combining both
representation and metric learning to boost re-ID perfor-
mance. Those algorithms combining both learning have typ-
ically separate the representation and metric learning stages.
For instance, the joint learning methods in (Zhang, Xiang,
and Gong 2016; Liao et al. 2015) use the Local Maximal
Occurrence (LOMO) algorithm(Liao et al. 2015) for rep-
resentation learning followed by a metric learning schema
for re-ID. Neither simultaneously optimizes representation
and metric learning. In (Su et al. 2016), Su et al. proposed
a semi-supervised deep attribute learning (SSDAL) algo-
rithm to enhance the metric learning method cross-view
quadratic discriminant analysis (XQDA) proposed in (Liao
et al. 2015). However, the representation and metric learn-
ing components are still separate sequential operations. A
recent work in (Ahmed, Jones, and Marks 2015) uses a deep
learning architecture to learn features and a corresponding
similarity metric for re-ID. However, the dimensionality of
features to be learned still needs to be pre-defined, as re-
quired by learning neural networks.

Some semi-supervised re-ID methods have also been pro-
posed (Ma and Li 2014; Liu et al. 2014). Commonly, the
training models in semi-supervised methods rely on both la-
beled and unlabeled data. Hence, they produce acceptable
performance compared to supervised methods without an
abundance of labeled data (Ma and Li 2014).

IBP is used as a nonparametric prior for infinite latent
factor models (Ghahramani and Griffiths 2006; Broderick,
Kulis, and Jordan 2013; Ghahramani and Griffiths 2006). In
recently works, IBP was used as prior of the latent factors
for matrix factorization (Xu, Zhu, and Zhang 2012) and link
prediction (Zhu, Song, and Chen 2016).

The Proposed Methods
The following section formally describes each component
of the proposed framework. This paper focuses on two-
view re-ID problems, where data is recorded from two non-
overlapping camera views. However, the schema is easy to
extend to multi-view re-ID scenarios.

Let X = {X1;X2} be the training data, in which X1 ∈
R

d×n1 and X2 ∈ R
d×n2 are image sets of people from two

non-overlapping cameras, camera 1 and 2, that containing
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Figure 1: The plate notation of our model.

n1 and n2 images respectively. We also have a matrix of
pair-wise labels Y ∈ R

n1×n2 , where yij = 1 if xi and xj

are the same person; otherwise, yij = −1. However, not all
the pairs have labels, i.e., Y is not fully observed. Let yij =
0 indicate the unknown pair-wise labels for observations xi

and xj . The set of pairs with known labels is denoted as
I = {(i, j)|yij ∈ {−1, 1}} and the set of pairs without
labels is denoted as U = {(i, j)|yij = 0}.

The first step is to learn representations of the training
data with a Bayesian generative model. Let A ∈ R

d×k be a
dictionary of basic patterns (attributes) on k basis. Let Z ∈
R

k×n be a binary representation matrix of X where zik ∈
{0, 1} and zik = 1 indicates the presence of attribute ak for
the image otherwise xi and zik = 0. Given a set of images
X we therefore have X ≈ AZ. After learning a dictionary
of attributes A, the binary representation of a new image x
can be obtained by z = argminẑ∈{0,1} ‖x − Aẑ‖22. The
prior distributions of A and X are usually assumed to be
Gaussian (Broderick, Kulis, and Jordan 2013):

P(A|0, σ2
A) =

K∏

k=1

D∏

d=1

N (adk; 0, σ
2
A), (1)

and

P(X|Z,A, σ2
X) =

N∏

n=1

N (xi;Azi, σ
2
XI). (2)

The above formulations assume that the dimensionality
K of the latent factor Z is known as a priori. However,
this assumption is often unrealistic in practice, particularly
with large-scale datasets, as the possible attributes in image
data become more complex when the size of the dataset in-
creases. Conventional methods (Kodirov, Xiang, and Gong

2015; Li, Shao, and Fu 2015) usually include a model selec-
tion stage, such as cross-validation, to select an appropriate
value for K by retraining and evaluating the model. This is
an expensive process when the training data is large and may
even miss the optimal value of K if it is outside the range of
the search.

We overcome this problem by introducing Indian Buffet
Process (IBP) as the prior of Z. IBP is a nonparametric prior
and has been widely used in infinite latent factor models
(Broderick, Kulis, and Jordan 2013; Ghahramani and Grif-
fiths 2006). These models are based on the assumption that
an infinite number of latent factors have a distribution using
an IBP prior. Considering finite latent factor models first, our
model assumes there is a binary feature vector zi with K el-
ements for each instance xi, i.e., zi ∈ {0, 1}K . Further, we
assume Z has a prior distribution of:

P(Z|α) =
K∏

k=1

α
KΓ(mk + α

K )Γ(N −mk + 1)

Γ(N + 1 + α
K )

. (3)

The binary latent factor zik is drawn from a Bernoulli
distribution, Bernoulli(πk), and parameterized by πk. Fur-
thermore, we assume πk is sampled from a Beta distribution
Beta(α/K, 1) where α is the hyper-parameter and K is the
number of basis (i.e. attributes). mk =

∑N
i=1 zk denotes the

total number of times the kth attribute in the N samples is
found. Then, according to the infinite assumption, i.e. letting
K → ∞, we obtain the IBP prior of the binary representa-
tions (Broderick, Kulis, and Jordan 2013):

lim
K→∞

P(Z|α)

=
αK+ exp(−αHN )

K+!

K+∏

k=1

(N −mk)!(mk − 1)!

N !
,

(4)

where HN =
∑N

i=1 i
−1 is the N th harmonic number

and K+ denotes the number of determined attributes cor-
responding to the dataset X. Several methods for inferring
the prior in (4) have been proposed in previous works, such
as sampling methods and variational methods (Ghahramani
and Griffiths 2006). However, they can be computationally
expensive when the number of instances N becomes large.
As a more efficient alternative, we propose learning the joint
probability P(X,A,Z) = P(X)P(A)P(Z)P(X|Z,A)
with an asymptotic limitation as in (Broderick, Kulis, and
Jordan 2013). The details of this approach are provided in
the next section.

In the second step, with the binary representations of im-
ages, we formalize the re-ID task as a probabilistic relation
learning schema. The re-identification probability that the
image representations zi and zj include the same person is
calculated by

P(yij = 1|Z,W) = η(ziWzTj ), (5)

where zi ∈ Z1 and zj ∈ Z2, η(v) = 1
1+exp(−v) is the

sigmoid function. We assume the real value matrix W ∈
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R
K×K is drawn from a Gaussian prior:

P(W|Θ, σ2
W) =

∏

(k,k′)∈I
N (wkk′ ; , θkk′ , σ2

W). (6)

For simplicity, we let σ2
W = 1. When both zik = 1 and

zjk′ = 1, the element wkk′ of W indicates the joint weight
of the kth attribute in zi and the k′th attribute in zj . Once
W is determined, the prediction rule for our binary classifier
becomes ŷij = sign(ziWzTj ). The putative pair-wise labels
y∗ for unknown pair-wise labels can also be generated with
this prediction rule for re-ID probability learning. Thus, the
joint probability of the discriminative model becomes:

P(Y|Z,W) =
∏

(i,j)∈I
P(yij |Z,W)

∏

(i,j)∈U
P(y∗ij |Z,W).

(7)

In terms of representation learning, all the samples are com-
bined and used for training, whether or not they have a
known pair-wise label. Given this learning schema handles
both labeled and unlabeled pairs, our algorithm can be con-
sidered for semi-supervised re-ID tasks. Overall, our model
is formulated as

P(X,Y,Z,A,W)

= P(X)P(A)P(Z)P(W)P(Y|Z,W)P(X|Z,A).
(8)

The related parameters have been omitted from for sim-
plicity. In (8), both the representation learning and the re-
identification learning models shared the same prior of latent
factors P(Z). A plate notation of our model is illustrated in
Figure 1.

Optimization

This section outlines the algorithms for efficiently learning
the proposed Bayesian model in (8). The generative model
for attribute learning is considered first. Using the priors
from the last section, we have the joint distribution:

P(X,A,Z) = P(X)P(A)P(Z)P(X|Z,A)

=
1

(2πσ2
X)ND/2

exp{− 1

2σ2
X

Tr((X− ZA)T (X− ZA))}

· α
K+ exp(−αHN )

K+!

K+∏

k=1

(N −mk)!(mk − 1)!

N !

· 1

(2πσ2
A)(K+D)/2

exp{− 1

2σ2
A

Tr(ATA)}.
(9)

Following (Broderick, Kulis, and Jordan 2013), we let
σX → 0 and α = exp(−λ2/2σ2X). Then

− log P(X,A,Z) ∼ ‖X−AZ‖2F + λ2K+, (10)

where λ can be treated as a penalty parameter as K+ in-
creases. It is easy to verify that A has a closed formed so-
lution when Z is fixed. Then, according to Bayesian theory,
the posterior distribution of the uncertain remainder in (8) is

P(Y,W|Z) = P(Y|Z,W)P(W). (11)

According to the definition of re-identification possibility in
(5) we have

− log P(Y,W|Z) ∝
|I|+|U|∑

(i,j)∈I∪U
sign(Z1WZ2). (12)

The remaining subproblem is to infer the probability P(W)
when the other parameters are fixed. A straight forward
method is to estimate a single value of W using P(W) ∝
β‖W‖2F where β represents a leverage parameter as in pre-
vious works (Nickel et al. 2016; Feng et al. 2014). However,
our framework exploits the maximum entropy discrimina-
tion (MED) method (Jaakkola, Meila, and Jebara 2000) to
learn the distribution of P(W). According to the MED the-

Algorithm 1 Semi-supervised Bayesian Attribute Learning
1: Initialize K+ = 1,A = [

∑
i xi/N ].

2: while objective value in (18) deceasing do
3: for n = 1, · · · , N do
4: for n = 1, · · · ,K+ do
5: Determine zij ∈ {0, 1} to minimize the objec-

tive value in (18) greedily;
6: end for
7: end for
8: A ← XZT (ZZT )−1.
9: Sample a new basis aK+

with probability
P(aK+

= xi −Azi) ∝ ‖xi −Azi‖22.
10: update A ← [A,aK+

];
11: update K+ ← K+ + 1.
12: update Θ which is the expectation of W as in (17)
13: update y∗.
14: end while

ory, we can learn P(W) by estimating the expectation of W
and solving the optimization problem

min
P(W)∈P

KL(P(W)||P0(W)) + CE�(E(W )), (13)

where C > 0 is a regularization parameter that leverages the
influence of the prior and the max-margin hinge loss. P de-
notes the space of distributions of P(W). KL(p||q) denotes
the KullbackLeibler divergence, which is used to evaluate
the distribution divergence between the distributions p and
q. E(W) is the expectation of W, and E(·) is a loss func-
tion.

Now, we turn to the error function. As a binary
model, the training error of our model would be Etr =∑

(i,j)∈I∪U δ(yij 
= ŷij) where δ(·) is an indicator func-
tion that equals 1 if the predicate holds, and 0 otherwise.
However, the non-convexity of this error function makes
it difficult to deal with, so instead we have used the well-
studied convex hinge loss in our model as a surrogate
loss E�(E(W )) =

∑
(i,j)∈I∪U h�(yijf(xi,xj)), where

f(zi, zj) = ziE(W)zTj denotes the latent discriminant
function (Xu, Zhu, and Zhang 2013). After eliminating ir-
relevant terms, the subproblem can be written as

min
P(W)∈P

KL(P(W)||P0(W)) + C
∑

(i,j)∈I
ξij

∀(i, j) ∈ I ∪ U , s.t. yij(Tr(E(W)Z∗
ij) ≥ �− ξij ,

(14)
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Category Dataset VIPeR PRID

metric learning for re-ID

PRML(Hirzer et al. 2012) 27.0 4.8
LMF(Zhao, Ouyang, and Wang 2014) 29.1 12.5

KISSME(Koestinger et al. 2012) 25.4 10.2
kLFDA(Xiong et al. 2014) 40.7 19.7

KCCA(Lisanti, Masi, and Del Bimbo 2014) 37.2 14.5
MLAPG(Liao and Li 2015) 40.7 16.6

Representation learning for re-ID DLLR(Kodirov, Xiang, and Gong 2015) 38.9 25.2
SSDAL(Su et al. 2016) 37.9 20.1

Joint learning for re-ID

LORAE(Su et al. 2015) 42.3 18.0
LOMO+KISSME(Zhang, Xiang, and Gong 2016) 34.81 -
LOMO+kLFDA(Zhang, Xiang, and Gong 2016) 38.58 22.40

LOMO+XQDA(Liao et al. 2015) 40.0 26.70
LOMO+NullSpace(Zhang, Xiang, and Gong 2016) 42.28 29.80

SSDAL+XQDA(Su et al. 2016) 43.5 22.6
ImprovedDeep(Ahmed, Jones, and Marks 2015) 34.81 -

SBAL(Ours) 45.2 32.4

Table 1: Supervised re-ID result of Rank One Matching Accuracy(%) on two benchmarks. Best result of each Re-ID algorithm
is marked as bold numbers.

where Z∗
ij = zTj zi and {ξij}(i,j)∈I∪U are slack variables.

According to Lagrangian duality theory, the optimal prob-
lem can be calculated by

P(W) ∝ P0(W) exp{
∑

(i,j∈I∪U)

ωijyijTr(WZ∗
ij)}, (15)

where {ωij}(i,j)∈I∪U . Let Θ be the expectation of W, and
the dual problem becomes

max
ω

�
∑

(i,j)∈I
ωij − 1

2
(‖Θ‖22)

s.t.∀(i.j) ∈ I ∪ U , 0 ≤ ωij ≤ C.

(16)

This optimization problem can be solved by solving the
equivalent primal problem

min
Θ

1

2
(‖Θ‖22) + C

∑

(i,j)∈I
ξij

∀(i, j) ∈ I ∪ U , s.t. yij(Tr(ΘZ∗
ij)) ≥ �− ξij .

(17)

Eq. (17) can be efficiently solved as a standard binary SVM
problem with a vectorized matrix Z and Θ (Pirsiavash,
Ramanan, and Fowlkes 2009) using public SVM solvers.1
Once the optimal expectation of W, i.e., Θ∗, has been de-
rived and the distribution of W has been certified, Z can be
updated by greedily minimizing the following joint objec-
tive loss function:

‖X−AZ‖2F + λ2K+ + E�(Θ∗) +
1

2
‖Θ‖22, (18)

where E�(E(W )) =
∑

(i,j)∈I∪U h�(yij(ziΘ
∗xj)). As

K+ → ∞, the algorithm alternately updates A, Θ and Z,
along with the putative pair-wise labels y∗. The overall al-
gorithm is provided as Algorithm. 1.

1For large-scale datasets, the numbers of their pair-wise labels
are huge, we use a Stochastic Gradient SVM package SvmSgd :
http://leon.bottou.org/projects/sgd.

Experiments

Datasets and Settings

The following set of experiments compares the performance
of various classical and state-of-the-art algorithms on two
small-scale datasets and one large-scale dataset that are
widely referred to in re-ID studies.

Datasets The VIPeR dataset (Gray, Brennan, and Tao
2007) collects 1,264 images of 632 people from two non-
overlapping camera views. There are two images of each
person, each captured by a different camera. Variations
in viewpoint and illumination conditions are frequent in
VIPeR. We randomly select 316 people as the testing set
for the experiment; the ramaining people were used as the
training set. The PRID dataset (Hirzer et al. 2011) contains
images of individuals from two distinct cameras. Camera B
has captured 749 persons and Camera A records 385 per-
sons. In the dataset, 200 peoples are captured by both cam-
eras. We selected images of 100 people taken by both cam-
eras as the testing sets for the experiment and used the re-
maining images for the training sat. The DukeMTMC-reID
dataset (Zheng, Zheng, and Yang 2017) is a subset of the
DukeMTMC dataset. It collects 1,404 re-ID targets and 408
distractors. The dataset comprises 17,661 gallery images and
2,228 probe images captured by eight cameras , with 1404
individuals appearing in more than two cameras. We split
the dataset equally using 702 people for the training set and
702 people for the testing set.

Evaluation Metrics and Preprocessing We used a cumu-
lative matching characteristic (CMC) curve and mean av-
erage precision (mAP) as performance evaluation metrics.
Both are widely used in the evaluation of re-ID models
(Zheng, Yang, and Hauptmann 2016). In mAP evaluation,
average precision is calculated for each probe, and the mAP
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Category Dataset VIPeR PRID

metric learning for re-ID

RankSVM(Prosser et al. 2010) 20.7 -
KISSME(Koestinger et al. 2012) 18.5 5.1

kLFDA(Xiong et al. 2014) 27.5 14.1
KCCA(Lisanti, Masi, and Del Bimbo 2014) 24.6 5.3

MFA(Xiong et al. 2014) 25.3 -

Representation learning for re-ID
SSCDL(Liu et al. 2014) 25.6 -

DLLR(Kodirov, Xiang, and Gong 2015) 32.5 22.1

Joint learning for re-ID SBAL(Ours) 33.6 24.4

Table 2: Semi-supervised re-ID results in terms of rank-1 matching accuracy(%) for VIPeR and PRID datasets. The best result
from each re-ID algorithm is shown in bold.

Category Dataset mAP(%) CMC R1 (%)

(1)
Attributes+KISSME(Schumann and Stiefelhagen 2017) 12.83 21.97

APR(Lin et al. 2017) 51.88 70.69
ACRN(Schumann and Stiefelhagen 2017) 51.96 72.58∗

(2)

BoW+KISSME(Zheng et al. 2015) 12.17 25.13
Basel.(Zheng, Yang, and Hauptmann 2016) 44.99 65.22

LOMO+XQDA(Liao et al. 2015) 17.04 30.75
SBAL(Ours) 52.42∗ 71.03

Table 3: Attribute learning results on DukeMTMC-reID dataset. (1) Learning with predefined attributes (2) Learning with no
pre-defined attributes. The best result for each category is shown in bold. The overall best results are marked with an asterisk
(*)

is then calculated across all probe images. CMC calculates
the probability that an image in the first rank k gallery set
matches the probe image. Unlike previous works, such as
(Kodirov, Xiang, and Gong 2015; Xiong et al. 2014) that
rank gallery images according to their similarity with the
probe image, our model ranks the gallery images according
to their re-ID probability P(y = 1|Zprob,W,Zgallery). A
higher probability implies the probe and the gallery image
are more likely to be the same person.

In the experiments that test two-view re-ID models, we
randomly selected a set of images captured by one of the
cameras to form the probe set. The images captured by
the other camera view(s) were used as gallery images. Fol-
lowing the pre-processing procedure outlined in (Lin et al.
2017), all images were first rescaled to 224 × 224 pixels.
Then, we extracted 2048 dimensional feature vectors from
the images using a pre-trained ResNet-50 deep neural net-
work (He et al. 2016). We conducted experiments over ten
splits and report the average results.

Experimental Study

In this section, we compared our algorithm in
supervised/semi-supervised learning and attribute learning
scenario with several other algorithms.

Supervised Person Re-ID In the experiments, we first
compare our algorithms with several supervised re-ID mod-
els on the VIPeR and PRID datasets. As shown in Table 1,

we compared SBAL with various metric learning re-ID, met-
ric learning re-ID algorithms, and joint learning re-ID meth-
ods. Some representative learning methods, such as LOMO
(Liao et al. 2015), were included as feature generation meth-
ods in joint learning algorithms. Overall, we observed that
most of the metric and representation learning re-ID meth-
ods reported lower performance than the joint learning meth-
ods. Direct joint representation learning (e.g., LOMO) to
metric learning re-ID methods, i.e., KISSME (Koestinger et
al. 2012) and kLFDA (Xiong et al. 2014), enhanced the per-
formance of metric learning re-ID methods by 10% at most.
In terms of attribute learning methods, deep attribute driven
re-ID (SSDAL) (Su et al. 2016) and our algorithm delivered
higher performance than the others. Moreover, our method
consistently reported the best performance of all the algo-
rithms on both the VIPeR and PRID datasets and surpassed
SSDAL by at most 3%.

Semi-supervised Person Re-ID In comparing our algo-
rithms with other semi-supervised re-ID models on the
VIPeR and PRID datasets, we set two-thirds of the training
data as unlabeled. As in previous works (Liu et al. 2014;
Kodirov, Xiang, and Gong 2015), we also introduced su-
pervised metric learning methods RankSVM, KISSME,
kLFDA, KCCA and MFA as baselines. In the experiments,
they are training with only the labeled data. we introduced
the semi-supervised version of DLLR (Kodirov, Xiang, and
Gong 2015) as another baseline. As shown in Table 2, all
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semi-supervised methods demonstrated lower performance
than supervised learning in Table 1. More specifically, su-
pervised learning methods such as kLFDA, KCCA and
KISSME We also observed that the representation learning
re-ID methods showed better performance than the metric
learning methods. The reason for this could be that met-
ric learning methods rely on pair-wise labels. Overall, our
method consistently reported the best performance on both
the VIPeR and PRID datasets, which implies that our algo-
rithm is robust even with few labeled pairs.

0 500 1000 1500 2000
K+

5

10

15

20

25

30

35

40

45

50

CM
C 

R1

VIPeR(K+
* =1740)

PRID(K+
* =1588)

Figure 2: Influence of K+ w.r.t. CMC Rank One accuracy.
The automatically leaned attribute numbers are K∗

+ = 1740
for VIPeR dataset and K∗

+ = 1588 for PRID dataset(marked
with asterisk symbol (*)).

Attributes Learning in Re-ID We further compared our
algorithms with several state-of-the-art attribute learning re-
ID methods on the large-scale dataset DukeMTMC-reID.
We divide the comparison algorithms into two category,
learning methods with pre-defined attributes and those with-
out. The learning methods with pre-defined attributes in-
cluded three algorithms. APR (Lin et al. 2017) utilizes man-
ually annotated attributes from DukeMTMC-reID to en-
hance deep learning re-ID. ACRN (Schumann and Stiefel-
hagen 2017) trains an attribute classifier using separate re-
ID data from PETA (Deng et al. 2014), which is then used
in the training stage to learn the attributes for DukeMTMC-
reID and subsequently learn the re-ID model. We also use
attributes generated by ACRN as pre-defined attributes and
combined them with KISSME as a baseline method, de-
noted as Attributes+KISSME. The learning methods with-
out pre-defined attributes assume that no attribute informa-
tion has been provided in the training stage. Following the
settings in (Zheng et al. 2015), we used BoW features and
KISSME (BoW+KISSME) and LOMO features and XQDA
(LOMO+XQDA) as the baseline methods for joint learning.
We also included a recently presented method Basel.(Zheng,
Yang, and Hauptmann 2016) as a baseline.

The mAP and rank one accuracy for CMC performance is
listed in Table 3. our method delivered the best performance

in the comparison between attribute learning methods with-
out pre-defined attributes. Comparing the learning methods
with pre-defined attributes, our method performed 2% worse
than the state-of-the-art method, ACRN, in terms of rank-1
accuracy. It implies our algorithm is very comparable as our
algorithm did not require any pre-defined attributes.

The Influence of Latent Factor Dimensionality To
gauge the influence of automatically learned attributes, we
used the settings specified for supervised learning on the
VIPeR and PRID datasets and forced our algorithm to run
after researching the optimal K+ and stopped at K+ =
2000. As Figure 2 shows, performance generally increased
as K+ increased. However, at an optimal K∗

+ = 1740 for the
VIPeR dataset and an optimal K∗

+ = 1588 for PRID dataset,
performance slightly degraded on both datasets. This im-
plies that our algorithm is able to detect representative at-
tributes with optimal numbers and can provide reliable re-ID
performance.

Conclusion

This paper proposed a novel semi-supervised Bayesian at-
tribute learning framework, called SBAL, for person re-ID.
Through this framework, representation learning and re-ID
probability estimation are simultaneously optimized. The al-
gorithm relies on semi-supervised learning to handle both
labeled and unlabeled pairs of re-ID data. It is based on
factor-based attribute learning and can, therefore, adaptively
learn binary latent factors that do not have pre-defined di-
mensionality. Through extensive experiments on two small
datasets, we show that our algorithm outperforms various
state-of-the-art methods. Further, the results reveal compa-
rable performance on large-scale datasets without the pre-
defined attribute information required by existing methods.
For future works, we suggest extending our algorithm for
non-linear applications by using deep generative models.
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