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Abstract

Human parsing is an important task for human-centric under-
standing. Generally, two mainstreams are used to deal with
this challenging and fundamental problem. The first one is
employing extra human pose information to generate hier-
archical parse graph to deal with human parsing task. An-
other one is training an end-to-end network with the seman-
tic information in image level. In this paper, we develop an
end-to-end progressive cognitive network to segment human
parts. In order to establish a hierarchical relationship, a novel
component-aware region convolution structure is proposed.
With this structure, latter layers inherit prior component in-
formation from former layers and pay its attention to a finer
component. In this way, we deal with human parsing as a pro-
gressive recognition task, that is, we first locate the whole hu-
man and then segment the hierarchical components gradually.
The experiments indicate that our method has a better loca-
tion capacity for the small objects and a better classification
capacity for the large objects. Moreover, our framework can
be embedded into any fully convolutional network to enhance
the performance significantly.

Introduction

The goal of human parsing is to segment a human image
into different fine-grained semantic parts such as head, torso,
arms and legs. Human parsing can provide more detailed
understanding of image contents and the human parts. It
has many high-level computer vision applications such as
image/video retrieval (Yamaguchi et al. 2012), person re-
identification (Zhao, Ouyang, and Wang 2013), virtual fit-
ting (Liu et al. 2012), fine-grained recognition (Fu, Zheng,
and Tao 2017), action recognition (Wang, Wang, and Yuille
2013) as well as video surveillance (Lu et al. 2014). How-
ever, human parsing is still a challenging computer vision
problem due to the complicated and various human appear-
ance, size, shape, clothes, occlusion, illumination and se-
mantic ambiguity.

Generally, there are two mainstreams to deal with the hu-
man parsing task. The first one is employing the graph mod-
els based on the hierarchical prior information (Xia et al.
2016b; Park, Nie, and Zhu 2017). These methods segment
human parts with the parse graph models which are built
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Figure 1: A sketch of progressive cognitive human pars-
ing. (a) Input image. (b) Level 1 segmentation mask for hu-
man level. (c) Level 2 segmentation mask for {upper-body,
lower-body} level. (d) Level 3 segmentation mask for {head,
mid-body, upper-leg, lower-leg} level. (e) Level 4 segmenta-
tion mask for {head, torso, arm, upper-leg, lower-leg} level.
(f) Level 5 segmentation mask for {head, torso, upper-arm,
lower-arm, upper-leg, lower-leg} level. Note that the level
division can be altered for different dataset.

by poses, locations and shapes of human. As a result, these
methods can use the relation of human parts for better hu-
man parsing. However, these methods often need extra hu-
man pose information and cannot be trained in an end-to-end
way.

In contrast, another mainstream methods build their mod-
els with the end-to-end networks based on the semantic in-
formation (Xia et al. 2017; Chen et al. 2017; Lin et al. 2017),
which benefit from the powerful performance of fully convo-
lutional networks in semantic segmentation task. Although
such approaches demonstrate the good performance on the
semantic segmentation, it is still hard to segment all the fine-
grained parts of the human with a single classifier because
of the complex relationships among human parts and the un-
balanced classes among different human parts and the back-
ground.

In this paper, we develop an end-to-end progressive cog-
nitive network to recognize different human parts from the
whole image gradually. This recognition manner is similar to
human vision habits. In fact, the human vision system rec-
ognizes an object and its constituent parts in a quite different
way. The visual cortex extracts features of an object in the
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bottom-up way and classifies the object and its fine-grained
parts in the top-down way (Epshtein, Lifshitz, and Ullman
2008). This means that the object parts can be better recog-
nized with the prior detection and localization of the entire
object. Inspired by the recognition process of human vision
system, we propose a novel network, progressive cognitive
network (PCNet).

In order to achieve the progressive networks for human
parsing, a novel component-aware region convolution struc-
ture is proposed. In this structure, the latter layers can take
advantage of the prior information from the former layers.
The prior information makes the latter layers can focus on
the region of interest and ignore the irrelevant information.
The region of interest is sent into the next component-aware
region convolutional networks for further analysis so that the
part recognition stress of the networks can be decomposed
into stacked hierarchical networks.

The component-aware region convolution can be regarded
as an irregular convolution, which only operates the convo-
lution on the specific regions. The component-aware region
loss is used to provide a prior shape of human parts to the
feature maps. For example, we can separate the human-level
feature maps and the background regions from the image-
level feature maps. In this way, the former layers can provide
a prior shape and location information to the latter layers.

As shown in Fig. 1, we divide the labels of PASCAL-
Person-Part dataset into five levels. The progressive cogni-
tive networks distinguish the human from the background
first in the level 1. And then the component-aware region
convolutions only perform on the human feature maps. We
convolve the human feature maps into upper-body feature
maps through upper-body aware convolutions, and lower-
body feature maps through lower-body aware convolutions,
respectively. The upper-body feature maps and lower-body
feature maps are concatenated into {upper-body, lower-
body} level feature maps. The similar processes are per-
formed from level 2 to level 5 until all parts are segmented.
More details of the framework are illustrated in Fig. 2, and
we will elaborate it in the following sections.

Our progressive cognitive networks fuse the ideas of hi-
erarchical structures and progressive recognition of human
parts. The proposed framework has five advantages. Firstly,
the progressive cognitive networks for human parsing can
be embedded into any fully convolutional network to en-
hance the performance significantly. Secondly, our progres-
sive cognitive networks inherit the idea of hierarchical struc-
ture, which is similar to the human vision habits and decom-
poses recognition stress of fine-grained task into the whole
hierarchical networks rather than makes all decisions in the
final classifier. Thirdly, our progressive cognitive networks
fully exploit fully convolutional networks for powerful se-
mantic understanding and can be trained in an end-to-end
way. Fourthly, compared to the hierarchical optimization
which is labeled from coarse to fine (Munoz, Bagnell, and
Hebert 2010; Li et al. 2017b), our progressive cognitive op-
timization is more explicit and stable. Fifthly, not limited to
the human parsing task, our progressive cognitive idea can
be extended to other tasks such as scene parsing, object de-
tection and human pose estimation.

In summary, compared to the existing methods, our work
has three major contributions.
• We fuse the stacked hierarchical labeling structure into the

fully convolutional framework, so that the whole frame-
work associates progressive recognition of human parts
with semantic understanding of the whole human.

• We propose a component-aware region convolution struc-
ture to transfer the prior shape and location information
from the former layers to the latter layers thereby grad-
ually segmenting the hierarchical human parts with the
end-to-end progressive cognitive network.

• Experiments show that our framework can be embedded
into any fully convolutional network to enhance the per-
formance significantly.

Related Work
Semantic Segmentation Methods: Several popular seman-
tic segmentation works are used to deal with the human pars-
ing problem. In recent years, fully convolutional networks
are popular configurations for semantic segmentation (Shel-
hamer, Long, and Darrell 2015). DeepLab proposed atrous
convolution (a.k.a. dilated convolution) to dilate the recep-
tive fields in fully convolutional networks, and obtained a
high performance in human parsing task (Chen et al. 2017).
In order to learn the multi-scale contextual information, the
spatial pyramid structures are popular in the semantic seg-
mentation networks (Chen et al. 2017; Zhao et al. 2017; Lin
et al. 2017). By leveraging the multi-scale feature maps and
refining the feature maps across scales, RefineNet achieved
the best performance on PASCAL-Person-Part dataset.

Though the semantic segmentation methods have a pow-
erful semantic understanding capacity, and have a high per-
formance on human parsing task, these methods do not make
full use of the characteristic of human parsing task. In this
paper, we are trying to combine the semantic segmentation
networks with our progressive cognitive structures, which
are more similar to human vision. And the experiments show
that the combination makes a significant improvement.
Human Parsing Methods: Contextualized convolutional
neural network (a.k.a. Co-CNN) well integrates the cross-
layer context, global image-level context, semantic edge
context, cross super-pixel neighborhood context and within-
super-pixel context into a unified framework (Liang et
al. 2015). An attention-based model is proposed to softly
weight the multi-scale features at each pixel location and
deal with the multi-scale problem in the human parsing
task (Chen et al. 2016). A novel self-supervised structure-
sensitive learning approach is proposed to impose human
pose structures on the parsing results (Gong et al. 2017). Hu-
man pose estimation and semantic part segmentation can be
jointed to improve each other task with the external labels
in natural multi-person images, in which the estimated pose
provides object-level shape prior to regularize part segments
and the part-level segments constrain the variation of pose
locations (Xia et al. 2017).

Despite these human parsing methods have considered the
characteristic of human parsing, they are still limited in var-
ious ways. Co-CNN and attention-to-scale model are more
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Figure 2: The framework of our progressive cognitive network. The input image is sent into the fully convolutional networks
(FCN) to extract feature maps. And then the image-level feature maps are sent into the human-background aware convolutions to
obtain a background score map and the human-level feature maps. The human-level feature maps are sent into the upper-lower
body aware convolutions to obtain the upper-body feature maps and lower-body feature maps, respectively. The lower-body
feature maps are sent into the upper-lower legs aware convolutions to obtain an upper-legs score map as well as a lower-legs
score map. And the upper-body feature maps are sent into the head-body aware convolutions to obtain a head score map and
the mid-body feature maps. The mid-body are then sent into the torso-arms aware convolutions to obtain a torso score map and
the arms feature maps. The arms feature maps are sent into the upper-lower arms aware convolutions to obtain an upper-arms
score map and a lower-arms score map. Note that the level division can be altered in various ways.

like the semantic segmentation methods because they only
consider the contextual information and do not consider the
human structure information. The jointed method makes full
use of the human structure information, but it needs the extra
labeled data and two tasks may cause the coupled optimiza-
tion problems.

Hierarchical Models: The stacked hierarchical labeling
method is proposed to segment the objects in an image from
coarse to fine with the graphical model (Munoz, Bagnell,
and Hebert 2010). Similarly, the cascade convolution net-
works are proposed to segment objects from hard to easy
labels in an end-to-end way with the help of region con-
volution (Li et al. 2017b). The parsing methods are also
combined with detection methods to deal with the human
parsing problem, which can be also regarded as hierar-
chical structures because these methods detect the objects
first and then parse the components with the prior informa-
tion from the candidate bounding boxes (Li et al. 2017a;
Xia et al. 2016a). The hierarchical human parsing methods
have been proposed to parse the human with the help of And-
Or graph, which is more intuitional and more similar to hu-
man vision (Xia et al. 2016b; Park, Nie, and Zhu 2017).

The stacked hierarchical labeling method and the cascade
convolution method segment the object from coarse to fine,
which is implicit and ambiguous. As a result, these methods
are hard to train and rely on the parameters setting severely.
The hierarchical methods based on detection rely on the de-
tection networks, and once the candidate boxes lose the ob-
jects, the parsing task may be failed. Moreover, the detection
feature maps and the human parsing networks may cause
the coupled optimization problems. The hierarchical human
parsing methods based on And-Or graph are more similar
to our method, but these methods rely on the graph model

and sometimes need to design features manually. As a re-
sult, they cannot be optimized in an end-to-end way.

Progressive Cognitive Networks (PCNet)

In this paper, we propose the PCNet for the human pars-
ing task. Our PCNet parses the human step by step and uti-
lizes the prior information from the former layers. Addition-
ally, we develop the component-aware region convolutions
to train our PCNet in an end-to-end way. We will illustrate
the overall architecture of PCNet, component-aware region
convolutions, and the implementation details as following.

Overall Architecture

As shown in Fig. 2, a raw image inputs to our our frame-
work and the framework outputs the corresponding human
parsing mask in an end-to-end way. First, the input image is
sent into a fully convolutional network to extract the feature
maps. It is worth to note that we can choose any full con-
volutional network. Here, we utilize the powerful seman-
tic segmentation network pyramid scene parsing network
(PSPNet) (Zhao et al. 2017) as our baseline model. The
fully convolutional network outputs the image-level feature
maps, which contain the rich category information at the im-
age level. And then the image-level feature maps are sent
into three human-background aware convolutions to obtain
a background score map and the human-level feature maps.
In this way, the image-level feature maps are transformed
into the human-level feature maps, which are sent into the
latter layers for further classification. Note that the human-
level feature maps only contain the region of human with-
out considering the background information, so it can focus
on the human features and eliminate the distraction from the
background. Additionally, the human-level feature maps can
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provide the shape information and the location information
for the latter layers. And then the human-level feature maps
are sent into the upper-lower body aware convolutions to ob-
tain the upper-body feature maps and the lower-body fea-
ture maps, respectively. The upper-body feature maps can
only pay attention to the upper-body location. And the low-
body feature maps possess the similar properties. Next, the
lower-body feature maps are sent into the upper-lower legs
aware convolutions to obtain an upper-legs score map as
well as a lower-legs score map. These two score maps have a
higher performance than that of the methods which segment
the legs from the image-level feature maps. This is because
that the feature maps in our framework have less distraction
from the irrelevant regions. Meanwhile, the upper-body fea-
ture maps are sent into the head-body aware convolutions
to obtain a head score map and the mid-body feature maps.
Similarly, the head score map can have less distraction for
better performance. And the mid-body feature maps are then
sent into the torso-arms aware convolutions to obtain a torso
score map and the arms feature maps. The arms feature maps
are sent into the upper-lower arms aware convolutions to ob-
tain an upper-arms score map and a lower-arms score map.
Finally, the largest responses of the score maps are set as the
corresponding categories for all locations. Note that we only
illustrate a kind of level division for human part relation,
and the level division can be altered in various ways based
on the definitions of the users. With the powerful progressive
cognitive structures, we can obtain the more explicit feature
maps, which ignore distraction from the irrelevant regions.
In this way, the latter layers pay more attention to the rele-
vant regions thereby relieving the stress for multi-category
classification, so that we can obtain the more accurate score
maps and human parsing results.

Component-Aware Region Convolution
(CAR-Conv)

We illustrate CAR-Conv on image-level in Fig. 3. The
image-level feature maps from fully convolution network are
sent into three convolutions to obtain further feature maps.
Similar to ResNet (He et al. 2016), the kernel size of the first
convolution is 1 × 1, the number of output channels is 256,
and the stride is 1. For the second convolution, the kernel
size is 3 × 3, the number of output channels is 256, and the
stride is 1. For the third convolution, the kernel size is 1× 1,
the number of output channels is 512, and the stride is 1.
The batch normalization (Ioffe and Szegedy 2015) and rec-
tified linear units (Krizhevsky, Sutskever, and Hinton 2012)
are following the convolutions. We sum up the convolutional
feature maps and the FCN feature maps as the further fea-
ture maps. A 1 × 1 convolution with two channels output
is operated on the further feature maps to obtain the human
score maps. The opacities (a.k.a. alpha mattes) of the hu-
man and the background can be obtained through the sig-
moid function on the human score maps. Specially, inspired
by the edge detection work (Xie and Tu 2015), we compute
the weighted cross-entropy loss at every pixel on the alpha
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k1n256s1 k3n256s1 k1n512s1
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Feature Maps

Human 
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Human 

Spatial Product

Human 
Feature Maps

Ground Truth

Convolution

Figure 3: An illustration of component-aware region con-
volutions. The image-level feature maps from fully convo-
lution networks are sent into three convolutions to obtain
further feature maps. And then the feature maps are sent to
obtain human score maps. We can obtain the opacities (a.k.a.
alpha mattes) of the human and the background through
a sigmoid function on the human score maps. A weighted
cross-entropy loss is performed on the alpha mattes. Finally,
the spatial product is operated on the feature maps and the
human alpha matte to obtain the human feature maps.

mattes with respect to the ground truth as

Lc (Xi;W ) =

⎧⎨
⎩

α log (1− P (Xi;W )) if yi = 0

β log (P (Xi;W )) if yi = 1

0 otherwise,

in which

α = λ
|Y +|

|Y +|+ |Y −| , β =
|Y −|

|Y +|+ |Y −| ,

and c represents each components. The hyper-parameter λ
is used to balance the positive and negative samples.

Next, the spatial product is operated on the feature maps
and the human alpha matte across channels, so that we can
obtain the human feature maps. In this way, only the human
region of the feature maps are nonzero. And the background
region can be regarded as an irrelevant region for the latter
layers because the convolutions on this region become in-
valid. And the latter layers can only operate on the relevant
region. The similar operations are performed on {human,
upper-body, lower-body, mid-body, arms} regions.

Implementation Details

Loss Function Similar to the general semantic segmen-
tation methods, the proposed method uses the softmax loss
function on the score maps, which is the sum of per-pixel
multinomial logistic loss as follows,

Lsoftmax (I) = − 1

MN

MN∑
i=1

K∑
k=0

1 {yi = k} log (pi,k),

where M and N is height and width of the input image and
K is the number of the categories.

Specially, we utilize the weighted cross-entropy loss at
every pixel on each alpha matte as follows,

Lmattes =
MN∑
i=1

∑
c∈components

Lc (Xi;W ).
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Additionally, similar to PSPNet (Zhao et al. 2017), we add
an auxiliary loss Laux at the end of the fully convolutional
network for semantic segmentation.

Finally, the loss function of our whole framework is

L = Lsoftmax + λ1Lmattes + λ2Laux.

For our experiments on PASCAL-Person-Part dataset, we
fix the hyper-parameters λ = 1.1, λ1 = 1e − 5, and λ2 =
0.4.

Training and Inference In training process, we train the
fully convolutional network for semantic segmentation first.
And then we remove the last layer of the fully convolutional
network, and replace it with our PCNet. Next, we conduct
the end-to-end training of entire network integrally. We uti-
lize the stochastic gradient descent (SGD) solver with batch
size 8, momentum 0.9 and weight decay 0.0005. Inspired by
the semantic segmentation optimization (Chen et al. 2017;
Zhao et al. 2017), we use the ”poly” learning rate policy(
1− iter

max iter

)power
. We set the base learning rate as 0.001

and the power as 0.9. As for the input image size, we re-
size it to 473 × 473. For data augmentation, we add ran-
dom gaussian blur to the images and rotate the images in
random degrees from -20 to 20. We setup our model train-
ing experiments on Caffe platform (Jia et al. 2014). Due to
the limitation of physical memory on GPU cards, we mod-
ify the Caffe version to make it support batch normaliza-
tion on data gathered from multiple GPUs based on Open-
MPI. For the inference process, we only test on the single
scale due to the low speed for multi-scale inference pro-
cess utilized in semantic segmentation (Chen et al. 2017;
Zhao et al. 2017). All of our experiments are implemented
on a system of Core E5-2660 @2.60GHz CPU and four
NVIDIA GeForce GTX TITAN X GPUs with 12GB mem-
ory.

Experiments

Data

We evaluate our algorithm on the public human parsing
dataset, PASCAL-Person-Part (Chen et al. 2014), which
contains a large number of part segment annotations for
PASCAL person images with various poses and scales.
There are 7 types of annotation in this dataset, i.e. back-
ground, head, torso, upper arm, lower arm, upper leg and
lower leg. We only use the images containing human for
training (1716 images) and validation (1817 images). In this
dataset, we set the level division as shown in Fig. 1 and
Fig. 2. The human level mask and feature maps are set
as level 1, {upper-body, lower-body} level mask and fea-
ture maps are set as level 2, {head, mid-body, upper-leg,
lower-leg} level mask and feature maps are set as level 3,
{head, torso, arm, upper-leg, lower-leg} level mask and fea-
ture maps are set as level 4, {head, torso, upper-arm, lower-
arm, upper-leg, lower-leg} level mask and feature maps are
set as level 5.

Quantitative Evaluation

Ablation Estimation We utilize the pyramid scene pars-
ing network (PSPNet) (Zhao et al. 2017) as our baseline

Method Head Torso U-arms L-arms U-legs L-legs Background Ave.

PSPNet-50 80.59 60.12 44.70 44.96 37.85 34.54 93.87 56.66
PSPNet-101 83.82 64.56 49.40 49.04 41.48 39.37 94.44 60.30
PSPNet-75 80.73 60.18 45.26 45.53 38.62 36.71 93.98 57.29

PSPNet-126 83.88 64.60 50.04 49.48 41.77 40.04 94.26 60.58
PCNet-75 83.91 64.78 51.81 50.82 42.74 40.59 94.58 61.31

PCNet-126 86.81 69.06 55.35 55.27 50.21 48.54 96.07 65.90

Table 1: Mean Pixel Intersection-over-Union (mIoU) (%) of
Human Semantic Part Segmentation on PASCAL-Person-
Part. We compare our PCNet with PSPNet at various depths
for ablation experiment.

fully convolutional network for feature extraction. In Tab. 1,
we evaluate the mean pixel Intersection-over-Union (mIoU)
of our PCNet with PSPNet at various depths for ablation ex-
periment. We reimplement the PSPNet based on ResNet-50
and ResNet-101 (He et al. 2016), and name it as PSPNet-50
and PSPNet-101, respectively. We add our progressive cog-
nitive structures at the end of fully convolutional networks,
i.e., PSPNet-50 and PSPNet-101. Since the depths of the
whole networks would be increased, we name the novel pro-
gressive cognitive networks as PCNet-75 and PCNet-126,
respectively. Furthermore, in order to ablate the effect of
depths, we add the extra layers to the end of PSPNet corre-
sponding to the depths of PCNet, and name them as PSPNet-
75 and PSPNet-126, respectively.

As shown in Tab. 1, our PCNet-126 model outperforms all
the baseline models for all metrics. Comparing our PCNet-
75 and PCNet-126 with PSPNet-50 and PSPNet-101, we
can observe that the progressive cognitive structures im-
prove 4.65% and 5.6% on the baseline models, respectively.
It can be declared that our PCNet is effective and reason-
able. Furthermore, we compare our PCNet with PSPNet in
the same layer depths. PCNets (PCNet-75 and PCNet-126)
improve the two baseline models for 4.65% and 5.6%, while
the deeper models (PSPNet-75 and PSPNet-126) only im-
prove for 0.63% and 0.28%. Note that our PCNet-75 have
better performance than that of PSPNet-101 and PSPNet-
126 for all metrics. This proves that the significant im-
provements rely on our proposed structure and loss func-
tion, rather than the network depths. And our structures
are more effective than the deeper structures. Finally, our
PCNet-126 achieves the best performance for 65.90%. We
believe that our progressive cognitive network can be com-
bined with more powerful networks such as ResNeXt (Xie
et al. 2017), DenseNet (Huang, Liu, and Weinberger 2017),
RefineNet (Lin et al. 2017) and SENet (Hu, Shen, and Sun
2017) for better human parsing performance.

Comparison Estimation We compare our proposed PC-
Net with several state-of-the-art human parsing methods in
Tab. 2. We evaluate the part segmentation results in terms of
mIoU as the semantic segmentation tasks.

As shown in Tab. 2, our PCNet outperforms these three
human parsing methods for all metrics. Though our PCNet
does not utilize the attention-to-scale mechanism like At-
tention (Chen et al. 2016), or the detected bounding boxes
mechanism like HAZN (Xia et al. 2016a) and Joint (Xia et
al. 2017), nor utilize the extra dataset like Joint, PCNet has
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Method Head Torso U-arms L-arms U-legs L-legs Background Ave.

Attention 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39
HAZN 80.76 60.50 45.65 43.11 41.21 37.74 93.78 57.54
Joint 85.50 67.87 54.72 54.30 48.25 44.76 95.32 64.39

Ours (PCNet-126) 86.81 69.06 55.35 55.27 50.21 48.54 96.07 65.90

Table 2: Mean Pixel Intersection-over-Union (mIOU) (%)
of Human Semantic Part Segmentation on PASCAL-Person-
Part. We compare our PCNet with the state of the art human
parsing methods.

the similar properties and common advantages like these ex-
cellent human parsing methods. Firstly, our CAR-Conv at
each level can be regarded as an attention mechanism, i.e.,
we ignore the irrelevant information and only pay attention
to the relevant information. Benefit from the attention mech-
anism, the latter layers of PCNet cannot be disturbed by the
irrelevant information so that the stress of the latter classi-
fiers can be relieved. Secondly, similar to the methods based
on detection bounding boxes, our progressive cognitive pars-
ing can also be regarded as a hierarchical detected process,
i.e., we detect the foreground human in pixel-level first, and
then parse the components with the candidate human feature
maps. Benefit from the detection-like mechanism, our PC-
Net has a better capacity to locate the small objects, which
may be failed to parse in the semantic segmentation net-
works. Thirdly, similar to Joint which utilizes the pose in-
formation for human parsing, the latter layers possess the
shape information of the foreground objects with the help
of CAR-Conv. Benefit from the shape information, PCNet
has a better capacity to classify each component and a better
performance on human parsing task than that of other three
human parsing methods.

Qualitative Evaluation

Score Maps Estimation As shown in Fig. 4, we output
the qualitative results of the alpha mattes for HAZN (Xia et
al. 2016a), PSPNet-101 (Zhao et al. 2017), and our PCNet-
126, i.e., the transformed score maps by the sigmoid func-
tion. It can be observed that the alpha mattes of HAZN and
PSPNet-101 are fuzzy and ambiguous, while the alpha mat-
tes of our PCNet-126 are more precise for visualization. It is
because that loss functions of HAZN and PSPNet are only
calculated on the max likelihood for the ground-truth cate-
gory and ignore the non-max probability of other categories.
In contrast, our PCNet model calculates the cost for all score
maps. As a result, the former two methods are easy to be
disturbed by other components and hard to parse the human
parts precisely. In contrast, PCNet can be less disturbed by
the irrelevant regions because our proposed CAR-Conv only
pay attention to the relevant regions. And we find that elim-
inating the irrelevant region can improve the human parsing
performance significantly.

Visual Comparison We show qualitative comparison
among three human parsing methods in Fig. 5. From the first
three rows (a)-(c), we can draw a conclusion that PCNet-126
has better performance in locating the small objects. Though
HAZN utilizes Faster R-CNN to detect the human first, it
fails to locate the objects in Fig. 5(a), so it cannot continue

(b)

(c)

(d)

(a)

Figure 4: Qualitative results of the alpha mattes for three
methods, i.e., the score maps through sigmoid transforma-
tion. (a) Input image and ground-truth mask. (b) Seven al-
pha mattes and the mask output by HAZN. (c) Seven alpha
mattes and the mask output by PSPNet-101. (d) Seven alpha
mattes and the mask output by our PCNet-126.

to segment human parts without human location. In contrast,
PSPNet-101 can locate the objects in Fig. 5(a) but it cannot
parse a large number of human parts. Due to the progres-
sive cognitive structures, our PCNet-126 outperforms these
two methods in parsing small-scale human tasks. PCNet-
126 not only locates the small-scale human precisely, but
also has a better performance in parsing the smaller human
parts. The similar situations can be seen in Fig. 5(b) and
Fig. 5(c). Moreover, PCNet-126 can also work well in large-
scale human parsing tasks, which can be seen in Fig. 5(d)
and Fig. 5(e). Large-scale human parsing is easier to work
well. However, HAZN and PSPNet-101 lose a large num-
ber of detailed segmentation in this situation and classify the
pixels into false categories. For instance, HAZN fails to seg-
ment the lower-arm in Fig. 5(d) and Fig. 5(e), and PSPNet-
101 fails to segment the upper-arm and torso in Fig. 5(d) and
Fig. 5(e). Compared to these two methods, our PCNet-126
has better performance in these details. Complicated human
appearance and occlusion are common in human parsing
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Figure 5: Visual comparison among three human parsing methods.

task, and Fig. 5(f) is an example of this situation. The se-
mantic segmentation method PSPNet-101 fails in this image
and classifies a large number of pixel as the background cat-
egory. The human parsing methods based on detection have
better performance because the candidate bounding boxes
relieve the stress for human parsing, but it is still hard to
segment the human. We can see that HAZN mixes up many
humans together because the candidate proposals are fused
together. In contrast, our PCNet-126 has better performance
than these two methods. PCNet model segments the objects
hierarchically so that our model does not confuse the dif-
ferent objects together and has a more precise location and
classification capacity.

Failure Modes Similar to other human parsing methods,
our method may fail when it comes to small human parts
and complicated human occlusions. For examples, PCNet
fails to segment the small upper-arm in Fig. 5(a) and the
complicated occlusions in Fig. 5(f).

Conclusion

We proposed Progressive Cognitive Networks (PCNet)
for human parsing. Our approach employs the proposed
component-aware region convolution (CAR-Conv) to con-
duct the end-to-end training on the entire networks. With
the hierarchical structures, the hierarchical prior information
can be inherited to the latter layers. Our experiments show
that our method improves the performance of the baseline
models significantly.
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