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Abstract

Attributes are human describable features, which have been
used successfully for face, object, and activity recognition.
Facial attributes are intuitive descriptions of faces and have
proven to be very useful in face recognition and verification.
Despite their usefulness, to date there is only one large-scale
facial attribute dataset, CelebA (Liu et al. 2015). Impressive
results have been achieved on this dataset, but it exhibits a
variety of very significant biases. As CelebA contains mostly
frontal idealized images of celebrities, it is difficult to gener-
alize a model trained on this data for use on another dataset
(of non celebrities). A typical approach to dealing with im-
balanced data involves sampling the data in order to balance
the positive and negative labels, however, with a multi-label
problem this becomes a non-trivial task. By sampling to bal-
ance one label, we affect the distribution of other labels in
the data. To address this problem, we introduce a novel Se-
lective Learning method for deep networks which adaptively
balances the data in each batch according to the desired dis-
tribution for each label. The bias in CelebA can be corrected
for in this way, allowing the network to learn a more ro-
bust attribute model. We argue that without this multi-label
balancing, the network cannot learn to accurately predict at-
tributes that are poorly represented in CelebA. We demon-
strate the effectiveness of our method on the problem of facial
attribute prediction on CelebA, LFWA, and the new Univer-
sity of Maryland Attribute Evaluation Dataset (UMD-AED),
outperforming the state-of-the-art on each dataset (Liu et al.
2015).

Introduction

Attributes are semantic features which have been used for
many different applications, ranging from face verification
to action recognition (Kumar et al. 2009; Zheng et al.
2014). Accurately predicting facial attributes (e.g. gender,
hair color, eye color, etc.) from images is a very difficult
problem, and has become of recent interest in the computer
vision community with the introduction of CelebA (Liu et al.
2015). CelebA is the first and only widely available large-
scale facial attribute dataset. Since it’s introduction, there
has been a lot of progress made on the problem of facial at-
tribute recognition from images. Deep CNNs have proven to
be very effective in attribute prediction, with state-of-the-art
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methods using CNNs for feature extraction (Liu et al. 2015;
Rudd, Gunther, and Boult 2016; Wang, Cheng, and Feris
2016).

Impressive results have been achieved on CelebA (Liu et
al. 2015), however this dataset exhibits some extreme bi-
ases. It consists of mostly frontal, high-quality, posed im-
ages of celebrities, which is not representative of real-world
imagery. Models trained on this data - without accounting
for its biases - are not likely to perform well on another do-
main (e.g. images of non celebrities, or low quality images).
A traditional method for handling imbalanced data is to sam-
ple the data so as to balance a particular label. However, for
the multi-label setting, the data cannot be balanced in this
way. Sampling the data so that one label is balanced changes
the distribution for the other labels. In an ideal world, we
would have access to unbiased, balanced, precisely-labeled
datasets, but with CelebA as the only widely available, large-
scale attribute dataset, we must find ways to overcome its
biases in order to move towards a solution to the attribute
prediction problem.

In (Rudd, Gunther, and Boult 2016), the authors try to ad-
just for the imbalance in CelebA by introducing a mixed ob-
jective loss, which adjusts the back-propagation weights ac-
cording to a given target distribution. This method is a step in
the right direction, but does not take full advantage of deep
networks. Deep CNNs use batch learning, and so the label
imbalance must be addressed in each batch. We argue that
in order to truly account for the bias in CelebA, label bal-
ancing must be performed at the batch level when training
a CNN. To this end, we propose a domain-adaptive batch
re-sampling method for training CNNs, which we call Se-
lective Learning. Selective Learning adapts each batch sep-
arately for every attribute according to a given target distri-
bution for that attribute. There are many under-represented
attributes in CelebA, including bald, mustache, gray hair,
etc, and several over-represented attributes, such as young,
and nobeard. In order to remove the bias in CelebA, Selec-
tive Learning adapts the batches for each attribute, allowing
the model to learn from balanced data in every batch. This
multi-label balancing allows our deep network to learn fea-
tures which truly represent the facial attributes, not just the
bias in the training data.

We evaluate the proposed Selective Learning on CelebA,
LFWA, and a new dataset: UMD-AED. UMD-AED consists



of 3338 images, each labeled with a subset of the 40 bi-
nary attributes from CelebA. Each of the 40 attributes has
50 positive samples and 50 negative samples in UMD-AED.
A model which has learned a robust representation for fa-
cial attributes, should perform well on any test set, no matter
the distribution for each attribute. Our model, trained with
Selective Learning, outperforms the state-of-the-art on each
dataset.

Related Work
Attributes

Attributes - human describable features - have been used for
many different computer vision tasks, such as activity, ob-
ject, and face recognition (Cheng et al. 2013; Duan et al.
2012; Farhadi et al. 2009; Hwang, Sha, and Grauman 2011;
Jayaraman, Sha, and Grauman 2014; Zhang et al. 2014a;
Zheng et al. 2014). Facial attributes - gender, hair color,
eye color, etc. - have been successfully used in face ver-
ification and recognition (Kumar et al. 2009; 2011). The
problems of recognizing gender and age have been stud-
ied extensively for many years (Fu, Guo, and Huang 2010;
Ng, Tay, and Goi 2012). (Kumar et al. 2009) first introduced
the concept of facial attributes for face verification, follow-
ing up on that work with (Kumar et al. 2011). They used 65
- and then 73 - binary attributes as face descriptors. Even
before this, Kumar et. al used attributes for image search
in their FaceTracer work, predicting attributes using a com-
bination of SVMs and Adaboost (Kumar, Belhumeur, and
Nayar 2008). With the release of two face datasets with at-
tribute labels, great advances have been made in the recogni-
tion of facial attributes in the past few years, with deep net-
works achieving impressive results (Abdulnabi et al. 2015;
Huang et al. 2016) (Levi and Hassner 2015; Liu et al. 2015;
Zhang et al. 2014a; Zhong, Sullivan, and Li 2016). Pose
Aligned Networks for Deep Attributes (PANDA) combines
part-based models with deep CNNs to learn features for
specific parts in a specific pose. PANDA is used for hu-
man attribute prediction - full body attributes - and per-
forms well on unconstrained images (Zhang et al. 2014a).
(Zhang et al. 2014b) uses three attributes: gender, smiling
and wearing glasses to improve facial landmark localiza-
tion. (Ranjan, Patel, and Chellappa 2015) uses multi-task
learning to jointly learn face detection, landmarks, pose, and
gender combining features from intermediate layers in or-
der to learn the different tasks. (Ehrlich et al. 2016) uses
a RBM for multi-task attribute learning, achieving state-
of-the-art results on several large-scale attribute datasets.
(Liu et al. 2015) uses two deep CNNSs, one for localiz-
ing the face in the image (LNet), and one for attribute
prediction (ANet). They introduce the CelebA dataset, a
large-scale attribute-labeled dataset of face images. Their
method, LNet+ANet, outperformed PANDA and FaceTracer
on the CelebA dataset (Kumar, Belhumeur, and Nayar 2008;
Zhang et al. 2014a). Using wearable cameras, collecting face
tracks with weather and location metadata, (Wang, Cheng,
and Feris 2016) achieves state-of-the-art results on attribute
prediction by first training a verification network on the
wearable camera data, then fine-tuning the network for at-
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tribute prediction. Our network, AttCNN, requires no pre-
training on external data, and outperforms (Liu et al. 2015)
as well as (Wang, Cheng, and Feris 2016) on CelebA.

Domain Adaptation

There have been many different methods for domain adap-
tation over the years (Patel et al. 2015). Object recogni-
tion has benefitted from domain adaptation methods, espe-
cially since the introduction of a benchmark dataset (Saenko
et al. 2010). Semi-supervised approaches have dominated
the field with dictionary learning methods (Bo, Ren, and
Fox 2011; Yang et al. 2011), and metric learning methods
(Saenko et al. 2010). Many unsupervised approaches have
been introduced as well, with dictionary (Lu, Chellappa, and
Nasrabadi 2015) and manifold-based methods (Gopalan, Li,
and Chellappa 2011; Gong et al. 2012) being the most popu-
lar. Face recognition can easily be framed as a domain adap-
tation problem with faces in different poses and with dif-
ferent illuminations and resolutions (Ho and Gopalan 2014;
Qui et al. 2012; Shekhar et al. 2013).

(Chen et al. 2015) tackles the problem of domain adapta-
tion of clothing attributes from ideal images to images taken
in unconstrained environments. They use a two-stream CNN
to model the two domains in separate paths, using connec-
tions between the two paths to ensure that the features are
similar for both domains. This method works in supervised
and unsupervised settings. In (Ganin and Lempitsky 2014),
the feature extraction portion of the network feeds into two
different predictor portions: the class predictor, and the do-
main predictor. As the domain predictor backpropagates the
error, it reverses the gradient when it passes through the fea-
ture extraction portion of the network. This allows the net-
work to learn the class labels while keeping the feature dis-
tributions for the two domains similar. (Rudd, Gunther, and
Boult 2016) addresses the problem of dataset bias in a multi-
label setting. The authors introduce a Mixed-Objective Op-
timization Network (MOON) for attribute recognition, by
weighting the back-propagation error for each attribute ac-
cording to a given target distribution. Unlike MOON, which
does not account for the label imbalance in the batches, Se-
lective Learning performs a domain-adaptive re-sampling at
the batch level, so that each batch fits the target distribution
for each attribute.

In domain adaptation, there are two sets of data: the
source and the target, both consisting of images and labels.
Let X5 and Xt be the source and target images, and Yg and
Y be the source and target labels respectively. In supervised
domain adaptation, the model has access to Xs, Ys, Xr, and
Y at training time. In unsupervised domain adaptation, the
model has access to Xg, Ys, and X, but Y7 is unknown.
In the proposed Selective Learning approach, the model has
access to Xg, Ys and has some idea of what the distribution
for Y1 will be, but it does not have access to Xt during train-
ing. We argue that this is a form of domain adaptation, as we
are adjusting the learning procedure on the source data to ac-
count for a desired target label distribution. (Rudd, Gunther,
and Boult 2016) uses a similar formulation.

Facial attributes were first introduced to describe faces
(Fu, Guo, and Huang 2010; Kumar, Belhumeur, and Nayar



Layer | Parameters/Activation/Pooling/Norm
75 7x7 Filters, Stride 4
RelLLU

Max Pooling 3x3, Stride 2
Norm 5x5

200 5x5 Filters

ReLLU

Max Pooling 3x3, Stride 2
Norm 5x5

300 3x3 Filters

ReLU

Max Pooling 5x5, Stride 2
Norm 5x5

512 Units

ReLU

Dropout 50%

512 Units

ReLU

Dropout 50%

40 Units

Convl

Conv2

Conv3

FC1

FC2

FC3

Table 1: AttCNN Architecture. Convl is the bottom layer,
and FC3 is the top and final layer producing 40 outputs.

2008; Ng, Tay, and Goi 2012). With the introduction of deep
networks, the focus has been shifted to improving face veri-
fication methods using attributes, however we cannot say for
certain that these describable facial features play a discrim-
inative role in face recognition (Rudd, Gunther, and Boult
2016). Most deep networks pre-train on external datasets —
usually labeled with identity — and then fine-tune the weights
for the task of attribute prediction. These networks have
learned a representation for identity, which does not nec-
essarily translate to a representation for facial attributes.
We will see this with our comparison to the state-of-the-
art method from (Wang, Cheng, and Feris 2016), which was
pre-trained with verification data. In this work, we choose to
focus on improving attribute models solely for the purpose
of accurately describing faces using their physical features,
rather than for use in a face verification system.

The proposed Selective Learning approach performs
multi-label balancing in each training batch, and we provide
results on CelebA, LFWA, and a new evaluation dataset,
UMD-AED. Selective Learning outperforms the state-of-
the-art on CelebA — by 0.11% on average — on LFWA —
by 2.5% on average — and on UMD-AED — by over 11% on
average.

Proposed Method
Multi-Task Attribute CNN

For attribute prediction, we use a multi-task deep attribute
CNN (AttCNN) implemented in Caffe (Jia et al. 2014). Ta-
ble 1 shows the AttCNN architecture. FC3 is the output
layer, with 40 nodes, one for each attribute. A sigmoid cross-
entropy loss is used to facilitate training of the AttCNN. At
test time, we apply the sigmoid function to FC3, taking val-
ues above 0.5 as positive instances of an attribute, and values
below 0.5 as negative attribute responses.
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Selective Learning

We introduce a novel Selective Learning method which
adaptively balances each batch according to the desired dis-
tribution for each label in a multi-task learning framework.
In other words, Selective Learning performs multi-label bal-
ancing of the training data. Consider, for example, the two
attributes bald, and male. We intuitively know that the dis-
tribution for male is much more balanced than that for bald,
and so we would expect to see more positive instances of
male than bald. If we were to train a separate model for each
attribute, we would be able to sample the data such that our
model for bald could learn from a more balanced set. How-
ever, in a multi-task setting, where we learn all attributes at
once, it is much more difficult to handle these imbalances.
Selective Learning offers a solution to this problem by adap-
tively balancing each label in every batch of data according
to a target distribution for that label.

Batch Balancing For each label (attribute) in each batch,
if the distribution for that label does not match the desired
target distribution, then we must adapt the batch accord-
ingly. For each label, there are three cases: 1) the batch dis-
tribution is equal to the target distribution, 2) the label is
over-represented, and 3) the label is under-represented. If
the batch distribution for a label is equal to the target distri-
bution, then we do nothing, and the Selective Learning batch
(SL batch) is the same as the original batch for that label.

If a label is over-represented in a batch, that means there
are more positive instances and fewer negative instances
than if the batch followed the target distribution. When there
are too many positive instances in the original batch, we take
a random subset from the positive samples according to the
target distribution and add those to the SL batch, ignoring
the rest of the positive samples. For example, if we have a
batch of size 100, with 70 positive instances, and a balanced
target distribution, then we sample 50 positive instances, ig-
noring the other 20. At this point, the SL batch contains a
subset of the positive samples from the original batch.

We must now adjust the negative instances for the given
label. Since the positive instances are over-represented, we
were able to simply sample from the positive instances to
meet the target distribution, but there are not enough neg-
ative instances to meet the target distribution. Instead, we
weight the negative samples so they effectively match the
target distribution. Using the same example from above, we
have 30 negative samples in the original batch, so in the SL
batch, we weight the negative samples by % so that the neg-
ative samples effectively match the balanced target distri-
bution. That is, the SL batch contains a subset of the posi-
tive samples, and all the negative samples, with an additional
weight attached to them. If a label is under-represented, we
reverse the above process, sampling from the negative in-
stances and weighting the positive instances.

Implementation Selective Learning can be used with any
loss function in a deep network. Here we describe the im-
plementation details of the method.

For each label (attribute) a, we have some target distribu-
tion Pr(a) and some batch distribution Pp(a). If Pr(a) =
Pg(a), i.e. the batch distribution for a matches the target



50/clockShadow ~ Young

50/clockShadow  Young

Figure 1: Visualization of the proposed Selective Learning
(right) and normal learning without batch balancing (left).
A blue node is a positive instance of an attribute and a white
node is a negative instance of an attribute. The green up-
ward pointing arrows indicate the back-propagation error. In
a loss without Selective Learning (left), every attribute in ev-
ery sample has the same weight, as indicated by the arrows
all being the same thickness. In a loss with selective learning
(right), we see that some attributes in some samples are not
used for learning (they have no back-propagation arrows),
and some samples have a higher weight (thicker green ar-
rows) to account for imbalance. The two losses are demon-
strated on 50 ’clockShadow and Young, two of the most im-
balanced attributes in CelebA.

distribution, then the loss is calculated normally and the
back-propagation error is unchanged. In practice, the SL
batch is constructed by adding weights to every sample in
the original batch.

Let | B| be the size of the batch. If Pg(a =1) > Pr(a =
1), i.e. a is over-represented in the batch, the SL batch con-
sists of all the samples from the original batch with weights
to reduce the number of positive instances, and to increase
the effective number of negative instances. Specifically, a
random subset of Pr(a = 1)|B| positive instances are
given a weight of 1, with all other positive instances given
a weight of 0. The negative samples are each weighted by

2%3283 giving the negative samples the same effect as if

they matched the target distribution.

Similarly, if Pg(a = 1) < Pr(a = 1), i.e. a is under-
represented in the batch, the SL batch consists of all the sam-
ples from the original batch with weights to reduce the num-
ber of negative instances, and to increase the effective num-
ber of positive instances. A random subset of Pr(a = 0)|B|
negative instances are given a weight of 1, with all other neg-
ative instances given a weight of 0. The positive samples are

each weighted by }2%22% giving them the same effect as if

they matched the target distribution.

Selective Learning allows the network to learn from
adapted batches for each label (or attribute), so that all la-
bels — even under-represented and over-represented labels —
are learned as if the data matched a desired target distribu-
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tion. Selective Learning is capable of both turning off back-
propagation, and re-weighting the error for any attribute in
any sample. Training of deep networks is done on a batch-
by-batch basis, and so it makes sense to perform weight-
ing and balancing at the batch-level. In MOON (Rudd, Gun-
ther, and Boult 2016), each sample is re-weighted according
to the target distribution, and so individual batch distribu-
tions are not taken into account, which leads to imbalances
in training.

Figure 1 is a visualization of Selective Learning in com-
parison with normal multi-task learning. The left side shows
a multi-task loss without Selective Learning, and the right
side shows a multi-task loss with selective learning. Two at-
tributes are highlighted: 5 o’clock shadow and young. We
can see that both are highly imbalanced, and with Selective
Learning, each attribute is learned from its adapted batch,
effectively removing the imbalance.

In our experiments, we apply Selective Learning to the
proposed AttCNN, which uses a sigmoid cross-entropy loss.
In the following section we demonstrate the effectiveness of
Selective Learning on several challenging attribute datasets.
We note that Selective Learning is extremely versatile and
can be applied to any multi-label problem. It can easily be
used for tasks other than facial attribute prediction, such
as facial landmark detection (where nose points may be
over-represented and ear points may be under-represented),
body part localization (where some body parts may be
occluded more than others), face verification across pose
(where frontal is extremely over-represented) or any multi-
task problem where the training data is imbalanced. Selec-
tive Learning can also be used to combine data from several
different sources, with some, or no common labels for use
in training a deep network, since it adaptively balances ev-
ery batch for each label.

Experiments
Data

We use three datasets in our experiments: CelebA, LFWA,
and UMD-AED - a new evaluation dataset.

CelebA CelebA contains roughly 200,000 images, with
160,000 for training and 20,000 each for validation and
testing (Liu et al. 2015). Each image in CelebA is labeled
with 40 binary attributes. CelebA consists of mostly frontal,
posed images of celebrities. Sample images from CelebA
can be seen in figure 2a.

LFWA LFWA is a much smaller dataset, containing only
13,143 images labeled with the same 40 attributes from
CelebA (Liu et al. 2015). LFW was originally created for
face verification and attribute labels were later added creat-
ing LFWA. LFWA consists of still images of celebrities, so
itis very similar to CelebA. Sample images from LFWA can
be seen in figure 2b.

For each attribute, the percentage of positive labels is plot-
ted for both LFWA and the CelebA train split in figure 3. We
can see that LFWA exhibits some of the same imbalances
as CelebA, though not to the same extreme, likely due to
the size of the dataset. For instance, black hair, blond hair,



(c) UMD-AED

Figure 2: Sample images from (a) CelebA, (b) LFWA, and
(c) UMD-AED.

heavy makeup, and high cheekbones are even more under-
represented in LFWA than in CelebA. So, if a model learned
to prefer to output O for those attributes, then it would per-
form better on LFWA than on CelebA, without truly having
learned a representation for those attributes.

University of Maryland Attribute Evaluation Dataset
In order to better evaluate an attribute model, we constructed
a new evaluation dataset, UMD-AED. UMD-AED contains
2,800 face images, each labeled with a subset of the 40 at-
tributes from CelebA and LFWA. UMD-AED was collected
in such a way that each attribute has the same number of pos-
itive and negative samples, hence why not every attribute is
labeled in each image. Specifically, every attribute has 50
positive and 50 negative samples. Though UMD-AED is a
small dataset, it is extremely effective at highlighting weak-
ness in attribute models, as we will see in our experiments.
With deep learning dominating almost every field in com-
puter vision, most work is concerned with the quantity of
data, rather than the quality. In our collection of UMD-AED,
we focused on quality data which would effectively test the
attribute representations learned by deep networks. By qual-
ity we mean that UMD-AED represents a wide variety of
data, with low and high quality images, extreme lighting and
poses, as well as different ages and skin tones, as can be seen
in figure 2c.

UMD-AED was constructed by performing an image
search with each of the 40 attributes as search terms, run-
ning the face detector from (Ranjan, Patel, and Chellappa
2015), and hand-curating the resulting face images. UMD-
AED is much more representative of real-world data than
CelebA or LFWA. As we will demonstrate in our experi-
ments, to compare performance of attribute models on the
test split of CelebA if they were trained on CelebA is op-
timistic. Evaluating models on UMD-AED will provide a
much more unbiased metric for success of attribute predic-
tion algorithms. If a model has learned a true representation
for an attribute, then it can be expected to perform well on
UMD-AED. We will make this dataset publicly available so
that future work on attribute prediction can be evaluated on
a balanced, real-world dataset.
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Figure 3: Percentage of positive attribute labels for CelebA
train, and LFWA.

Method Accuracy
LNet+ANet (Liu et al. 2015) 87.30
Walk and Learn (Wang, Cheng, and Feris 2016) | 88.15
MOON (Rudd, Gunther, and Boult 2016) 90.94
AttCNN (Ours) 90.97

Table 2: Average attribute accuracy on the CelebA test set.

AttCNN

We train AttCNN directly on the CelebA training set, with-
out any pre-training. As preprocessing steps, we subtract the
training mean from each image, and take a random crop
of 227x227 from the original image of size 256x256. The
network weights are learned from scratch — starting with
random initialization — using only the CelebA training set.
AttCNN is trained for 22 epochs with batches of size 200,
using a sigmoid cross-entropy loss.

We compare our AttCNN to the state of the art methods in
table 2. AttCNN is comparable with the three previous state-
of-the-art methods for attribute prediction: MOON (Rudd,
Gunther, and Boult 2016), LNet+ANet (Liu et al. 2015),
and Walk & Learn (Wang, Cheng, and Feris 2016). Table 2
shows that AttCNN outperforms all three methods on aver-
age. This is an impressive feat, as AttCNN has fewer than 6
million parameters, and is trained from scratch, whereas the
most recent state-of-the-art, MOON, has 138 million param-
eters and is pre-trained on a large-scale object-recognition
dataset, and both LNet+ANet and Walk & Learn are pre-
trained on identification and verification data.

We argue that the success of AttCNN is due to training
directly on attribute data. All three of the previous state-of-
the-art networks have too many parameters to train directly
from the 160, 000 images in the train split of CelebA. With
AttCNN as our base network, we demonstrate the effective-
ness of the proposed Selective Learning approach in the fol-
lowing section.



Method
MOONBalanced
AttCNNBalanced

Average Accuracy
86.33
85.05

Table 3: Average attribute accuracy on the CelebA test set
using the balanced networks.

Method Average Accuracy
AttCNNp(a) = train 91.05
AttCNNp(a) = test 91.07

Table 4: Average attribute accuracy on the CelebA test
set using AttCNN with target distributions given by the
CelebA train (P(a) = train) and test (P(a) = test) sets.
AttCNNp(y) = irain 18 bolded as it is the new state-of-the-art on
CelebA.

Selective Learning

We test the proposed Selective Learning method on CelebA,
LFWA, and UMD-AED, and then compare with the state-
of-the-art MOON method.

For our first experiment, we train AttCNN using Selec-
tive Learning with a balanced target distribution. We denote
this model as AttCNNgajanced- We train AttCNNgajancea for
22 epochs and we use batches of size 200 just as with the
original AttCNN. Table 3 shows that AttCNNgyancea per-
forms comparably to, though not as well as the balanced
MOON on the CelebA test set. However, we believe this to
be an artifact of the extreme imbalance in CelebA, which is
not being effectively removed by MOON, as we will demon-
strate in our experiments on LFWA and UMD-AED.

We perform two experiments adapting training
of AttCNN to the CelebA training distribution (
AtCNNp(y)=train) and to the CelebA test distribution (
AttCNNp(y)=test), and present the results in table 4. Using
Selective Learning with P(a)=train, we improve on the
state-of-the-art for the CelebA test set with 91.05% average
attribute prediction accuracy. This improvement highlights
the need for label balancing at the batch-level as even slight
changes in distributions within batches results in decreased
performance. With P(a)=test, we see a small improvement,
but we normally do not have access to the distribution of
the test set. We provide this result to highlight the fact
that the bias in CelebA extends from the training set to the
validation and test sets. If the bias was less severe in the
CelebA test set, we would see a larger improvement when
adjusting for the testing distribution.

We tested the balanced and unbalanced MOON, as well

Method Average Accuracy
MOONUnBalanced 68.98
MOONBaianced 70.49
AttCNN 71.21
AttCNNpa)=train | 71.49
AttCNNBaanced 73.03

Table 5: Average attribute accuracy on LFWA using MOON
and AttCNN.
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Figure 4: Results for AttCNNgajanced
LFWA. Best viewed in color.

and MOONB alanced ON

Method Average Accuracy
MOONUnBalanced 56.36
AttCNNgajanced 59.46
AttCNN 66.85
AttCNNP(a):train 67 40
AttCNNP(a) =05 71.11

Table 6: Average attribute accuracy on UMD-AED using
MOON and AttCNN.

as AttCNN, AttCNNp(a)zn—ain, and AttCNNgajancea On LFWA.
The results are reported in table 5. AtCNNpgjanced OUtpPET-
forms MOON by over 2.5%. We see that even just adapting
each batch to align with the distribution of the training data
(" AttCNNp(a)=rain), outperforms both the unbalanced and
the balanced MOON. Figure 4 shows the prediction accu-
racy for each attribute on LFWA using the balanced MOON
and AttCNNpgaanceda- We can see that the two curves are
very close, except for a few attributes: hat, bald, gray hair,
chubby, blurry, and pointy nose. We can see from figure 3
that these attributes were much more under-represented in
CelebA than in LFWA, and so the bias of CelebA appears
to have negatively affected the performance of MOON on
LFWA. This same bias seems to have positively affected
MOON on the CelebA test set, as seen in table 3.

For a less biased evaluation of the proposed attribute
model, we test on UMD-AED, and these results are
presented in table 6 as well as figure 6. We see that
AttCNNgypancea outperforms MOON on almost every at-
tribute. Here we truly see the effect of the extreme imbal-
ance in CelebA on MOON, with many attributes achiev-
ing roughly 50% accuracy. In table 6 AttCNNpg,janceq OUL-
performs the balanced MOON by a significant margin —
over 11%, and AttCNNpgpanceq gives a 4% improvement over
AttCNN. From this result, on a dataset with an even dis-
tribution for every attribute, and a better representation of
real-world images, we can see that Selective Learning ad-
dresses the problem of multi-label balancing for deep net-
works trained on imbalanced data.

Our evaluation of AttCNNpgjanced 01 UMD-AED not only
highlights the effectiveness of our method, but also indicates
areas for improvement. Both MOON and AttCNNgajanced
struggle with oval face, attractive, high cheekbones, arched



(a) Oval Face

(b) Attractive

(c) High Cheekbones

(d) Arched Eyebrows

(e) Lipstick

Figure 5: Samples from CelebA train set with bad or ambiguous labeling for (a)oval face, (b)attractive, (c)high cheekbones,
(d)archedeyebrows, and (e)lipstick. Positive labeled images are in the left columns, and negative labeled images are in the right
columns. There is an obvious bias towards celebrities in this data. From (b), it is unclear what distinguishes an attractive person

from an unattractive person.
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Figure 6: Results for AttCNNgyancea and MOONR japced ON
UMD-AED. Best viewed in color.

eyebrows, and lipstick. All of these are very subjective at-
tributes, with the exception of lipstick, and so there is likely
some noise in the CelebA labels. Exploring the dataset, we
find that this is exactly the case. We provide some sample
images from CelebA in figure 5 to demonstrate the noisy la-
beling. Figures 5a-5e¢ show samples with both positive and
negative labels for the above attributes, with positive labels
on the left and negative labels on the right. In many cases
it is impossible to determine why one image has a positive
label and another has a negative label. All of the subjects in
figure 5c¢ appear to have high cheekbones, but half of them
are labeled as not having them. The negatively labeled sam-
ples in figure 5d have more arch in their eyebrows than the
positively labeled samples. We argue that these subjective
attributes should be removed from the attribute prediction
task, as the goal is to accurately describe a face using at-
tributes, and highly subjective attributes will not help with
this cause.

Though lipstick is not a subjective attribute, we decided
to perform the same analysis due to the poor performance of
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both MOON and AttCNN on this attribute. We found that the
labels were just as noisy for lipstick as for the subjective at-
tributes. Figure Se shows samples from CelebA labeled with
lipstick and not lipstick. None of the women in figure 5e are
wearing lipstick, and yet half of them are labeled as such.
Even with multi-label balancing using Selective Learning,
there is no way to correct for this much noise in the labels. It
is clear from these analyses that the next step in attribute pre-
diction research is to collect a new large-scale dataset with
more precise labels for training.

Conclusion

We introduced a novel Selective Learning technique for
multi-label balancing of biased training data, and demon-
strated its effectiveness on the problem of facial attribute
prediction, improving on the state-of-the-art. Selective
Learning adapts every training batch for each attribute ac-
cording to a desired target distribution, allowing for bal-
anced training with each batch. Since deep learning methods
are trained on a batch-by-batch basis, it only makes sense to
apply label balancing at the batch level. To test the capabil-
ities of Selective Learning, we introduced a new evaluation
dataset - UMD-AED. UMD-AED has an even distribution
for each attribute, allowing for evaluation of attribute mod-
els in a balanced setting.

We introduced AttCNN, a deep network with fewer than
6 million parameters which is trained directly from CelebA.
AttCNN outperformed the three previous state-of-the-art
methods on CelebA, without pre-training on an external
dataset. Training AttCNN with Selective Learning, we out-
perform the state-of-the-art on CelebA, LFWA, and UMD-
AED, by 0.11%, 2.54%, and 11.65% respectively. The per-
formance of our model on UMD-AED highlights the effec-
tiveness of Selective Learning in allowing a deep network
to learn a true representation of the data, rather than just the
bias of the training set. UMD-AED will be made publicly
available so that future research on attribute prediction can
be evaluated on a balanced dataset.



Selective Learning can be applied to any multi-label prob-
lem which uses deep networks, including face verification
across pose, facial landmark localization, and body part de-
tection and localization, among many others. Though we
demonstrate Selective Learning using a Sigmoid Cross-
Entropy Loss, it can be used with any loss function. It can
also be used to combine data from different sources with few
or no common labels, since every batch is adapted for each
label, no learning will occur for a particular label if it is not
represented in the batch. Selective Learning is an extremely
versatile method that can be applied to many problems, and
will help ease the difficulty associated with multi-label bal-
ancing in large-scale datasets, which are needed to train deep
networks.
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