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Abstract

Object skeleton detection is a challenging problem with wide
application. Recently, deep Convolutional Neural Networks
(CNNs) have substantially improved the performance of the
state-of-the-art in this task. However, most of the existing
CNN-Based methods are based on a skip-layer structure
where low-level and high-level features are combined and
learned so as to gather multi-level contextual information.
As shallow features are too messy and lack semantic knowl-
edge, they may cause errors and inaccuracy. Therefore, we
propose a novel network architecture, Multi-Scale Bidirec-
tional Fully Convolutional Network (MSB-FCN), to better
capture and consolidate multi-scale high-level context infor-
mation for object skeleton detection. Our network uses only
deep features to build multi-scale feature representations, and
employs a bidirectional structure to collect contextual knowl-
edge. Hence the proposed MSB-FCN has the ability to learn
the semantic-level information from different sub-regions.
Furthermore, we introduce dense connections into the bidi-
rectional structure of our MSB-FCN to ensure that the learn-
ing process at each scale can directly encode information
from all other scales. Extensive experiments on various com-
monly used benchmarks demonstrate that the proposed MSB-
FCN has achieved significant improvements over the state-of-
the-art algorithms.

Introduction

Object skeleton detection, also known as object symmetry
extraction, is an important topic of great interest to computer
vision researchers. It is aimed at localizing the object sym-
metry axes in an image. Object skeleton detection can be
used in a variety of tasks, such as image segmentation (Teo,
Fermuller, and Aloimonos 2016), text-line detection (Zhang
et al. 2015), object proposal generation (Lee, Fidler, and
Dickinson 2015), foreground extraction (Fu et al. 2014), and
3D object structure estimation (Gao and Yuille 2017).

To automatically extract object skeletons from natural im-
ages is a challenging vision task due to varied appearances,
self occlusion, object diversity and scene variety. Traditional
methods (Tsogkas and Kokkinos 2012) (Sironi, Lepetit, and
Fua 2014) have difficulties in handling images with com-
plex scenes, or objects with cluttered interior textures. This
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Figure 1: Object skeleton detection is a high-level vision
task. It is inherently different from edge detection. Edge has
some local properties, and thus shallow CNN features can
benefit edge detection. In contrast, object skeleton is more
of a semantic-level concept, and in object skeleton extrac-
tion, deep features play a much more important role.

is mainly caused by the limitations of traditional handcrafted
features, which are unable to accurately summarize seman-
tic knowledge. In recent years, deep Convolutional Neural
Networks (CNNs) have demonstrated a strong capability of
learning semantic-level representations. This has motivated
recent research efforts to employ CNNs for object skeleton
detection. The CNN-Based methods (Shen et al. 2016c) (Ke
et al. 2017) have substantially improved the performance,
achieving accurate results even when handling complex “in-
the-wild” scenes.

In order to deal with the scale-space problem, existing
CNN-Based methods (Shen et al. 2016c) (Ke et al. 2017)
adopt the Holistically-Nested Edge Detector (HED) net-
work architecture (Xie and Tu 2015) that was originally de-
signed for edge detection. With its skip-layer structure, HED
learns rich hierarchical representations to resolve ambiguity
in edge. However, object skeleton extraction is an inherently
different problem from edge detection (Wang, Zhao, and
Huang 2017). As shown in Fig. 1, the edge has some local
properties and unique local structures. Therefore, shallow
CNN features, despite their lack of semantic-knowledge, are
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still capable of summarizing local information for edge de-
tection. In contrast, object skeleton is more of a semantic-
level concept, which can hardly be detected by using local
or shallow features. This leaves open two questions. Is it a
good strategy to use both shallow and deep features to learn
and infer contextual relations for object skeleton detection?
Is there a better strategy to consolidate multi-scale context
information for this high-level vision task?

To answer these questions, we propose a novel Multi-
Scale Bidirectional Fully Convolutional Network (MSB-
FCN) to take full advantage of multi-scale context infor-
mation for object skeleton detection. The proposed MSB-
FCN can generate feature maps of different scales directly
from the last convolutional layer of a pre-trained under-
lying model by using a pyramid pooling strategy (Zhao
et al. 2017). Moreover, our MSB-FCN employs a bidirec-
tional structure to capture and encode multi-context infor-
mation. Different from existing CNN-Based models (Shen
et al. 2016c) (Ke et al. 2017), our model focuses only on
high-level contextual relationship. Therefore, semantic in-
formation loss caused by shallow features has little influ-
ence on our method. In addition, we introduce dense con-
nections to the bidirectional network architecture within our
MSB-FCN framework. All feature maps are densely con-
nected in a feed-forward fashion so that the learning process
at each contextual level can encode more useful information
and context priors which can help further improve the per-
formance.

Our MSB-FCN achieves the currently best performance
on four widely-used datasets. Its performance is further im-
proved by the proposed dense connections. Moreover, the
proposed MSB-FCN is faster than most existing methods.
In summary, the contributions of this work are three folds:
• We propose a novel Multi-Scale Bidirectional Fully Con-

volutional Network (MSB-FCN) for object skeleton de-
tection in natural images. With the multi-scale bidirec-
tional network, the proposed MSB-FCN is intrinsically
able to capture and combine multi-level context informa-
tion during learning and inferring.

• We introduce dense connections to strengthen feature
propagation and enrich context information, which is use-
ful to improve the final skeleton detection performance.

• The proposed method significantly improves the results of
the state-of-the-art on four widely-used benchmarks, and
also maintains high efficiency.

Related Work

Object skeleton extraction has evolved greatly over the
past decades. Originally, object skeleton detection algo-
rithms (Lam, Lee, and Suen 2002) (Saha, Borgefors, and
Baja 2016) were designed for extracting symmetry axes
from binary images. Because these methods require pre-
segmented masks of objects, they cannot be applied in many
real-life tasks. Recently, researchers have tried to extract
the object skeletons directly from natural images. These at-
tempts can be categorized into two groups: Traditional meth-
ods and CNN-Based methods. The following is a brief re-
view of these works.

Traditional methods Traditional object skeleton detec-
tion methods mainly depend on different handcrafted im-
age features. For example, by using shape context-like fea-
tures, Levinshtein et al. (Levinshtein, Dickinson, and Smin-
chisescu 2010) propose to train a classifier to measure ap-
pearance affinity between two adjacent superpixels, and then
group together medial branches that belong to the same ob-
ject. Tsogkas et al. (Tsogkas and Kokkinos 2012) intro-
duce a learning-based framework, namely Multiple Instance
Learning (MIL) framework, that exploits low-level features
of different scales to train a symmetry detector. However,
as symmetry and non-symmetry pixels are quite confusing,
training a global model may have difficulties in differenti-
ating these pixels in clutters scenes. To solve this problem,
Shen et al. (Shen et al. 2016b) propose to train a group of
MIL classifiers on well partitioned subspaces. This method
further improves the performance. Similarly, in (Lee, Fi-
dler, and Dickinson 2014), a number of extensions are in-
troduced to MIL framework. In general, by using different
handcrafted features, traditional methods can accurately de-
tect object skeletons in many simple cases. However, they
are still unable to deal with some cluttered scenes or objects
with a complex structure due to the lack of high-level se-
mantic knowledge.

CNN-Based methods Recently, some CNN-Based meth-
ods have been proposed to learn high-level feature repre-
sentations for object skeleton detection. Shen et al. (Shen et
al. 2016c), for the first time, present a fully convolutional
network with multiple scale-associated deep side outputs
(FSDS) to detect the object skeletons in natural images. Ke
et al. (Ke et al. 2017) introduce a Side-output Residual Net-
work (SRN) to extract object skeletons in a deep-to-shallow
manner. SRN can adapt to symmetry scales without need-
ing any scale-level annotation, and it achieves better per-
formance. Basically, all existing CNN-Based methods adopt
the architecture of HED (Xie and Tu 2015), and use both
shallow and deep features to learn contextual relationship for
object skeleton detection. By employing the learned CNN
features, these models have successfully broken the limits
from traditional methods, and achieved new state-of-the-art
performance. However, for shallow features, their lack of se-
mantic knowledge may harm their representational capac-
ity for object skeleton detection. Therefore, there is a great
room for improvement over these existing methods.

Method

This section starts with an overview of the MSB-FCN, fol-
lowed by a detailed description. Then, we describe how to
improve detection accuracy by using a series of connec-
tions among multi-scale intermediate feature layers within
our bidirectional network architecture.

Overview

Our method is based on our observation that high-level se-
mantic knowledge is much more important than low-level
local information in object skeleton detection (see Fig. 1).
To accurately localize object symmetry axes in an image,
the network should be capable of i) producing semantically
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Figure 2: Overall of the Multi-Scale Bidirectional FCN. Our MSB-FCN is built upon a pre-trained ResNet-based feature map,
and contains a feature pyramid for handling scale variations of object(s). A multi-scale bidirectional network with intermediate
supervision is employed to learn and gather multi-scale features. Then, the multi-scale intermediate perditions are merged by
fusion module to generate the final result.

strong features with high-resolution, ii) handling scale varia-
tions, and iii) gathering high-level context information from
different sub-regions. To achieve this goal, we introduce a
novel MSB-FCN that can meet all the requirements above.

As can be seen in Fig. 2, given an input RGB image, our
model produces an object skeleton map of the same size to
be the output. The MSB-FCN is built upon a ResNet-Based
feature map, and employs a multi-scale bidirectional net-
work architecture. We use the dilated network technique (Yu
and Koltun 2015) to ensure that the last three groups of
ResNet-101 (He et al. 2016) have the same resolution. The
last convolutional layer of ResNet-101 is used as the under-
lying feature map to build a feature pyramid. The multi-level
feature representations are then learned by using a bidirec-
tional network architecture, in which local and global con-
text knowledge can be effectively gathered and combined in
both coarse-to-fine and fine-to-coarse manners. Supervision
is imposed on the intermediate output layer to “guide” the
prediction at every specific scale. Finally, a fusion module is
used to automatically learn the combination weight of these
intermediate predictions and generate the final result. Note
that our model is a single-stage network, where all modules
mentioned above are highly integrated and jointly learned
under the proposed framework.

Multi-Scale Bidirectional FCN

The MSB-FCN adopts a ResNet-based feature map F of in-
put image I , and produces a full-resolution object skeleton
map O(F,Θ) where Θ represents all standard network layer
parameters. As mentioned above, we use the dilated net-
work technique (Yu and Koltun 2015) (Chen et al. 2016) to
produce a high-resolution underlying feature map f , which
can avoid spatial information loss and benefit the subsequent
learning process. The MSB-FCN consists of three important
modules: feature pyramid, multi-scale bidirectional network
and fusion module.

Feature pyramid To accurately detect object skeletons
in natural images, the first important problem is the scale-
space problem. A straight-forward solution, as many previ-
ous methods used (Hu and Ramanan 2017) (He et al. 2017),
is to build an image pyramid for feature extraction. How-
ever, the image pyramid is computationally complex due to
redundant convolutional computation over multi-scale im-
ages. To address the computational bottleneck, we build a
feature pyramid based on the ResNet-based feature map F
for multi-scale feature learning and inferring by using the
pyramid pooling strategy (Zhao et al. 2017). Specifically,
the underlying feature map F is pooled into N feature maps
of different bin sizes to form the feature pyramid. Further-
more, we decrease the dimensions of pooled features by us-
ing one 1 × 1 convolution layer (from 2048 to 512), so that
the computation workload of the following learning process
can be reduced. We denote the reduced feature map within
the feature pyramid as fsi ∈ {fs1 , fs2 ...fsN }, and use them
to learn multi-scale contextual relationship for object skele-
ton detection.

Multi-Scale bidirectional network We propose a multi-
scale bidirectional network to learn and consolidate multi-
level context information. Specifically, it uses multi-scale
feature maps {fsi} as input and produces intermediate pre-
dictions of multiple resolutions {osi}. In the network, there
are two directional pathways among multi-scale features
{fsi} so that the learning process at each scale can benefit
from both more global and more detailed information.

The coarse-to-fine pathway starts from the coarsest fea-
ture map with the most global information, and ends at the
finest feature map with the highest resolution. In this path-
way, the feature learning for the i-th scale encodes the re-
duced feature fsi of its own scale and the learned feature
representation hCF

si−1
of its previous scale si−1. The feature

representations can be written as:
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hcf
si =

{
fsi + αiRsi(h

CF
si−1

), i ≥ 2

fsi , i = 1
(1)

where hcf
si denotes the updated feature map, and α represents

the combination weight. Rsi(·) is used to resize the updated
feature map to the same size of current scale si through bi-
linear interpolation. The updated feature map hcf

si is further
learned by using the convolution operation and RELU to
form the learned feature map hCF

si which serves as the in-
put for the next scale.

On the other hand, the fine-to-coarse pathway is com-
pletely opposite. This pathway collects the multi-scale in-
formation from local to global, and the feature map of the
i-th scale can be computed below:

hfc
si =

{
fsi + βiRsi(h

FC
si+1

), i ≤ (N − 1)

fsi , i = N
(2)

where hfc
si denotes the updated feature map produced by

combining the multi-level features in a finer-to-coarse man-
ner, where β represents the combination weight. We adopt
the same procedure as that used in the coarse-to-fine path-
way to learn the feature representation hFC

si .
The learned feature maps (i.e., hCF

si and hFC
si ) of each

scale are then merged to form the final feature representa-
tions Msi for a specific scale si,

Msi = σ(cat(hCF
si , hFC

si )⊗Wsi + bsi), (3)
where ⊗ represents the convolution operation, and cat(·) is
used to combine the two learned feature maps of different di-
rections. Wsi and bsi represent the convolutional filters and
biases, respectively. RELU serves as the non-linear function
σ(·).

For the output of any specific scale (or resolution), the
intermediate prediction error is computed by using the stan-
dard cross-entropy loss function,

lsi(Θ, θsi) = −
|Isi |∑
p=1

Gsi(p) log Pr(osi(p) = 1|Isi ; Θ, θsi)

+ (1−Gsi(p)) log Pr(osi(p) = 0|Isi ; Θ, θsi).
(4)

where Gsi(p) denotes the groundtruth label at pixel p. Note
that the loss function is computed over all pixels in every
training image with a different scale si.

Fusion module Given an input RGB image I , the multi-
scale bidirectional network produces several intermediate
object skeleton maps {osi} with different scales {si}. We
use a fusion module to efficiently combine these object
skeleton maps and then generate the final result O.

The fusion module is composed of a connection layer, two
convolutional layers, and a loss layer. It takes N resized in-
termediate object skeleton maps by the connection layer to
generate a N -channel map. Then the resulting map is for-
warded through two convolutional layers. Finally, the fol-
lowing loss function is used to compute the errors between
the final prediction O and the ground-truth G,
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Figure 3: Illustration of dense connections. With dense con-
nections, the feature learning in each scale can directly en-
code features from all the other scales.

Lfuse(Θ, θ, h) = Dist(G,O) (5)
where h denotes the layer parameters of the fuse module,
and Dist(·) represents the distance function used to com-
pute the pixel-wise distance between the final object skele-
ton map O and the groundtruth map G.

Objective function Our model is a single-stage network,
where all the modules above are integrated into one frame-
work. The loss function of the whole MSB-FCN is given as:

Lall(Θ, θ, h) = ξsfLfuse(Θ, θ, h) +

N∑
m=1

γsm lsm(Θ, θsm),

(6)
where ξsf and γsm represent balance weights.

We formulate the object skeleton detection task as per-
pixel regression to groundtruth annotations. In the training
phase, the objective of MSB-FCN is to minimize error be-
tween ground-truths and estimated object skeleton maps,
and can be written as:

(Θ, θ, h)∗ = argmin(Lall(Θ, θsi , h)) (7)
In the inferring phase, the input image I is simply for-

warded through the MSB-FCN to generate a full-resolution
object skeleton map O(F,Θ).

Dense Connections

To make our MSB-FCN more powerful, we introduce a se-
ries of connections among multi-level feature layers, which
are called dense connections. Dense connections can enrich
context information and strengthen underlying representa-
tions for feature learning. With dense connections, the learn-
ing process at each scale is able to directly encode context
knowledge from all the other scales (not limited to its neigh-
boring scale). In this way, the learning process can benefit
more from multi-level information.

As can be seen in Fig. 3, the feature layer of each scale
within the bidirectional architecture is connected to all the
other layers in a feed-forward manner. With dense connec-
tions, the updated feature maps for the i-th scale in the
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coarse-to-fine pathway and the fine-to-coarse pathway have
been changed. Then, Eq.1 and Eq.2 become

h̃cf
si =

⎧⎪⎪⎨
⎪⎪⎩
fsi +

i−1∑
j=1

αi
(j)Rsi(h̃

CF
sj ), i ≥ 2

fsi , i = 1

(8)

and

h̃fc
si =

⎧⎪⎪⎨
⎪⎪⎩
fsi +

N∑
j=i+1

βi
(j)Rsi(h̃

FC
sj ), i ≤ (N − 1)

fsi , i = N

(9)

where α(j)
i and β

(j)
i are the weights of connections from the

feature layer with j-th scale to feature layer with i-th scale.
h̃CF
si and h̃FC

si denote the newly learned feature maps which
are generated by performing the convolution operation and
RELU on their corresponding updated maps.

Also, we rewrite Eq. 3 to generate the final feature repre-
sentation M̃si for each scale si,

M̃si = σ(cat(h̃CF
si , h̃FC

si )⊗ W̃si + b̃si), (10)

where W̃si and b̃si are convolutional filters and biases for
the i-th scale, respectively. The new fusion loss function can
be represented by

L̃fuse(Θ, θ̃, h) = Dist(G, Õ), (11)

and therefore the loss function for the whole MSB-FCN be-
comes:

L̃all(Θ, θ̃, h) = ξsf L̃fuse(Θ, θ̃, h) +
N∑

m=1

γsm l̃sm(Θ, θ̃sm),

(12)
where l̃sm denotes the cross-entropy loss which has been
defined in Eq. 4.

Our model is inherently able to capture and gather multi-
scale high-level context information for object skeleton de-
tection. Dense connections enable our MSB-FCN to be more
powerful in consolidating the multi-level feature representa-
tions. It is different from all existing deep object skeleton
networks (Shen et al. 2016c) (Ke et al. 2017) that do not
explicitly deal with the high-level contextual relationship.
In terms of architecture, our model can be considered as
a novel coarse-to-fine & fine-to-coarse learning-based ap-
proach: multi-scale features are jointly learned and com-
bined with a directed cycle for object skeleton detection.

Experiments

In this section, we describe implementation details of our
model, introduce the datasets and evaluation metrics, give
ablation analysis and provide exhaustive comparison results
over four widely-used datasets.

Implementation

In general, our network is based on the publicly available
platform Caffe (Jia et al. 2014). We use ResNet-101 (He
et al. 2016) as the pre-trained model. The dilated network
strategy (Yu and Koltun 2015) is adopted to ensure the last
three groups of ResNet-101 have the same resolution (i.e.,
60 × 60). Under our MSB-FCN, we use four scales (i.e.,
10 × 10, 20 × 20, 30 × 30 and 60 × 60) to handle scale
variations of object(s). Then, multi-level features are jointly
learned to generate the final result.

Training details The input image is resized such that its
resolutions become 480 × 480 pixels. In Eq. 12, we define
ξsf = 2 and γsm = 1 so as to emphasize the final output.
We use the “poly” learning rate policy (Liu, Rabinovich, and
Berg 2015), where the learning rate is automatically con-
trolled by (1 − iter

maxiter
)power. The initial learning rate is

set to 10−8, and the power is set to 0.9. We set the maxi-
mum number of iterations to 60K. The Stochastic Gradient
Descent (SGD) is employed for optimization. The outputs
of different scales are also resized to 480 × 480 pixels to
compute the loss. To reduce overfitting, the training data is
augmented by rotating all the training images by every 90
degrees, flipping them with different axes, and resizing them
to three different scales (0.8, 1.0, 1.2), following (Shen et al.
2016c).

Inferring During the inferring phase, the input RGB im-
age is simply forwarded through the MSB-FCN to pro-
duce a full-resolution object skeleton map. The resulting ob-
ject skeleton map is then used to generate object skeletons
through a non-maximal suppression (NMS) algorithm (Dol-
lar and Zitnick 2014), as many previous methods did (Shen
et al. 2016c) (Ke et al. 2017).

Datasets and Evaluation Metrics

Datasets We evaluate the proposed MSB-FCN model on
four widely-used benchmark datasets: SK-SMALL (Shen
et al. 2016c), WH-SYMMAX (Shen et al. 2016b), SK-
LARGE (Shen et al. 2016a) and Sym-PASCAL (Ke et al.
2017).
SK-SMALL is one of the most popular datasets, which in-
cludes 300 training images and 206 testing images. It in-
cludes object skeletons with large variances in both structure
and scale.
WH-SYMMAX is derived from the well-known Weizmann
Horse dataset (Borenstein and Ullman 2002). It contains 328
images. The first 228 images serve as training images and
the rest are used for testing.
SK-LARGE is a recently introduced benchmark with annota-
tion of object skeletons. It includes 746 images for training
and 745 images for testing.
Sym-PASCAL is a very challenging dataset. It is converted
from the PASCAL-VOC-2011 dataset (Everingham et al. ),
and contains 648 training images and 787 testing images in
20 object classes.

Evaluation metrics To evaluate skeleton detection per-
formance, we adopt the precision-recall metric with F-
measure by following the steps in (Shen et al. 2016a) (Ke
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Figure 4: The Precision-Recall curves (PR curves) on SK-SMALL, WH-SYMMAX, SK-LARGE and Sym-PASCAL.

Table 1: Quantitative comparison of the state-of-the-art approaches on the SK-SMALL, WH-SYMMAX, SK-LARGE and
Sym-PASCAL dataset. The top three results are shown in Red, Green, and Blue, respectively.

Method Levin Lee Lindeberg Filter MIL HED FSDS SRN Ours
SK-SMALL 0.217 0.252 0.227 0.226 0.392 0.542 0.623 0.632 0.738
WH-SYMMAX 0.174 0.223 0.277 0.334 0.365 0.732 0.769 0.780 0.856
SK-LARGE 0.243 0.255 0.270 — 0.353 0.497 0.633 0.629 0.744
Sym-PASCAL 0.134 0.135 0.138 0.129 0.174 0.369 0.418 0.443 0.570

Table 2: Analysis of the MSB-FCN. Our results are obtained
on Sym-PASCAL benchmark. “MSB” refers to the multi-
scale bidirectional architecture we designed; “DC” denotes
the dense connections; “*” represents the method used in
this paper.

Method Fβ

HED (Xie and Tu 2017) 0.369
FSDS (Shen et al. 2016c) 0.418
SRN (Ke et al. 2017) 0.443
Faster-RCNN (Ren et al. 2017)+FSDS 0.343
YOLO (Redmon et al. 2016)+FSDS 0.354
ResNet-FCN (baseline) 0.515
ResNet-FCN+MSB (ours) 0.557
*ResNet-FCN+MSB+DC (ours) 0.570

et al. 2017). The Precision-Recall curve (PR-curve) is ob-
tained by matching the binary maps which are thresholded
by using different values with the groundtruth skeleton
map. The maximum F-measure (Fβ) is defined as: Fβ =
2·precision·recall
precision+recall .

Ablation Study

In this section, we first explore two aspects of our design: the
effectiveness of multi-scale bidirectional architecture and
the necessity of dense connections. The ResNet-101 archi-
tecture with the dilated network technique (ResNet-FCN)
is used as the baseline to show the value of our design.
Against the baseline, we analyze the proposed components
including Multi-Scale Bidirectional architecture (MSB) and

Dense Connections (DC) by comparing the F-measures.
The overall result on Sym-PASCAL benchmark is shown
in Tab. 2. The experiments show that the ResNet101-based
FCN with the proposed multi-scale bidirectional architec-
ture can largely improve the accuracy of skeleton detec-
tion. It achieves 8.16% improvements on F-measure over the
baseline. Dense connections enable MSB-FCN to result in a
further 2.3% improvement according to F-measure, achiev-
ing the highest accuracy (Fβ = 0.570). We find that the
improvements should be attributed to the multi-scale bidi-
rectional architecture and dense connections, which are the
main contributions of this work.

In addition, to show the superiority of the end-to-end
pipeline in complex scenes, we compare our single-stage
MSB-FCN as well as other end-to-end solutions (Xie and
Tu 2017) (Shen et al. 2016c) (Ke et al. 2017) with some two-
stage methods. Specifically, we first detect all object(s) from
an image by using the current best detection methods includ-
ing Faster R-CNN (Ren et al. 2017) and YOLO (Redmon et
al. 2016). Then, we use the skeleton method FSDS (Shen et
al. 2016c) to extract the object skeletons based on the de-
tection results. As can be seen in Tab. 2, the single-stage
framework is more effective in object skeleton detection.

It also should be noted that a ResNet-Base model can
achieve very accurate results for object skeleton detection.
Our baseline model, ResNet-101 with the dilated network
technique, achieves a higher accuracy (Fβ = 0.515) than
previous best result (Fβ = 0.443) produced by the VGG-
Based model (Ke et al. 2017). This can be explained by the
fact that a very deep ResNet-101 can produce semantically
stronger features than the VGG-16 network, and these se-
mantically strong features are very important in this high-

7466



GT

FSDS

SRN

Ours

Figure 5: Qualitative comparisons of our method and the state-of-the-art CNN-Based methods on some challenging scenes.
Failed examples are shown in the last two columns.

Table 3: Comparison of running times. Mean run-times were measured on Sym-PASCAL.
Method Levin Lee Lindeberg Filter MIL HED FSDS SRN Ours
Runtime(s) 181.87 647.94 6.79 28.32 82.35 0.10 0.12 0.12 0.13

level vision task.

Comparison to Other Methods

We compare the proposed method with three leading
CNN-Based methods including HED (Xie and Tu 2017),
FSDS (Shen et al. 2016c) and SRN (Ke et al. 2017). We
also compare our approach with five top-ranked traditional
methods: Lindeberg (Lindeberg 1996), Levinshtein (Levin-
shtein, Dickinson, and Sminchisescu 2010), MIL (Tsogkas
and Kokkinos 2012), Lee (Lee, Fidler, and Dickinson 2014),
and Partical Filter (Widynski, Moevus, and Mignotte 2014).

Quantitative comparison We compare the performance
of our model with the state-of-the-art methods on four chal-
lenging benchmarks. As can be seen in Tab. 1, our MSB-
FCN achieves the best performance according to F-measure.
Specifically, on SK-SMALL, WH-SYMMAX, SK-LARGE
and Sym-PASCAL, our MSB-FCN significantly improves
the current best F-measure by 16.8%, 9.7%, 17.5% and
28.7%, respectively. Furthermore, we compare our ap-
proach with the other methods in terms of PR curve. As is
shown in Fig.4, our model consistently outperforms all the
state-of-the-art methods. Because of the multi-scale bidirec-
tional network architecture, the learning and inferring pro-
cess can benefit from both more global and more detailed
information. As a result, the generated object skeleton maps
are much closer to the groundtruth annotations, which re-
sults in a significantly better F-measure and a much higher
PR curve. It is also worth mentioning that thanks to the dense
connections, our method is able to encode more useful con-
textual knowledge, yielding more accurate results.

Qualitative comparison A qualitative comparison is
shown in Fig.5. As can be seen, our method achieves more
accurate object skeleton detection results than all other
methods, which are the closest to the ground truth. When

handling images containing a cluttered background and ob-
jects with a complex structure, the proposed MSB-FCN can
still generate very reliable results while the other methods
fail in these cases.

Speed performance As is shown in Tab.3, it takes our
method only about 0.13 seconds to generate an object skele-
ton map for one input image. The traditional methods are
tested on a PC with an i7 2.50 GHz CPU and 8 GB RAM,
while the CNN-based methods are accelerated by a NVIDIA
GTX 1080ti GPU X 11G. We observe that the proposed
MSB-FCN and other CNN-Based methods achieve similar
speed performance. They are much faster than all traditional
methods.

Conclusions

In this paper, we have proposed MSB-FCN, a novel CNN-
based model for object skeleton detection. Our network em-
ploys a multi-scale bidirectional network architecture that
can better gather and capture multi-scale high-level con-
textual relationship. Dense connections are used to enable
the feature learning at each scale encode the knowledge di-
rectly from all other feature maps of different scales. Our
MSB-FCN is end-to-end trainable, highly integrated and
very powerful. Extensive experiments on four widely-used
benchmarks demonstrate that the proposed method signifi-
cantly outperforms the state-of-the-art methods.
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