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Abstract

This paper focuses on the task of RGB-D indoor scene clas-
sification. It is a very challenging task due to two folds. 1)
Learning robust representation for indoor scene is difficult
because of various objects and layouts. 2) Fusing the com-
plementary cues in RGB and Depth is nontrivial since there
are large semantic gaps between the two modalities. Most ex-
isting works learn representation for classification by training
a deep network with softmax loss and fuse the two modali-
ties by simply concatenating the features of them. However,
these pipelines do not explicitly consider intra-class and inter-
class similarity as well as inter-modal intrinsic relationships.
To address these problems, this paper proposes a Discrimi-
native Feature Learning and Fusion Network (DF?Net) with
two-stage training. In the first stage, to better represent scene
in each modality, a deep multi-task network is constructed to
simultaneously minimize the structured loss and the softmax
loss. In the second stage, we design a novel discriminative
fusion network which is able to learn correlative features of
multiple modalities and distinctive features of each modality.
Extensive analysis and experiments on SUN RGB-D Dataset
and NYU Depth Dataset V2 show the superiority of DF>Net
over other state-of-the-art methods in RGB-D indoor scene
classification task.

Introduction

Scene classification is one of the basic problems in computer
vision research. Recently, with the release of cost-affordable
depth sensors, e.g. Kinect, which provide strong illumina-
tion and color invariant geometric cues, some intrinsic chal-
lenges in indoor scene classification such as various illumi-
nation, diverse objects and layouts are promising to be par-
tially solved.

Compared with the standard object-centric image classifi-
cation problem, the task of RGB-D indoor scene classifica-
tion has several challenges. Firstly, obtaining robust repre-
sentation for scene classification in single modality is diffi-
cult. To understand a scene, people not only recognize the
objects in the scene, but also consider the correlations of
the objects. As for indoor scenes, they are usually cluttered
with diverse objects and various layouts, resulting in large
intra-class variation and sever inter-class overlap. As we il-
lustrated in Figure 1, the classroom has various views. Some
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Figure 1: The difficulties of RGB-D indoor scene classifica-
tion. 1) indoor scene images have large intra-class variation
and small inter-class variation. 2) RGB and Depth image
have semantic gaps. Sample images are from SUN RGB-D
Dataset.

view of classroom is similar to other scene categories such
as lecture theatre. Secondly, although it’s an opportunity to
utilize the additional depth cues to benefit indoor scene clas-
sification, there are large semantic gaps between the RGB
and Depth modality. As shown in Figure 1, RGB image gives
appearance cues while Depth image provides geometric pri-
ors. How to exhaustively use the complementary cues in the
RGB and Depth modalities remains an open problem.

The ideal multimodal representation for RGB-D indoor
scene ought to have small distances between the same class
and large distances between the different classes, as shown
in Figure 2(a). One of the most popular pipelines (Eitel et al.
2015) is to learn representation for RGB and Depth image
with softmax loss separately and directly concatenate them,
illustrated as in Figure 2(b). However, for scene images that
have large intra-class variation and small inter-class vari-
ation, it’s hard to obtain discriminative enough RGB and
Depth representation. It leads to the concatenated multi-
modal representation far from ideal. To ease this situation,
we design a discriminative feature learning network which
can explicitly model the intra-class and inter-class similarity



constraint. The proposed pipeline is able to learn more dis-
criminative representation for each modality and thus more
discriminative concatenated multimodal representation. The
effect can be shown in Figure 2(c).

Furthermore, simply concatenating RGB and Depth fea-
tures does not effectively exploit the correlation between the
two modalities. (Wang et al. 2015b) points out to learn con-
sistency in RGB and Depth representation by optimizing a
correlation term. It aims to close the distance of holistic em-
bedded RGB and Depth representation of each image pairs.
The pipeline can be illustrated in Figure 2(d). (Zhu, Weibel,
and Lu 2016) improves the correlation term by considering
label information. In spite of the effectiveness of them, we
argue that enforcing the holistic representation for RGB and
Depth to be correlated is not optimal for indoor scene clas-
sification. Although guaranteeing consistency between the
two modalities is helpful to remove noises, it also removes
the complementary information in RGB and Depth. For ex-
ample, as illustrated in Figure 1, the RGB image uses white-
board to help to represent the classroom, while the Depth
image which emphasizes geometric cues has little informa-
tion about the whiteboard. Enforcing the RGB and Depth
representation to be wholly correlated will cause the repre-
sentation focus on common information in RGB and Depth
modalities (like the chairs and tables in classroom) and ig-
nore distinctive information (such as whiteboard) for indoor
scene in two modalities. For indoor scenes that need multi-
ple contexts to be correctly recognized, representation that
contain only consistency information in the two modalities
is obviously not discriminative enough. Instead, in this pa-
per, we construct a discriminative fusion network to learn
both distinctive information and correlative information be-
tween the RGB and Depth modalities. Our framework can
be illustrated as in Figure 2(e).

A novel Discriminative Feature Learning and Fusion Net-
work (DF?Net) is proposed with two-stage learning for
RGB-D indoor scene classification. The contributions of this
paper are threefold. 1) To learn more discriminative repre-
sentation of each modality for indoor scene classification, a
multi-task network is designed to explicitly encourage the
intra-class compactness and inter-class separability in the
first stage. 2) To fuse RGB and Depth representation effec-
tively, a novel network is constructed in the second stage
to learn both correlation and independent information in the
two modalities. 3) We achieve the state-of-the-art results on
both SUN RGB-D Dataset and NYU-Depth Dataset V2.

Related Work

Scene Classification Remarkable efforts have been invested
to explore the discriminative representation for general
scene. These works can be divided into three categories:
1) (Zhou et al. 2014) trains the Convolutional Neural Net-
work (CNN) from scratch using collected large scale scene-
centric images (Places Dataset). The trained CNN (Places
CNN) can be employed to extract features for scene images.
Though features extracted from Places CNN are more spa-
tially diverse than that extracted from ImageNet pre-trained
CNN, they are still too coarse to directly represent the in-
door scene. 2) A lot of works use encoding methods such
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Figure 2: Different multimodal representation learning
strategies. The “circle” and “triangle” represent different
classes. The dark red, light red and blue samples illustrate
the representation of modality 1, modality2, and fused multi-
modal respectively. In e), each modality is represented as
a plane with one correlation dimension and one distinc-
tive dimension. a) Ideal discriminative features for RGB-
D scene classification. b) Concatenating features from sep-
arately learned RGB and Depth representation directly. c)
Effect of using more discriminative RGB and Depth repre-
sentation for each modality. d) Enforcing the holistic RGB
and Depth features to have correlation. e) Only enforcing
part of RGB and Depth features to be correlated. The other
parts of RGB and Depth features are encouraged to learn
independent information separately.

as Fisher Vector (FV) or Vector of Locally Aggregated De-
scriptors (VLAD) to combine features extracted from dif-
ferent scales and locations in image (Dixit et al. 2015;
Arandjelovic et al. 2016; Wang et al. 2017). However, for
indoor scene, some patches in scene images can be noisy
for classification. Moreover, when the pipeline is plugged
into CNN framework, the codebook selection and encod-
ing procedure disables the whole framework to be trained
jointly, resulting in the feature learning suboptimal. 3) An-
other popular pipeline employs objects and semantic parts
in images to represent scene (Li et al. 2010; Wu et al. 2015;
Wang et al. 2016; Bappy, Paul, and Roy-Chowdhury 2016).
This pipeline can avoid some noisy information in scene
images. Nevertheless, it needs to accurately detect objects,
which by itself is quite difficult for cluttered indoor scene.
Besides, not all objects in scene images are beneficial to
classification. In this paper, we propose a new pipeline to
better represent indoor scene for each modality, which can
overcome the weaknesses in the three mainstream methods.

RGB and Depth Image Fusion The typical RGB and
Depth fusion methods can be divided into three categories:
1) fusion at image level (Couprie et al. 2013); 2) fusion at
feature level (Eitel et al. 2015; Cheng et al. 2016); 3) fu-
sion at score level (Gupta et al. 2014; Cheng et al. 2015b;
2015a; 2017). The most related fusion methods to us are
(Wang et al. 2015b) and (Zhu, Weibel, and Lu 2016), which
also consider relationships between two modalities. (Wang
et al. 2015a) directly enforces each RGB-D image pair to
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Figure 3: The discriminative feature learning network for
each modality. The input can be RGB or Depth image.

share part of features to learn common information and
(Zhu, Weibel, and Lu 2016) requires the holistic represen-
tation of RGB-D image pair be discriminative and correla-
tive simultaneously. Our method, however, is different from
them. Designed for indoor scene classification, the proposed
model aims to learn the distinctive and correlative parts of
RGB and Depth representation separately. Besides, the cor-
relations learned in our model are between not only RGB-D
pairs but also random samples in RGB and Depth modali-
ties. Moreover, both (Wang et al. 2015a) and (Zhu, Weibel,
and Lu 2016) cannot be trained jointly while our framework
can be optimized in an unified way.

Deep Metric Learning The deep metric learning can help
to learn feature embedding that captures similarity. The most
popular work of deep metric learning are contrastive embed-
ding (Hadsell, Chopra, and LeCun 2006) and triplet embed-
ding (Schroff, Kalenichenko, and Philbin 2015). They are
widely used in many computer vision applications such as
face recognition (Parkhi et al. 2015), image retrieval (Gordo
et al. 2016), fine-grained classification (Wang et al. 2014).
Some researchers also propose to use deep metric learning in
multi-modal applications, but most of them focus on match-
ing problem such as cross-modal retrieval (Yu et al. 2016;
Huang et al. 2017). In this paper, we focus on multi-modal
fusion problem, aiming to maximally utilize the comple-
mentary information in the two modalities.

Methodology

In this section, the detailed framework will be described.
The proposed DF?Net is learned with two stages. In the
first stage, the discriminative features for indoor scene are
learned for RGB and Depth! modalities respectively. Then
in the second stage, the learned discriminative features in
the first stage are further exploited to learn independent and
correlative representation for RGB-D indoor scene.

Single-Modal Discriminative Feature Learning

The typical framework for object classification using CNN
optimizes cross-entropy loss together with softmax (we call
them together as softmax loss and denote it as L, fimax
in this paper) to learn features. It’s simple and proved to
be effective in many computer vision problems. However,
in the softmax loss optimizing process, all images within
the same category are mapped to a single point in fea-
ture space, which loses the intra-class variation. In this

'we use HHA (Horizontal Disparity, Height above the ground,
Angle of surface norm) (Gupta et al. 2014) to encode the depth

images in this paper.

7043

paper, we propose to explicitly model the similarity con-
strains. By optimizing a structured loss function, we are
able to learn the manifold which can preserve the intrin-
sic intra-class variation and learn more discriminative rep-
resentation for indoor scene classification (Cui et al. 2016;
Zhang et al. 2016).

A multi-task discriminative feature learning network is
proposed. The framework is shown in Figure 3. A fully con-
nected layer is connected to the fc7 layer to reduce the fea-
ture dimension to 128. The structured loss connects to the
128-dimension feature to learn feature embedding. Here we
learn the triplet embedding, which is supposed to have intra-
class compactness and inter-class separability.

Denote the RGB or Depth inputs in a batch as
{x1,z9,...,xny} and their labels as {y1,y2,...,yn}. The
feature embedding for them then can be represented as
{f(z1), f(z2),..., f(zn)}. The structured loss we use is
written as:

1 2
Lstructed = m (2)27) HlaX(Dip
P

— D2

in T ,0) (1)

where, (7, j) € P means y; = y;, v is the margin, y; = y,,
yi # 4 and

Di; = || f(xi) — f(5)lly

The online triplet loss encourages the distances between
intra-class feature embedding to be smaller than that be-
tween the inter-class by at least a.

It’s well known that the sampling has important influ-
ence when training the triplet loss. Nevertheless, the explo-
ration of mining hard examples is beyond this paper’s scope.
Hence, the lifted structured loss proposed in (Oh Song et al.
2016) is employed to ease the sampling problem. Our final
optimization goal for structured embedding learning can be
represented as:

1 2
Lstructured = m Z max (Rz_] + Dij’ 0) (2)
(1,7)EP
where,
R;; = log{ Z exp(a — Dyy) + Z exp(a— Dj;)}
(i,k)eEN (4, EN

(i,j) € P means y; = y; and (i, k) € N means y; # yy.
R;; actually finds the hardest negative examples in the batch
for z; and x ;. The whole framework is trained by optimizing
structured loss fuction and softmax loss function.

L= AlLstructured + )\2Lsoft max (3)

In practice, A; and A, are both set as 1.

By additionally learning structured embedding, the fea-
tures are not only required to classify a scene correctly but
also forced to maintain intra-class and inter-class similari-
ties. Hence, the learned features are capable of discovering
and representing more discriminative areas in the scene. To
verify the effect, we alter the framework in Figure 3. The
fully connected layers are replaced by fully convolutional
layers and global average pooling is carried out to get the
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Figure 4: The proposed discriminative feature fusion network. The features from fc7 layer are divided into two parts to learn

the distinctive embedding and correlative embedding respectively.
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Figure 5: The class-specific activation map (CAM) is ob-
tained from the modified network trained with (the top row)
and without (the bottom row) structured embedding learn-
ing stream. The colors covered in images illustrates the de-
grees of importance of the area for classification. It can be
observed that the structured embedding help to mine more
discriminative areas to represent scenes.

final classification score. In the training phase, the proposed
structured embedding learning stream is connected to the
modified corresponding fully convolutional layers. To visu-
alize which areas in the scene play more role in representa-
tion, the Class-specific Activation Map (CAM) proposed in
(Zhou et al. 2016) is employed. The visualization is shown
in Figure 5. The colors covered in images show the degrees
of importance of the area for classification. It can be ob-
served that without learning structured embedding, the fea-
tures highlight on the frequently appeared and salient objects
in the scene (such as rows of chairs in lecture theatre, chair
and computers in computer room). Those parts are represen-
tative for the corresponding scenes, yet, they are not discrim-
inative to discern the scene from other scenes. For example,
classroom also has rows of chairs, and a lot of indoor scenes
have chair. After structured embedding learning, however,
more discriminative parts are mined. As illustrated in Figure
5, it can automatically locate stairs for lecture theatre, and
ignore the noisy part chair for computer room.
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Multi-modal Discriminative Feature Fusion

After learning discriminative representation for each modal-
ity of RGB and Depth, directly concatenating them can al-
ready obtain more discriminative representation for RGB-
D. However, the separately learned RGB and Depth fea-
tures ignore the correlations between them. To explore the
correlations between the RGB and Depth while simultane-
ously retain the distinctiveness in the two modalities, we
propose a discriminative fusion network in the second learn-
ing stage, as illustrated in figure 4. The network consists
of two streams which are combined in the fc7 layer. The
weights in RGB and Depth streams are initialized with the
trained RGB and Depth network in the first stage respec-
tively. The fc7 layers of both RGB and Depth streams are
divided into two parts. One of the two parts is supposed to
represent the distinctive information in each modality, and
the other part is designed to represent correlative informa-
tion between multi-modalities.

Distinctive Embedding Learning To represent the dis-
tinctive information rather than the noisy information in the
distinctive part, a similar pipeline as the first learning stage
is proposed. The fully connected layer is connected to the
distinctive part to reduce the dimension. The distinctive em-
bedding then is learned under the supervision of the struc-
tured loss which has the same formula with function (2). We
denote the loss as L,.g,_g;s and Ly 4;s for RGB and Depth
streams respectively.

Correlative Embedding Learning Ideally, the multi-
ple modalities of the same class ought to have strong
correlation and the modalities of different classes should
be less correlative. Denote the RGB and Depth input
as random variables x and z, the feature embedding
of them are fy,(x) and fw_(z). According to Canoni-
cal Correlation Analysis (CCA), when sampling instances
((x1,21), (w2, 22) , ..., (x5, z5)) from the distribution of x



and z, we obtain the embedding for the instances as
fw, (xs) and fw.(zs). The correlation of x and z can be
formulated as:

_ (. (xs), fw. (2s))
[ fw, (%)l [ fw. (zs)

For x and z from the same class, p is supposed to be maxi-
mized, or vice versa. To maximize the p, it actually requires
the fi, (xs) and fy, (zs) to be collinear, thus the sampled
instances in x and z should be as close as possible. On the
contrary, sampled instances in x and z ought to be distant
from each other.

Based on this idea, we propose the optimization goal for
correlative embedding learning which can be formulated as:

“

Lcorr = Z {maX T; zJ thzwo)?
(:cl z;)EP (5)
+max (T, ., + Dmi,zj,O)Q}
where,
Ry, ., = log{ Z exp(a — Dy, 2, )}
(zi,2k)EN
Ty, -, = log{ Z exp(a — Dy, =)}
(Tm,z;)EN
w2y = lfw, (@3) — fw. (25)l,

The R, ., and T}, ., are used to mine hard negative ex-
amples from Depth and RGB modalities. The loss for correl-
ative embedding learning encourages the distance of intra-
class RGB and Depth embedding to be closer by at least
margin « than the inter-class RGB and Depth embedding.
Notice that the correlation considered in (Wang et al. 2015b)
and (Zhu, Weibel, and Lu 2016) only between RGB-D pairs,
in function (5), z; and z; can be sampled randomly, as long
as they belong to the same class. Thus, the correlation be-
tween x and z in the same class or different classes is better
represented.

The final optimization goals for the second stage learn-
ing is composed of three parts: 1) the distinctive embedding
learning for each modality supervised by the L4 ;5 and
Lg_gis, 2) the correlative embedding learning between the
multi-modalities supervised by the L., 3) the classifica-
tion learning supervised by L, ftmaz. They can be learned
jointly as:

L= ﬁlLrgb,dis + 62Ld,dis + /83LCOTT‘ + 64Lsoftmaw (6)

In practice, the 31, B2, B3, B4 are all set as 1.

In the test phase, only the second stage framework is used,
all the embedding learning streams are removed. It needs to
be mentioned that although our framework is trained in two
stages, all the parameters in the final model are optimized
jointly.

Experiments

The proposed method is validated on two popular RGB-D
scene classification datasets: SUN RGB-D and NYU Depth
Dataset V2.
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Datasets

The SUN RGB-D dataset contains 10,355 RGB and Depth
image pairs captured from different cameras including
Kinect v2, RealSense, Kinect v1 and Asus Xtion. We follow
the experimental settings in (Song, Lichtenberg, and Xiao
2015). 19 categories are kept for our experiments with 4,845
images for training and 4,659 images for testing.

The NYU Depth Dataset V2 includes 1,449 RGB and
Depth image pairs. To compare with other methods, we fol-
low the experimental settings in (Gupta, Arbelaez, and Ma-
lik 2013). There are 795 training images and 654 testing im-
ages for 10 scene categories.

Implementation Details

We implement the whole architecture in popular frame-
work Caffe (Jia et al. 2014). The code will be available
in https://github.com/liarba/scene_recognition. To fairly
compare the results with the others, the AlexNet is used as
the base architecture. The input image pairs are resized to
256 x 256 and randomly cropped into 227 x 227 as the input
to the network. For SUN RGB-D Dataset, in the first stage,
the weights are initialized using Places CNN and the batch
size ng, initial learning rate 7, stepsize ny and max itera-
tions N are respectively set as 256, 0.00001, 30000, 40000
for both RGB and Depth modality. In the second stage, the
dimension ratio between the discriminative part and correla-
tive part is set as 1:7. ng, 0, ns and IV are set as 128, 0.0001,
3000, 4000. For NYU Depth Dataset V2, the ng, 7o, ns and
N are set as 256, 0.00001, 3000, 4000 in the first stage and
they are modified as 128, 0.00001, 2000, 3000 in the sec-
ond stage. The margin « is set as 1 according to the cross
validation. Both the SUN RGB-D Dataset and NYU Depth
Dataset V2 have highly imbalanced number of images be-
tween classes. To train the network effectively for the classes
that have less number of images, we use frequency weighted
softmax loss:

f(xi),,

w(y; log(zf( B} ) (D

Lsoftmaw weighted — N E

where w(t) is defined as:

Nt - Nc,min + o
Nc,max - Nc,min

in which, V; is the number of images of class ¢ in the train-
ing set. c_.min or c_max represents the class with the least
or the most number of training images. The 9§ is set as 0.01.
Following the previous work on RGB-D scene classification,
we use the mean accuracy over categories as the evaluation
metric.

w(t) =

Results on SUN RGB-D dataset

Comparison with State-of-the-art Methods We compare our
final results with the previous best results, as illustrated in
Table 1. (Wang et al. 2015b) is originally proposed for RGB-
D object recognition and re-implemented by (Zhu, Weibel,
and Lu 2016) for RGB-D scene classification. Although
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Figure 6: The classification confusion matrix of DF?Net on
SUN RGB-D Dataset. The vertical axis shows the ground-
truth classes, the horizontal axis show the predicted classes.

(Wang et al. 2015b) gets high performance on RGB-D ob-
ject recognition tasks, it fails to perform well on the more
cluttered and complicated indoor scene. (Liao et al. 2016)
uses a multi-task framework by taking the semantic segmen-
tation of images as the regularizer for scene classification,
which uses extra pixel-level annotation information. (Zhu,
Weibel, and Lu 2016) improves the (Wang et al. 2015b) by
adding the within-class and between-class correlations for
image pairs. (Wang et al. 2016) uses the region proposal
based CNN features to represent the scene while keeping the
component sparsity and modal non-sparsity. Our proposed
two-stage training framework further pushes the frontier and
acquires 54.6% Mean Class Accuracy, outperforming all the
state-of-the-arts by a significant margin. The confusion ma-
trix can be seen in Figure 6. Besides superior performance,
our method also consumes much less time in inference than
the previous best performed method (Wang et al. 2016). For
testing, our current net takes only 0.006s for each image.
While (Wang et al. 2016) needs to extract proposals for each
image, which is time consuming.

Ablation Study The ablation study results are shown in
Table 2. For conciseness, we denote “Discriminative Fea-
ture Learning”, “Correlative Feature Learning” and “Dis-
tinctive and Correlative Feature Leaning” as “DFL”, “CFL”
and “DCFL” for short respectively in the table.

The baselines for single modalities (“RGB AlexNet” and
“Depth AlexNet”) fine-tune the Places CNN with RGB and
Depth images from SUN RGB-D dataset. They get 42.6%
and 38.4% accuracy on SUN RGB-D. “DFL for RGB” and
“DFL for Depth” applie our proposed structured embedding
learning stream on the two modalities respectively. It can
be seen in the Table 2 that for both modalities, DFL can
improve the performance, quantitatively validating that our
proposed discriminative feature learning network is able to
learn more discriminative representation for each modality.

After obtaining the representation for RGB and Depth
modalities. The multimodal representation learning strate-
gies illustrated in Figure 2 are evaluated.

1) “Baseline RGB+D” In our experimental setting, the
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Table 1: Performance comparison with the state-of-the-art
methods on SUN RGB-D Dataset

Methods Accuracy(%)
(Wang et al. 2015b) 26.5%
(Liao et al. 2016) 41.3%
(Zhu, Weibel, and Lu 2016)  41.5%
(Wang et al. 2016) 48.1%
DF°Net (ours) 54.6%

Table 2: Ablation study on SUN RGB-D Dataset

Methods Accuracy(%)
RGB AlexNet 42.6%
DFL for RGB 46.3%
Depth AlexNet 38.4%
DFL for Depth 39.2%
Baseline RGB+D 48.3%
DFL for RGB+D 51.7%
DFL for RGB+D & DFL for RGBD 51.7%
DFL for RGB+D & CFL for RGBD 52.9%
DFL for RGB+D & DCFL for RGBD  54.6%

baseline method of multimodal fusion utilizes two-stream
CNN s that fuse at the fc7 layer. The weights in each stream
are initialized with the fine-tuned Places CNN on RGB and
Depth modalities respectively. The concatenated fc7 layer
then connects to fc8 layer to optimize the softmax loss func-
tion. As shown in Table 2, simply concatenating the fea-
tures of two modalities can already get decent performance
(48.3%), giving credit to the jointly optimizing in our model.
Nevertheless, the learned representation is far from optimal.

2) “DFL for RGB+D” It implements Figure 2(c). Com-
pared with baseline method, it initializes the RGB and
Depth streams with representation learned from the pro-
posed discriminative feature learning network. The Table 2
shows that “DFL for RGB+D” can already get better perfor-
mance (51.7%). The performance outperforms the baseline
by 3.4%, quantitatively verifying our observation that DFL
for each modal will help to learn more discriminative repre-
sentation for RGB-D.

3) “DFL for RGB+D & DFL for RGBD” Besides the
methods analyzed in Figure 2, we also propose an alterna-
tive way to learn combined multimodal representation. The
initialization of two-stream CNNss is the same as the 2). The
proposed structured embedding stream then is also used af-
ter the concatenated features from fc7 layers. As shown in
Table2, the DFL for combined feature has no effect. This
might be caused by the DFL for single modality has already
optimized the structured loss function for the combined fea-
tures.
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4) “DFL for RGB+D & CFL for RGBD ” It implements
the Figure 2(d). In the implementation, after the same initial-
ization of two-stream CNNss as the 2), the CFL is carried out
to the holistic RGB and Depth representation by learning the
proposed correlative embedding for them. The results in Ta-
ble 2 show the performance can be improved slightly (1.2%)
by considering correlation. This is because that some noises
in each modality are able to be removed in representation.
However, enforcing the RGB and Depth representation to be
wholly consistent also impede to further learn more discrim-
inative multimodal representation for scene classification.

5) “DFL for RGB+D & DCFL for RGBD ” It represents
our final modal. Compared with the structure in 4), we carry
out DCFL for RGB and Depth fusion. By allowing represen-
tation to learn correlative part and distinctive part separately,
we gets further improvement (1.7%) on the classification ac-
curacy.

Our final performance gets 54.6% accuracy on SUN
RGB-D Dataset, outperforming the baseline model with a
large margin (6.3%).

Hyper-parameter Analysis The ratio -y of distinctive part’s
dimension to the correlative part’s dimension has great im-
pact on the final results. When the ratio becomes infinite
max, it actually equals to the methods represented in Fig-
ure 2(c) and it represents to learn no correlations between
RGB and Depth. When the ratio decreases to 0, it actually
acts in the the strategy shown in Figure 2(d). The classifica-
tion accuracies with varying «y are shown in Figure 8.
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Table 3: Performance comparison with the state-of-the-art
methods on NYU Depth Dataset V2

Method Accuracy(%)
(Gupta, Arbelaez, and Malik 2013) 45.4%
(Wang et al. 2016) 63.9%
ours 65.4%

Table 4: Ablation study on NYU Depth Dataset V2

Model Accuracy(%)

RGB AlexNet 59.5%

DFL for RGB 61.1%

Depth AlexNet 49.3%

DFL for Depth 54.8%

Baseline for RGB+D 60.6%

DFL RGB+D 63.5%

DFL for RGB+D & DCFL for RGBD 65.4%

Results on NYU Depth Dataset V2

Table 3 shows the performance comparison with state of the
arts on NYU Depth Dataset V2. Our model gets 65.4% mean
class accuracy, also outperforming all the state of the arts.
Notice that less margins over state of the arts are obtained on
NYU Depth Dataset V2. It might be due to that there are too
less training images and the “other” category contains less
useful structured information. We also visualize the confu-
sion matrix for the final results on NYU Depth Dataset V2
in Figure7. Table 4 shows the ablation study results on NYU
Depth Dataset V2. From the results, we can get consistent
conclusions with that of the SUN RGB-D Dataset.

Conclusions

In this paper, we propose a Discriminative Feature Learn-
ing and Fusion Network (DF2Net) with two-stage learning
for the RGB-D indoor scene classification. In the first stage,
besides optimizing the canonical softmax loss function, the
structured embedding is also proposed. In the second stage,
we obtain more discriminative multimodal features by learn-
ing the distinctive embedding and correlative embedding.
We achieve the state-of-the-art results for RGB-D indoor
scene classification on both SUN RGB-D Dataset and NYU
Depth Dataset V2, which validates the effectiveness of the
proposed framework.
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