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Abstract

Current deep learning methods for action recognition rely
heavily on large scale labeled video datasets. Manually an-
notating video datasets is laborious and may introduce un-
expected bias to train complex deep models for learning
video representation. In this paper, we propose an unsuper-
vised deep learning method which employs unlabeled lo-
cal spatial-temporal volumes extracted from action videos to
learn mid-level video representation for action recognition.
Specifically, our method simultaneously discovers mid-level
semantic concepts by discriminative clustering and optimizes
local spatial-temporal features by two relatively small and
simple deep neural networks. The clustering generates se-
mantic visual concepts that guide the training of the deep net-
works, and the networks in turn guarantee the robustness of
the semantic concepts. Experiments on the HMDB51 and the
UCF101 datasets demonstrate the superiority of the proposed
method, even over several supervised learning methods.

Introduction
Recently, representation learning via deep neural networks
has proven to improve state-of-the-art performance dramat-
ically for various computer vision tasks (Simonyan and Zis-
serman 2014; Szegedy et al. 2015; He et al. 2016; Lin et
al. 2016). Despite the great success of deep neural networks
on these image-based tasks, their superiorities are not that
remarkable on video-based tasks, especially for the task of
action recognition. While good performance of deep models
depends on large amounts of labeled training samples, it is
difficult to collect sufficient labeled data for action recogni-
tion because manually annotating a video is far more labori-
ous and error-prone than an image.

Recently, more and more works focus on learning deep
video representation in unsupervised ways without the need
of annotated training data. Some approaches (Wiskott and
Sejnowski 2002; Taylor et al. 2010; Le et al. 2011) use the
convolutional operation to learn abstract and robust low-
level spatio-temporal features of videos. Su et al. (2016) de-
veloped an unsupervised method to parse video sequences
and hierarchically encoded the segmented features to rep-
resent actions instead of learning low-level features. Misra,
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Figure 1: Left: Examples of problematic annotation (see text
for explanation). Right: The proposed method learns mid-
level action representation using local video volumes.

Zitnick, and Hebert (2016) proposed to use an unsuper-
vised sequential verification method to train a deep neu-
ral network for action recognition. The LSTM based meth-
ods (Du, Wang, and Wang 2015; Srivastava, Mansimov, and
Salakhutdinov 2015) learn fixed-length global action fea-
tures by reconstructing videos. All these methods of unsu-
pervised learning for video representation are purely data-
driven without considering the discriminative and semantic
information in videos.

High quality labels can provide crucial semantic infor-
mation and supposed to benefit learning more discrimina-
tive video representations. Actually, many classification cri-
teria are so ambiguous that manually annotated action cate-
gories are perplexing and at different semantic levels. Using
these kinds of labels as guidance to learn video represen-
tation might miss some spatial-temporal information of ac-
tions and even introduce bias. Here are two examples of un-
reasonable annotations: Figure 1(a) illustrates that different
classes may in fact share similar meaning. The two frames
are sampled from different videos which are classified as dif-
ferent actions, namely, “sword” and “fencing”. Figure 1(b)
shows the annotations at different semantic levels. The two
frames are sampled from one video classified as “shoot ball”
containing relatively low level semantic actions, “run” and
“jump”.
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Figure 2: Overview of our approach. It simultaneously learns local spatial-temporal features and semantic concepts based on
either local hand-crafted motion features or raw local volumes to generate mid-level video representation for action recognition.

In order to learn more meaningful and discriminative
video representation, we propose an unsupervised video rep-
resentation learning method which can automatically dis-
cover mid-level semantic concepts providing latent inter-
pretations of action video volumes. First, the action videos
are divided into local volumes containing simple and dis-
criminative semantic information as shown in Figure 1(c).
The local volumes are then clustered and used to train two
deep neural networks (i.e., a fully connected network and a
fully convolutional network) iteratively to find the most op-
timal latent semantic concepts. Finally, the mid-level repre-
sentation of action videos is obtained by sharing these con-
cepts. The loss function of the deep neural networks inte-
grates the hinge and the Fisher (Kan, Shan, and Chen 2016)
losses to find optimal video concepts. The hinge loss reduces
the inter-category confusions and ensures the discriminative
property of the local features, and the Fisher loss draws fea-
tures into low dimensional space while keeping discrimi-
native properties to acquire compact video representations.
Moreover, using local volumes as the input reduces the size
of the neural networks and thus saves the computation re-
sources.

Overall, our main contributions are:

• We propose an unsupervised deep learning of mid-level
video representation for action recognition. To the best of
our knowledge, it is the first work which learns the deep
mid-level video representation in an unsupervised man-
ner;

• We develop a novel iterative clustering algorithm such
that discriminative video representation can be learned by
relatively small scale deep models with fewer computing
resources;

• Experiments on two well-known action recognition
datasets, the HMDB51 (Kuehne et al. 2011) and UCF101
(Soomro, Zamir, and Shah 2012) benchmarks, show
that our method outperforms the state-of-the-art methods
based on either supervised or unsupervised learning.

Related work
Iterative clustering. The iterative clustering algorithm
(Singh, Gupta, and Efros 2012) is a powerful unsuper-
vised framework for mid-level representation, and its ap-
plications have shown its superiority on image-based tasks
(Singh, Gupta, and Efros 2012; Huang, Chen, and Tang
2016). Singh, Gupta, and Efros (2012) proposed an itera-
tive clustering algorithm by using SVM classifiers to dis-
cover discriminative mid-level concepts for scene classifi-
cation. Huang et al. (Huang, Chen, and Tang 2016) used a
two-stage pipeline which trains a deep neural network by us-
ing iterative clustering algorithm and fine-tunes the network
with the triplet ranking loss for image retrieval and classi-
fication. Different from previous methods on image-based
tasks, we develop a new iterative clustering algorithm to cap-
ture discriminative motion information in videos for action
recognition. Compared with the previous methods either us-
ing hand-crafted features or learning features from clusters,
our method jointly learns optimally compatible features and
clusters by using deep networks to obtain precise and robust
mid-level representations.

Mid-level video representation. Mid-level representa-
tion methods, such as Bag-of-words (Csurka et al. 2004),
Fisher vector (Perronnin et al. 2010), and VLAD (Jégou
et al. 2010), are commonly used to encode local spatial-
temporal features in many works (Dollár et al. 2005; Wang
et al. 2011; Wang and Schmid 2013; Jain, Jegou, and
Bouthemy 2013) for action recognition. Recently, the hierar-
chical structured models are proposed to boost action recog-
nition performances by capturing rich semantic information
of the mid-level concepts. Liu, Kuipers, and Savarese (2011)
used action attributes which can be either manually specified
or learnt from the training data to represent human actions.
Tang, Fei-Fei, and Koller (2012) proposed a model for auto-
matically discovering action primitives based on clustering
and discriminative selecting of primitives. Raptis and Sigal
(2013) jointly learned a set of latent keyframes and their lo-
cal temporal contexts by using a structural SVM. Lan et al.
(2015) represented videos by a hierarchy of mid-level action
elements with action-level supervision. Different from these
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methods, we simultaneously optimize the low-level features
and cluster to find more descriptive and discriminative mid-
level video representation. The proposed two kinds of deep
neural networks guarantee multiple semantic mid-level in-
formation are captured.

Our Method
Our goal is to learn visual concepts and local features for
generating discriminative and descriptive action representa-
tion in an unsupervised way. The overview of the proposed
framework is illustrated in Figure 2. In the training phase,
to ensure the informativeness of the local features, we learn
a fully connected autoencoder using the hand-crafted fea-
tures of local volumes as input training data and a fully
convolutional autoencoder using the local volumes as in-
put. Integrated with the hinge loss and the Fisher loss, the
learned encoder layers of the autoencoders are interactively
fine-tuned by using the clusters as surrogate classes to max-
imize the separability of the local features. At the test time,
we calculate the center of the top most discriminative vol-
umes of each cluster as the video concept, and then apply
the soft assignment Vector of Locally Aggregated Descrip-
tors (VLAD-all) (Peng et al. 2016) to generate the final rep-
resentation of action. The linear SVM classifiers are then
used for action classification.

Pre-training
Given training videos, the local video volumes of interest are
extracted as input of the deep neural networks. In this paper,
we extract the local volumes along the Improved Trajecto-
ries (IT) (Wang and Schmid 2013), which remove volumes
of camera motion by homography estimation. In the follow-
ing, we introduce the two types of autoencoders.

Fully connected autoencoder. The fully connected au-
toencoder is applied to initialize the network by reconstruct-
ing the input itself to retain sufficient information from the
hand-crafted local features. We extract the HOG (Dalal and
Triggs 2005), HOF (Dalal, Triggs, and Schmid 2006) and
MBH (Dalal, Triggs, and Schmid 2006) features of local
spatial-temporal video volumes as the input of our fully con-
nected autoencoder. Figure 3 illustrates the architecture of
our fully connected autoencoder. The fully connected au-
toencoder takes n input features X = [x1,x2, . . . ,xn] ∈
R

d×n, where xi ∈ R
d×1 is the ith d-dimensional IT fea-

ture of the local volume extracted from an action video in
the training set. The transformation of the encoder, denoted
as φe, maps each input feature into a hidden representation,
and the transformation of the decoder, φd, attempts to map
the hidden representation back to the input feature. We de-
fine the cost function of the autoencoder by using the Mean
Squared Error (MSE)

min
φe,φd

1

N

N∑
i=1

‖xi − φd(φe(xi))‖22, (1)

where N is the size of minibatch.
Fully convolutional autoencoder. Even though the hand-

crafted features are used, they might not be optimal for de-
scribing the local spatial-temporal volumes. Besides, the in-
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Figure 3: The scheme of the fully connected autoencoder.
The input 396-dimensional IT feature extracted from the lo-
cal volume is l2 normalized as in (Wang and Schmid 2013)
and passed to the encoder layers, φe, and the decoder lay-
ers, φd, sequentially. Inside of each bracket is the number
of neurons of the corresponding layer. The Rectified Lin-
ear Unit (ReLU) activations are applied to the hidden layers
with 1,000 and 256 nodes.

put volumes are small that some higher level structural in-
formation may be lost. Therefore, we attempt to learn the
optimum and complementary local features directly from lo-
cal volumes by using a fully convolutional autoencoder. Fig-
ure 4 shows the architecture of the fully convolutional au-
toencoder. The input of the fully convolutional autoencoder
is a local volume set V = {vi : i = 1, . . . , n} , where
vi ∈ R

w×h×t is the ith local volume with the width of w,
the height of h and the length of t. The size of vi is set to
be the half of the original volume. Different from existing
fully convolutional networks (Long, Shelhamer, and Darrell
2015; Dosovitskiy et al. 2015b), we use convolutional layers
instead of the “deconvolutional” or “upconvolutional” layers
as decoder, since the proposed decoder aims to restore infor-
mation contained in the input features as much as possible,
rather than generating new information for specific visual
tasks such as image segmentation. As shown in Figure 4,
the “Conv1+ReLU 5× 5× 3 16” denotes the convolutional
layer with 16 filters where the kernel size is 5× 5× 3 pixels
and the ReLU is applied as the activation. The “Max Pooling
2× 2× 2” denotes that the kernel size and stride of the max
pooling layer are both 2 × 2 × 2 pixels. Similar to the fully
connected autoencoder, the MSE objective function is used
as the reconstruction loss of the fully convolutional autoen-
coder. For iterative clustering, we concatenate a max pooling
layer with the kernel size and stride of 2 × 2 × 1 pixels to
the “Conv3” layer.

Loss functions
Our goal is to learn representative, discriminative, compact
video concepts and local features for mid-level representa-
tion, in order to reduce inter-category confusions during en-
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Figure 4: The scheme of the fully convolutional autoencoder.
The transformation of the encoder of the fully convolutional
autoencoder is denoted as ϕe, and ϕd refers to the decoder.

coding as well as to efficiently capture more information
from complex action videos. Moreover, the local features
are described and measured in Euclidean space, and the rela-
tionship between the learned video concepts can thus be eas-
ily measured by Euclidean distance. The Euclidean distance
rather than latent measurement in learned space ensures that
the two loss functions of the neural networks are compatible,
and the video concepts are accurately encoded to represent
action videos.

To this end, we jointly use the hinge loss and the Fisher
loss as the guidance of the neural networks. The Fisher
loss, which is known as the Rayleigh quotient objective and
designed for cross-views face representation, is applied to
learn discriminative and compact local descriptors for en-
coding of video representation by minimizing the within-
class scatter and maximizing the between-class scatter of in-
put samples, formulated by

LFisher =
tr(SW )

tr(SB)
, (2)

where SW and SB denote the within-class and between-
class scatters of the input data, respectively. tr(·) computes
the trace of a matrix.

In this work, the Fisher loss is attached to the topmost en-
coder layers of the pre-trained fully connected and the fully
convolutional networks, respectively. For the simplicity of
exposition, we consistently denote yk

j as the output descrip-
tor of the topmost encoder layer of the two autoencoders
φe(xi) and ϕe(vi), where k is the surrogate label generated
by clustering, and j denotes the jth descriptor in class k.
Therefore, the within-class scatter of the output features of
our networks is given by

SW =
∑
k

∑
j

(yk
j − μk)(yk

j − μk)T, (3)

where μk = 1
nk

∑nk

j=1 y
k
j is the mean of class k with nk

samples. And the between-class scatter is given by

SB =
∑
k

nk(μ− μk)(μ− μk)T, (4)

Figure 5: A toy example of different clustering methods.
The star characteristic denotes the concept of each cluster.
(a) The input data for clustering. (b) K-means minimize the
within-cluster distance in an iterative fashion for clustering.
(c) Using linear SVM classifiers to compute more discrim-
inative and robust clusters (Singh, Gupta, and Efros 2012).
(d) Based on (c), embedding a CNN with softmax loss to
learn features from clusters (Huang, Chen, and Tang 2016).
The learned features become closer in the same cluster, but
the data space is unknown. (e) Our method learn discrimina-
tive clusters, and draw features into Euclidean space.

where μ =
∑

k

∑
j yk

j∑
k nk

is the mean of all features. The Fisher
loss has been proven to be differentiable with respect to the
parameters by (Kan, Shan, and Chen 2016). Figure 5 con-
ceptually illustrates the differences between the proposed
clustering using a network with Fisher loss and other related
methods.

Although the Fisher loss can learn discriminative features,
its constraint on the discrepancy of different categories is so
strong that other information of input data such as appear-
ance information would be omitted during the training pro-
cedure of the networks. Therefore, the hinge loss with strong
categorical supervision is proposed to relax these constraint.
Moreover, the hinge loss with L2 regularization on the pa-
rameters can be applied as a discriminative classifier to gen-
erate the clusters. The hinge loss is formulated as

LHinge =
∑
k

∑
i

max (0, 1− dci t
c
i ) + λ‖W ‖2F,

s.t. 1Tti = 2−K,

tki ∈ {+1,−1},

(5)

where ti = [t1i , . . . , t
K
i ]T denotes the labels of K classes

and ‖W ‖2F returns the Frobenius norm of the matrix W .
di = [d1i , . . . , d

K
i ]T is the predict value, calculated by di =

Wyi+b. W and b are the weight matrix and bias of a fully
connected layer concatenating to the top-most layers of φe
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and ϕe.
Finally, the joint loss function is given by

L = αLHinge + (1− α)LFisher, (6)

where α is a scalar to balance the two loss function.

Iterative algorithm
In this part, we will provide details about how we inter-
actively cluster and fine-tune the networks by using surro-
gate labels to maximize the separability of the video con-
cepts and local descriptors. To prevent over-fitting, we split
the input video volume set V into M non-overlapping
subsets {V1, ...,VM} for cross-validation. For initializing
the clusters, we employ k-means clustering of the features
learned by the two pre-trained autoencoders (i.e., φe(xi) and
ϕe(vi)). Since we can not guarantee whether the initializa-
tion result of k-means is optimum or not, we generate as
many clusters as we can, and cancel out clusters with very
few members during the iterative procedure. The top p near-
est to the clustering centers are selected as the initial set of
clusters K. In practice, removing useless clusters later dur-
ing the iterative procedure can achieve satisfactory cluster
result as well.

Given all detected video volumes in V1, we train the fully
connected network φe and the 3D fully convolutional net-
work ϕe with the hinge loss using the surrogate labels gener-
ated by the initial clustering. Then we fine-tune the networks
with the joint loss using the initial set K as input. The pre-
dict value of the next volume set V2 are extracted from the
output of top-most fully connected layer. Given the ith video
volume whose predict value is di, the class it belongs to is
calculated by k̂ = argmax

k
dki . The score of the ith video

volume is formulated as follows:

Si =

{
dk̂i , if ∀k �= k̂, dki < 0 and dk̂i > 0,

0, otherwise.
(7)

Through Eq. 7, each local feature is imposed on only one
cluster to ensure the mid-level concepts are discriminative.
Afterwards, we remove the samples with the score of 0 from
V2. Meanwhile, we count the number of samples in each
clusters and exclude the clusters with few members to elimi-
nate “useless” and “impure” clusters, where “useless” means
that the cluster fires rarely among the local volumes and “im-
pure” means that a cluster converges to two or more con-
cepts. The new clusters are then formed by choosing the
samples with the top p highest scores from each cluster. The
next set now becomes the training set, and the procedure is
repeated until that the top p samples in each cluster do not
change, i.e., convergence.

The overall procedure of our method is shown in Algo-
rithm 1.

Action recognition
Given the learned discriminative local features and video
concepts, the soft assignment Vector of Locally Aggregated
Descriptors (VLAD-all) (Peng et al. 2016) is employed to
encode the local features and generate the mid-level rep-
resentation of videos. We use a soft assignment encoding

Algorithm 1: Iterative clustering algorithm for deep
video representation.

Input: IT feature sets {Xm|Mm=1} and local
spatial-temporal volume sets {Vm|Mm=1}.

Output: Video concepts C and deep local spatial-temporal
features Y .

1 Pre-train φe and ϕe;
2 Extract the initial features φe(X1) and ϕe(V1);
3 Calculate clusters K via k-means on φe(X1) and ϕe(V1);
4 repeat
5 for m = 1 → M do
6 Fine-tune φe and ϕe via K, Xm and Vm;
7 Extract the predict value of Xm+1 and Vm+1 from

the top-most fully connected layer of φe and ϕe;
8 Calculate the new cluster K̃;
9 K ⇐ K̃;

10 end
11 until Convergence;
12 Extract local volume features Y from φe and ϕe;
13 Calculate C via the predict value of {Xm|Mm=1} and

{Vm|Mm=1}.

method instead of the local encoding methods because the
learned features can be precisely measured in Euclidian dis-
tance. The VLAD-all is a kind of super vector based en-
coding method which encodes features to high dimensional
descriptors with substantial information. The power, l2 and
intra normalization methods are applied to the VLAD-all.
Finally, after obtaining the global representation of videos,
we use the linear SVM classifiers for action recognition.

Experiments
Datasets
Extensive experiments are conducted on the HMDB51
(Kuehne et al. 2011) and the UCF101 (Soomro, Zamir,
and Shah 2012) datasets to evaluate the performance of our
method. The HMDB51 dataset comprises of 51 action cate-
gories with 6,766 realistic video clips collected from movies
and the Internet. The UCF101 dataset consists of 101 action
categories with 13,320 realistic video clips which are col-
lected from YouTube.

We follow the standard evaluation protocols of the two
datasets provided on (Kuehne et al. 2011) and (Soomro, Za-
mir, and Shah 2012) to calculate the average accuracy over
the three splits into training and test data.

Implementation details
The input IT features of the fully connected network are ex-
tracted following the setup of (Wang and Schmid 2013), so
that the dimension of each IT feature is 396. The centers of
the input volumes are sampled at the middle of the trajec-
tories, and the size of each volume is 16 × 16 × 12. The
number of cross-validation sets is m = 10. The number of
the topmost samples selected from each cluster during it-
eration is p = 100. The initial number of clusters is set
to 600 for the fully connected autoencoder and 1,000 for
the fully convolutional autoencoder, and after optimizing, it
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Methods HMDB51 UCF101
K-means clustering 54.7 85.5
Discriminatively clustering 56.5 86.4
Deep learning from clusters 62.6 88.1
Our method 66.8 90.3

Table 1: Comparison with different clustering methods for
action recognition (accuracy, %) on the HMDB51 dataset
and UCF101 dataset.

comes to q = 499 and 762, respectively. Practically, the al-
gorithm converges in 4 iterations. The dimension of the out-
put of the proposed networks is set to 198 and 512. As for
the linear SVMs, the value of the penalty parameter is cho-
sen among 10−3, 10−2, 10−1, 1, 101, 102, 103. The training
of the deep networks is implemented on a single NVIDIA
TITAN X GPU with the memory of 12G.

Evaluation on unsupervised clustering methods
Several unsupervised clustering methods (Singh, Gupta, and
Efros 2012; Dosovitskiy et al. 2015a) are adopted to com-
pare with our method for action recognition, including k-
means clustering, discriminative clustering, deep learning
from clusters. The VLAD-all encoding is applied after clus-
tering to obtain global representation of action videos, and
the linear SVM is used for action classification. Some of the
details and parameter settings used in those proposed meth-
ods are briefly described as follows.

• K-means clustering: The Principal Component Analysis
(PCA) is used to reduce the dimension of l2 normalized
IT features from 396 to 198. The number of clusters is set
to 512, which is recommended as the most efficient choice
for VLAD-all encoding in (Peng et al. 2016).

• Discriminative clustering: The input features are the
same with ours, and the algorithm in (Singh, Gupta, and
Efros 2012) is applied to find the mid-level concepts.

• Deep learning from clusters: The input features and
the networks φe are the same with ours, and the softmax
loss is used. The clustering algorithm proposed by (Singh,
Gupta, and Efros 2012) is applied to learn and select the
mid-level concepts.

Table 1 shows the performances of the aforementioned
clustering methods for action recognition. As can be seen,
our method outperforms other methods. Comparing rows
1 and 2 of Table 1, the results of discriminative clustering
are better than k-means clustering, which demonstrates the
importance of discriminative clusters. But the performances
of these two methods are both hand-crafted feature based
lag far behind our method (row 4) and the method of deep
learning from clusters (row3) which are deep learning based.
It verifies that learning representation with semantic guid-
ance leads to better action recognition performance. The im-
provement of our method compared with the method of deep
learning from clusters indicates that using unified metric can
remedy the inaccurate measurement.

Figure 6: Visualization of local video representations clus-
tered by different methods. (a) The IT features clustered
by k-means. (b) Deep local representation clustered by our
method. Best viewed in color.

Adaptivity Evaluation
We aim to learn generic and practical deep networks by
training only once. To this end, the proposed model should
be adaptive. Since the background clutter of videos in the
HMDB51 dataset is more than that in the UCF101 dataset,
the HMDB51 dataset contains richer motion information
than the UCF101 dataset. Thus, we extract the local spatial-
temporal volumes from video clips in the HMDB51 dataset
to train the proposed networks, and use the trained networks
to extract features of the UCF101 dataset to evaluate the
adaptivity of our networks.

Firstly, we qualitatively evaluate the adaptiveness of the
deep networks by visualizing the extracted features using
method of tSNE (Maaten and Hinton 2008). As shown in
Figure 6, we randomly selected 500 features in 10 clusters
for each visualization. Figure 6 (a) demonstrates the IT fea-
tures extracted from videos in the UCF101 dataset clustered
by k-means and Figure 6 (b) shows the features extracted
from videos in the UCF101 dataset clustered by φe with
the output of hinge loss trained on the HMDB51 dataset. It
is obvious that our clusters are more discriminative, which
clearly validates the effectiveness and adaptivity of the pro-
posed network.

Secondly, for quantitative analysis, we compare the action
recognition performance on the UCF101 dataset of video
representation encoded by local features extracted from the
two φes respectively trained on the UCF101 dataset and the
HMDB51 dataset. Using videos in the UCF101 dataset as
training samples achieves an average accuracy of 90.3%,
and using the HMDB51 dataset achieves 88.3%. The latter
performance is almost on par with the former, which demon-
strates the adaptivity of the the proposed model.

Comparison with the state-of-the-art
Finally, we compare our method with the state-of-the-art
methods on the UCF101 and HMDB51 datasets. Here, be-
sides applying the features of φe and ϕe for action recog-
nition respectively, we combine these two kinds of features
to further improve the action recognition performance. The
combination is implemented by the Generalized Multiple
Kernel Learning (GMKL) (Varma and Babu 2009) with lin-
ear kernels. Table 2 shows that the combination of the fea-
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Methods HMDB51 UCF101
Wang and Schmid 2013 57.2 -
Lan et al. 2015b 65.4 89.1
Srivastava et al. 2015 - 84.3
Misra et al. 2016 29.9 -
Tran et al. 2015 - 90.4*
Bilen et al. 2016 65.2* 89.1*
Feichtenhofer et al. 2016 69.2* 93.5*
Wang et al. 2016 69.4* 94.2*
Kar et al. 2017 66.9* 93.2*
Feichtenhofer et al. 2017 72.2* 94.9*
Ours (φe) 66.8 90.3
Ours (ϕe) 69.0 91.2
Ours (φe + ϕe) 73.8 93.6
Ours (φe + ϕe) + RGB 74.1 95.3

Table 2: Comparison with the state-of-the-art methods (ac-
curacy, %), both unsupervised and supervised (indicated by
*), on the HMDB51 dataset and UCF101 dataset.

tures taken from φe and ϕe improve the action recogni-
tion accuracy indeed. The probable reason is that the fully
connected auto-encoder captures lower-order motion infor-
mation of hand-crafted features, while the fully convolu-
tional auto-encoder offers higher-order information by mul-
tiple convolution operations. Accordingly, the two kinds of
features are complementary for better representing action
videos.

The state-of-the-art methods of action recognition meth-
ods in Table 2 for comparison are divided into three groups:
(1) Shallow methods using hand-crafted features (Wang and
Schmid 2013 and Lan et al. 2015b.); (2) Unsupervised learn-
ing method (Srivastava et al. 2015 and Misra et al. 2016);(3)
Supervised deep learning methods (Tran et al. 2015, Bilen
et al. 2016, Feichtenhofer et al. 2016, Wang et al. 2016, Kar
et al. 2017, and Feichtenhofer et al. 2017).

It is apparent that our method outperforms all the shal-
low methods which demonstrates that our mid-level video
representation learned by deep neural networks is more dis-
criminative than the representations which only encode IT
features without deep learning. Compared with the unsuper-
vised methods (Srivastava et al. 2015 and Misra et al. 2016)
using sequential information of videos for global action rep-
resentation, our method achieves a significant improvement
on action recognition performances. It attributes to the pro-
posed simple and small deep learning models which can pre-
cisely discover more discriminative information from videos
and are less likely to overfit.

Also as shown in Table 2, it is interesting and encourag-
ing to observe that our unsupervised method performs better
than the supervised methods of (Tran et al. 2015, Bilen et
al. 2016 and Kar et al. 2017). Tran et al. 2015 combined
features taken from 3D CNNs trained on a large scale super-
vised video dataset with the IT features, while our method
does not need such a large scale labeled video set to train
3D network but can learn models of good adaptiveness as
well. Bilen et al. 2016 developed dynamic images to summa-

rize motion information and used 2D CNNs to learn video
representation. Kar et al. 2017 proposed an adaptive tempo-
ral pooling method for action recognition. They fused two
kinds of motion information, namely the IT features and
their deeply learned features, to achieve good action recog-
nition performances. The better action recognition perfor-
mances achieved by fusing the features of φe and ϕe in-
dicates the efficiency of our method on representing action
videos.

Among the supervised methods in Table 2, the multi-
stream networks based methods (Feichtenhofer et al. 2016,
Wang et al. 2016, and Feichtenhofer et al. 2017) use not
only the motion information but also the frame-level infor-
mation acquired from the RGB features. It can be inferred
that the RGB features helps improve the performance of ac-
tion recognition. We thus enrich our method by adding the
RGB features which are extracted from the top-most layer
of the ResNet-152 (He et al. 2016) followed by the average
pooling operation. The results show that our method with the
RGB features improves the recognition accuracy, and out-
performs all the state-of-the-art methods.

Conclusions
In this paper, we have proposed a novel unsupervised deep
learning method for action recognition by jointly clustering
and learning features via deep neural networks. The deep
networks learn robust and discriminative local features with
the guidance of higher semantic information, and the higher
semantic information is generated by the clustering. By it-
eratively performing the clustering and the training of the
networks, the discriminative power of the learned deep fea-
tures can be highly enhanced for globally representing ac-
tion videos. Extensive experiments on action recognition
benchmarks have demonstrated the superiority of the pro-
posed approach.
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