
Residual Encoder Decoder Network
and Adaptive Prior for Face Parsing

Tianchu Guo,1 Youngsung Kim,2 Hui Zhang,1 Deheng Qian,1 ByungIn Yoo2

Jingtao Xu,1 Dongqing Zou,1 Jae-Joon Han,2 Changkyu Choi2

1Beijing Samsung Telecommunication, SAIT China Lab
2Samsung Advanced Institute of Technology, S/W Solution Lab

Abstract

Face parsing assigns every pixel in a facial image with a se-
mantic label, which could be applied in various applications
including face expression recognition, facial beautification,
affective computing and animation. While lots of progress
have been made in this field, current state-of-the-art meth-
ods still fail to extract real effective feature and restore accu-
rate score map, especially for those facial parts which have
large variations of deformation and fairly similar appear-
ance, e.g. mouth, eyes and thin eyebrows. In this paper, we
propose a novel pixel-wise face parsing method called Resid-
ual Encoder Decoder Network (RED-Net), which combines a
feature-rich encoder-decoder framework with adaptive prior
mechanism. Our encoder-decoder framework extracts fea-
ture with ResNet and decodes the feature by elaborately fus-
ing the residual architectures into deconvolution. This frame-
work learns more effective feature comparing to that learnt
by decoding with interpolation or classic deconvolution op-
erations. To overcome the appearance ambiguity between fa-
cial parts, an adaptive prior mechanism is proposed in term
of the decoder prediction confidence, allowing refining the fi-
nal result. The experimental results on two public databases
demonstrate that our method outperforms the state-of-the-
arts significantly, achieving improvements of F-measure from
0.854 to 0.905 on the Helen dataset, and pixel accuracy from
95.12% to 97.59% on the LFW dataset. In particular, convinc-
ing qualitative examples show that our method parses eye,
eyebrow and lip regions more accurately.

Introduction

Face parsing is both fundamental and important to a variety
of computer vision and animation areas ranging from classic
tasks such as facial beautification, affective computing and
face animation, to modern applications like face Augmented
Reality (AR) and expression transfer (Ou et al. 2016; Zhang
et al. 2017). The problem of the face parsing is to assign
every pixel with a semantic label, thus the face parsing is
much more valuable and challenging comparing with face
landmark detection.

Though tremendous strides have been made in face pars-
ing, current state-of-the-art algorithms of face parsing (Kae
et al. 2013; Khan, Mauro, and Leonardi 2015; Liu et al.
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Figure 1: Challenging cases for face parsing. Existing meth-
ods fail to parse the facial parts with large variations of de-
formation and fairly similar appearance, e.g. mouth and light
eyebrows. The first column is the original image, the red
dashed frame indicates the challenging parts. The next three
columns are zoom-in versions of parsing results of the red
dashed frame. The second column shows the results of ex-
isting method, i.e. VGG-Deconv Net(Noh, Hong, and Han
2015) reproduced by us. The third column shows the results
of our RED-Net. The last column shows the ground truth.

2015; Luo, Wang, and Tang 2012; Smith et al. 2013;
Tsogkas et al. 2015; Warrell and Prince 2009; Yamashita et
al. 2015; Zhou, Hu, and Zhang 2015)(or semantic segmen-
tation) often have difficulty with extremely similar appear-
ance and parts having large variation of deformation. On the
one hand, the similar appearance of parts results in that the
distinguish ability of features that learned or hand-crafted
is limited. So the absolute boundary of facial parts with ex-
tremely similar appearance cannot be recognized clearly. For
example, as shown in Fig. 1, segmenting child’s eyebrows
from its skin is tough due to the light color of eyebrows.
On the other hand, large deformation of parts will cause that
the features for different states of the same part, e.g., mouth
open or close, are very different. Consequently, the features
of such parts vary so large that the robustness of existing
methods is low. It is very difficult to achieve accurate pars-
ing results while maintaining robustness for various cases.
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Recent face parsing methods parse faces usually through
using deep convolutional neural network (CNN)(Kae et al.
2013; Liu et al. 2015; Luo, Wang, and Tang 2012; Tsogkas
et al. 2015; Yamashita et al. 2015; Zhou, Hu, and Zhang
2015) rather than handcrafted feature (Smith et al. 2013;
Warrell and Prince 2009). However, these methods still can-
not process the problems we point out above for follow-
ing reasons. First of all, their deeper plain network cannot
provide more precise features for fine-grained segmentation
due to the degradation problem (He et al. 2016a). Secondly,
the traditional interpolation without any post-processing for
score map reconstruction will result in over-smoothness
(Chen et al. 2016; 2014). Last but not least, although facial
prior correlation information is utilized implicitly in previ-
ous approaches (Liu et al. 2015), they do not apply the prior
adaptively according to the face feature information to avoid
the conflict between face feature and the prior.

In this paper, we present a novel Residual Encoder De-
coder network (RED-Net) to pursuit higher accurate face
parsing. First, an encoder with shortcut connections (He et
al. 2016a) (i.e. residual branch) is utilized to encode face
semantic information. With ensemble information from fea-
ture maps in different scales, more powerful rich feature
could be generated. Second, we develop a novel decoder
with combination of the shortcut branch and the deconvo-
lution layer. This type of bottleneck structure decreases the
total network parameters and increases its nonlinearity abil-
ity. Compared to previous interpolation methods (Chen et al.
2014; 2016), the deconvolution net could learn pixel-wise
score map with more detailed semantic information auto-
matically. Third, in order to further segment similar facial
regions, an adaptive prior mechanism is designed to refine
the decoder output automatically. The explicit prior for each
facial part which can be considered as a kind of structure
constraint is added to the score map and its weight is ad-
justed according to the prediction confidence of pixel-wise
score map.

The proposed method is evaluated on two public datasets,
Helen and LFW. Experimental results demonstrate that the
proposed network outperforms state-of-the-art approaches
significantly. The major contributions of this paper can be
summarized as follows.

• A powerful network, RED-Net, is proposed by introduc-
ing shortcut branches to an encoder-decoder framework.
With abundant information from different scales, efficient
and discriminative features are generated for face pars-
ing. An accurate pixel-wise score map could be learnt in
an end-to-end fashion.

• An adaptive prior mechanism is designed to incorporate
face structure constraint for further final score map refine-
ment.

• Our method achieved state-of-the-art performance on two
benchmark datasets. Especially, our method shows much
higher accuracy for these facial parts which have large
variation of deformation and fairly similar appearance,
e.g. mouth, eye and thin eyebrows. These facial parts are
extremely difficult to separate from others but crucial for
popular applications including facial beautification and

affective computing.

Related work

In the past few years, face parsing draws increasing atten-
tion for its wide range of applications. These methods can
be classified into two categories. The first one is handcrafted
feature based method. Warrell et al. (Warrell and Prince
2009) model multinomial priors of facial structure and label
facial parts with a Conditional Random Field (CRF). Kae et
al. (Kae et al. 2013) model the face shape prior with a re-
stricted Boltzmann machine and combine it with a CRF for
labeling on superpixels with handcrafted features. Smith et
al. (Smith et al. 2013) use landmarks and SIFT features to
transfer labeling masks from a set of aligned exemplars and
achieve better results on rare facial parts such as eyes, nose,
brows, and mouth. Khan et al. (Khan, Mauro, and Leonardi
2015) adopt color, shape and location features in a random
forest model to label facial components. All these methods
require manually designed specific features and cannot bring
satisfying results.

More recently, deep learning frameworks are employed
for face parsing to constitute another class of methods. Liu
et al. (Liu et al. 2015) train a multi-objective CNN with
face image patches and upsample CNN outputs to obtain
pixel-wise segmentation map. Zhou et al. (Zhou, Hu, and
Zhang 2015) present an interlinked CNN to solve the pars-
ing problem in an end-to-end fashion. Yamashita et al. (Ya-
mashita et al. 2015) utilize a weighted cost function to im-
prove the performance of CNN during facial part labeling.
Luo et al. (Luo, Wang, and Tang 2012) detect face parts
and parse each facial component by learning a highly non-
linear mapping with deep belief network respectively. Al-
though these deep learning based methods lead to promis-
ing results, they still suffer from the following limitations:
1) A plain CNN is adopted in previous works, however, it
misses abundant information between feature maps in differ-
ent scales and suffers from performance degradation prob-
lem (He et al. 2016a; 2016b; Huang et al. 2016; Ioffe and
Szegedy 2015; Larsson, Maire, and Shakhnarovich 2016;
Singh, Hoiem, and Forsyth 2016; Targ, Almeida, and Ly-
man 2016; Zhang et al. 2016). 2) Current methods require an
additional decoder to restore pixel-wise score map through
interpolation (Chen et al. 2014; 2016; Zheng et al. 2015).
However, inspired by other computer vision tasks, a holistic
end-to-end solution is prone to be trained as a high perfor-
mance engine (Badrinarayanan, Handa, and Cipolla 2015;
Noh, Hong, and Han 2015). 3) Face prior information is
utilized implicitly, which increases model complexity. Al-
though (Liu et al. 2015) integrates the face structure con-
straint as part of CNN input, it is still less effective for seg-
menting detailed facial components. Consequently, we pro-
pose a novel pixel-wise face parsing method to address these
thorny issues and achieve state-of-the-art performance. In
the rest of this paper, we will demonstrate how these issues
are largely resolved in details.
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Figure 2: System overview. The proposed system consists
of three parts, i.e. Residual Encoder Network, Residual De-
coder Network and Adaptive prior.

Method of Face Parsing

The framework of our method is illustrated in Fig. 2. Con-
cretely, the proposed system consists of three parts. The first
part is the Residual Encoder Network (RE-Net), consisting
of a series of Residual Encoder Unit (RE-Unit), which is
a concise residual network to extract features of facial parts.
The second part is the Residual Decoder Network (RD-Net),
consisting of a series of Residual Decoder Unit (RD-Unit),
which restores the feature map to original resolution to ob-
tain a pixel-wise score map. The third part is the adaptive
prior which refines the score map by adaptively adjusting
the contribution of the prior.

Specifically, face parsing is the problem of assigning la-
bels to each pixel. It can be solved by maximizing the fol-
lowing function,

F (Y |X;w) =
∏

yi∈Y

N (Pnet(yi|X;w)+

H(yi|X;w)Pr(yi|X;w)),

(1)

where X is the input image and Y is a set of random vari-
ables yi ∈ Y defined on every pixel i. Each yi takes a value
from a set of labels L = {1, 2, ...,K} indicating different
facial parts. w is the parameter of our parsing algorithm.
The first part Pnet(yi) is the output of RED-Net, which is
a probability distribution of yi. The second part accounts for
the prior restriction which is the product of entropy H(yi)
and prior distribution Pr(yi|X;w). N (·) is a normalization
function.

In the training process, the parameter w is optimized by
minimizing the function of L(X,Y,w),

L(X,Y ;w) =
∑

yi∈Y

−log(N (Pnet(yi = li|xi;w)+

H(yi|X;w)Pr(yi = li|X;w))),

(2)

where li is the ground truth label for pixel i.

Residual Encoder Network (RE-Net)

In the part one, we design a residual encoder network to ex-
tract informative features. The network is shown in Fig. 3. It
consists of six units which are separated from each other by
pooling layers. Its basic block is the residual structure (He et

al. 2016a). In order to use more general facial features, we
pretrain our encoder network on a face recognition task.

In the pretraining process, the parameters of the network
are optimized by minimizing the following cost function,

Loss(Y,X) = −log(P (y = id|X,wpre)), (3)

where X denotes the image. id is the identity of X . wpre is
the parameter of the pretrained network. P (y = id|X;wpre)
is the confidence score that y belongs to label id:

P (y = id|X,wpre) =
exp{y′

id}∑Q
i=1 exp{y′

i}
, (4)

where y
′
i =

∑d
j=1 (hjwji + bi), which is a linear combina-

tion the d-dimensional features {hj} as the input of neuron
i. Q is the number of identities.

After the pretraining process, only the first five units are
preserved in the encoder for face parsing task. The sixth unit
is removed because the high level features encoded by top
layers are more task-oriented and contain identity informa-
tion, which are not suitable for face parsing.

Residual Decoder Network (RD-Net)

In the part two, we design the residual decoder network to
translate the low-resolution feature map generated by the en-
coder. In order to obtain a pixel-wise labeling result, we en-
large the resolution and recover the image details gradually
with a stack of RD-Units, as shown in Fig. 3.

The building blocks of RD-Net are unpooling, deconvo-
lution and batch normalization layers. The unpooling layer
can enlarge the resolution. The deconvolution layer is re-
sponsible for reconstructing details . And the batch normal-
ization greatly accelerates the speed of convergence (Ioffe
and Szegedy 2015).

The designing idea of the RD-Unit is to introduce short-
cuts into a deconvolutional network. The general considera-
tion is to replace the deconvolution layer with the bottleneck
structure for reducing network parameter and increasing its
nonlinearity, and then add shortcuts between them. It con-
sists of three different modules.

Densification module. The function of this module is to
obtain a denser feature map by applying a deconvolution
bottleneck on the unpooling result of the previous unit’s out-
put. In more detail, the output of an unpooling layer is a
sparse feature map which preserves efficient features and
their positions. And the densification module tries to fill
the “hole” in the neighborhood of the activated neurons. As
shown in Fig. 4, the sparse ratio drops greatly after densi-
fication module in all the RD-Units. Although the result of
this module is denser than its input, it is still a coarse feature
map that needs further refinement.

Detail-learning module. This module is a residual archi-
tecture with two branches, i.e., the deconvolution bottleneck
branch and the shortcut branch, which is an identity map-
ping. The outputs of these two branches are added element-
wisely. Similar to the motivation of ResNet(He et al. 2016a),
we regard the output H(x) of this module as a fine-grained
feature map, where x is the input coarse feature map. Thus
the output of the deconvolution bottleneck branch, F(x) =
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Figure 3: The configuration of the proposed RED-Net. The pretrained network is shown on the left side of the dashed verti-
cal line. “P” in the encoder means max-pooling, and “UP” in the decoder means max-unpooling. Each conv/deconv layer is
followed by a batch normalization layer and a ReLU layer. The resolutions, dimensions and kernel sizes are also described.
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Figure 4: Sparse analysis. It computes the sparse ratio of
feature map of all the RD-Units after unpooling layer, den-
sification module and detail-learning module, respectively.

H(x)-x, represents the learned details. As shown in Fig. 4,
comparing with the densification module, the sparse ratio
drops slightly. It means that the feature map is dense but
coarse, the detail-learning module further catch the details.

Dimension-reduction module. This module is also a
residual architecture. It includes a projection branch (i.e.
the 1x1 deconvolution layer) and a deconvolution bottleneck
branch. Similar to the detail-learning module, their outputs
are added element-wisely. The purpose of this module is to
reduce the dimensions of the feature map, such that the cur-
rent RD-Unit is able to be concatenated to the next one.

To design a RD-Net, we notice that there are two intrin-
sic requirements, i.e. upgrading sparse feature map to dense
one, and achieving a clear boundaries between different fa-
cial parts. Thus, we divide the procedure of refining a coarse
feature map into several steps using different modules. Three
different modules could function cooperatively. As a result,
more details of shapes and boundaries could be learned. Be-
sides, benefiting from the shortcut branch and the projection
branch in each RD-Unit, the RED-Net can be easily trained.

Adaptive prior

There is a strong motivation to exploit the prior of the fa-
cial structure since human faces generally share the same
visual pattern. Hence, we incorporate prior information to
further refine the score map explicitly. The proposed method
is called adaptive prior, as shown in Fig. 5. Adaptive prior

Figure 5: The adaptive prior mechanism. The exemplar prior
image shown here is for the right eye region.

proceeds in four steps. In the first step, the prior information
is obtained by following the procedure in (Liu et al. 2015).
In brief, a face image is represented by five key facial points
(two eye centers, nose tip, and two mouth corners) projected
to a subspace, which is generated by applying principle com-
ponent analysis to all images in the validation dataset. And
the distance between two images is defined as Euclidean dis-
tance between their projections in this subspace. Then when
a test image X is given, we can compute its distance to each
validation image, select the closest N images {Ii}Ni=1, and
compute its prior information Pr(Y |X) as the average of
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the ground truth labels of these closest images, i.e.,

Pr(Y |X) =
1

N

N∑

i=1

gt(Ii), (5)

where gt(·) is the ground truth label mask.
The second step is to adaptively compute the contribution

weight of the prior (i.e. the “Adaptive scale” in Fig. 5). The
weight is a matrix computed according to the entropy of the
output of a decoder. Specifically,

As(yi|X) = N(H(yi|X;w)), (6)

where As(yi) means the adaptive scale of the pixel xi. H(·)
means the entropy. N(·) scales its input to the range of [0, 1].
Note that w is omitted for abbreviation.

The third step is to compute the adaptive prior map. It
is obtained by element-wisely multiplying the prior and the
adaptive scale,

Apr(yi|X) = As(yi|X)Pr(yi|X), (7)

where Apr(yi|X) is the adaptive prior at pixel xi. Pr(yi|X)
means the prior information of pixel xi.

The fourth step is to combine the adaptive prior map with
the output of the decoder by the following formula,

Pfinal(yi|X) = N (Pnet(yi|X;w) +Apr(yi|X)), (8)

where Pfinal is the final score map. Pnet(·) is the score map
of the decoder.

The output of a decoder may be inaccurate, especially
in regions of eyes and brows where the boundaries of fa-
cial parts are not clear. For a pixel near such boundaries,
the confidence of assigning the pixel to each label is low,
which causes large entropy, as illustrated in Fig. 5. For such
pixels, the adaptive prior provides a compensation to refine
the parsing result. For instance, the orange point is a pixel
whose probability distribution has high confidence in skin
category, which implies low entropy. While the purple point
is an eye pixel whose probability distribution has low con-
fidence in all categories, which implies high entropy. Such
pixels with high entropy are very likely to be mis-labelled.
Fortunately, after the multiplication of “Adaptive scale” and
“Prior”, the contribution of the prior information for them is
strengthened in “Adaptive prior map”, and their labels could
be corrected in the “Final score map”.

Experiment

In this section, we first detail the settings of our method,
and then introduce the datasets on which the method is eval-
uated. After that, we compare our system with three al-
gorithms. Two of them are state-of-the-arts, i.e. (Liu et al.
2015) and (Smith et al. 2013); while the third one is VGG-
Deconv, an encoder-decoder network proposed in (Noh,
Hong, and Han 2015). Note that we reproduce this network,
and employ it to handle the face parsing problem. Some vari-
ant versions of our RED-Net are also evaluated to show the
contribution from different components of the complete net-
work, and the performance of variant decoder structures. In
all experiments, the algorithms are evaluated according to
the accuracy and F-measure.

Dataset and Network configuration

We evaluate our method on two public datasets, i.e. He-
len(Smith et al. 2013) and LFW(Kae et al. 2013). The Helen
dataset contains face labels with 11 classes annotated as hair,
eyebrows, eyes, nose, lips, in mouth, skin and background.
The dataset is divided into a training set with 2330 images,
a testing set with 100 images and a validation set with 330
images.

In the LFW dataset there are 2927 face images collected in
unconstrained environments. The resolution of each image
is 250 × 250. All of them are annotated as skin, hair and
background labels using superpixels. The whole dataset is
divided into a training set with 1500 images, a testing set
with 927 images and a validation set with 500 images. Both
LFW and Helen are divided following the standard protocol
(Liu et al. 2015).

For the Helen dataset, we crop the facial region and scale
it to the resolution of 250×250. Such operation is done four
times to obtain four images with different face sizes. Given
the scaled images, we randomly crop them into patches of
224× 224 and mirror the patches for data augmentation. In
the LFW dataset, all the training, validation, and testing im-
ages are aligned. Thus, we use the original images for train-
ing and testing.

We first perform the pretrain, and then use the first units
to initialize our encoder. After that, we add the RD-Net on
the top of the encoder, as shown in Fig. 3. The training data
for pretrain is CASIA-Webface (Yi et al. 2014), and the fea-
ture dimension d (see Eq.(4)) is set to 1024. The weights of
the decoder are initialized randomly according to a Gaussian
distribution with zero mean and standard deviation 0.01. The
whole network RED-Net is fine-tuned on the face parsing
task.

The training procedure is carried out using mini-batch
gradient descent. The momentum, weight decay rate and the
batch size are set to 0.9, 5e-4 and 64, respectively. The learn-
ing rate is initially 0.01 and decreases to its 1/10 every 5000
iterations. Besides, we set the number of closest validation
images N to 5.

Quantitative analysis

We first show the results on the Helen dataset. We compare
with the methods of (Smith et al. 2013) and (Liu et al. 2015)
following their evaluation protocol. As shown in Table 1, our
RED-Net with the adaptive prior (i.e. Ours-p) achieves the
best performance for most compared items. We achieve an
overall F-measure of 0.905, which is 5.1 percent improve-
ment than Liu’s work. Especially, the results of upper lip,
lower lip, brows and eyes are 15.7, 14.7, 7, and 10.3 percent
higher than those of Liu’s work (Liu et al. 2015), respec-
tively.

Both deconvolution based methods, i.e. VGG-Deconv and
Ours in Table 1, improve the performance of the published
state-of-the-arts (Liu et al. 2015; Smith et al. 2013). This
is probably because the deconvolution can reconstruct the
shape and boundaries more accurately than interpolation
(Liu et al. 2015). Note that our RED-Net achieves higher
F-measure in all the categories than VGG-Deconv.
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Skin Nose Upper Lip In Mouth Lower Lip Brows Eyes Mouth all Overall
Smith(Smith et al. 2013) 0.882 0.922 0.651 0.713 0.700 0.722 0.785 0.857 0.804

Liu’s(Liu et al. 2015) 0.912 0.912 0.601 0.824 0.684 0.734 0.768 0.849 0.854
VGG-Deconv 0.931 0.925 0.673 0.809 0.800 0.761 0.796 0.89 0.874

VGG-Deconv-p 0.931 0.932 0.719 0.809 0.792 0.778 0.849 0.900 0.886
Res-Deconv 0.935 0.929 0.692 0.805 0.771 0.781 0.843 0.903 0.887

Ours 0.938 0.941 0.731 0.832 0.833 0.793 0.866 0.923 0.903
Ours-p 0.938 0.941 0.758 0.837 0.831 0.804 0.871 0.924 0.905

Ours-p-implicit 0.940 0.937 0.703 0.813 0.808 0.738 0.833 0.917 0.887

Table 1: Results on the Helen dataset. The first 2 rows record the results reported in (Smith et al. 2013) and (Liu et al. 2015),
respectively. VGG-Deconv (Noh, Hong, and Han 2015) is reproduced by us for the face parsing task. Other rows show result of
networks designed by us, including: VGG-Deconv-p, which is VGG-Deconv plus our adaptive prior mechanism; Res-Deconv,
which has the same encoder as proposed RED-Net and the same decoder as VGG-Deconv; Ours, which is our RED-Net (Note
that the structure shown in Fig. 6-(a) is adopted); Ours-p, which is Ours plus the adaptive prior mechanism; Ours-p-implicit,
which is our RED-Net plus prior mechanism in (Liu et al. 2015).

Analysis of network components. First we show the
benefit of the residual encoder. In Table 1 Res-Deconv has
the gain of 1.3 percent vs. VGG-Deconv (88.7% vs. 87.4%),
verifying the effectiveness of the residual encoder. Then we
compare different decoders. The results of Res-Deconv and
Ours in Table 1 show that our decoder is more powerful
than the plain deconvolution network. Note that the same
encoder is employed in these networks for fair comparison
between decoders. Actually not all encoder-decoder combi-
nations can work well. We experiment with the combination
of plain VGG encoder and our decoder, and the performance
is only 65.1%. The reasonable explanation behind this is the
plain encoder cannot extract efficient representation without
adequate information from different scales and our powerful
decoder cannot translate it into clear score map. Thus, the
design of overall network configuration is valuable.

Figure 6: Schematic illustration of different structures in
RD-Unit. “D.B.” means the “Deconvolution Bottleneck”,
“UP” denotes the unpooling layer and “Proj” means the 1×1
deconvolution layers

Analysis of Adaptive Prior. The benefit of the adaptive
prior can be observed from the comparison of VGG-Deconv
vs. VGG-Deconv-p, and Ours vs. Ours-p, shown in Table
1. The overall F-measure of VGG-Deconv-p is 1.2 percent
higher than that of VGG-Deconv. Especially, the results of
upper lip, brows, and eyes are 4.6, 1.7, and 5.3 percent
higher than the original results of the corresponding facial
parts. The gain of Ours-p vs. Ours is also quite significant
for such regions, increasing by 2.7, 1.1, and 0.5 percent, re-
spectively. In fact, for such regions the learned feature is

sometime similar to that of the skin, so the labeling confi-
dence is low. For such cases the adaptive prior makes prior
contributes more, and can correct some labeling errors. It
can be observed that the gain for Ours is not so significant
as that for VGG-Deconv, possibly because the feature map
extracted by our network is much more discriminative. How-
ever, even for a much better network, our prior mechanism
still improves the performance, and the gain for important
organs is quite obvious.

Except for our explicit adaptive prior mechanism, (Liu et
al. 2015) also utilizes prior as an additional network input
via an implicit way. Here we use the same prior informa-
tion to compare two different prior mechanisms and the re-
sults are given in Table 1. With the same network structure,
our approach exceeds implicit method by a large margin.
Especially for eyebrows and eyes region, implicit method’s
performance decreases from 80.4% to 73.8%, and 87.1% to
83.3%, respectively. And even compared to RED-Net with-
out the prior (Ours in Table 1), it is much worse. This can be
attributed to that the prior information is not accurate enough
which could increase the noise of the whole network train-
ing and it may have conflict with learnt feature. However,
our explicit prior mechanism largely solves this issue by in-
corporating prior information adaptively.

Analysis of RED-Unit. Different choices of shortcut em-
ployment formed various decoding structures are shown in
Fig. 6. Among these variants, the structure of Fig. 6-(a) per-
forms slightly better than others. RD-Nets consist of variant
RD-Units are compared in Table 2. We remove all the detail-
learning modules from var a to get var c. It is interesting that
the training strategy affects the performance of var c greatly.
If the weights in decoder part are randomly initialized, the
performance of the trained model is only 83.3%. In contrast,
if the weights of the model are initialized from var a, the per-
formance is 90.2%. Thus we achieve a smaller model whose
performance is comparable to that of var a. We also remove
all the densification modules from var a to get var d, and
observe similar effect of different training strategies (var d
vs. var d-ft). Note that var c-ft has a gain of 1.1 percent vs.
var d-ft. So the densification module is preferred than the
detail-learning module in a simplified configuration. In fact,
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the input here is a very sparse feature map, and the goal of
the densification module is to activate the unpooled neurons
properly. However, if a shortcut branch is added to convert
this module to a detail-learning module, it must learn to de-
press the activation at unpooled neurons to make the result
feature map smooth, which is hard because the activation
and the depression must be fulfilled simultaneously. Var a,
which contains all three types of modules, performs slightly
better than var b, possibly benefiting from the diverse mod-
ule functionalities.

Ground truthImage VGG-Deconv Ours-p

Figure 7: Comparison between VGG-Deconv (Noh, Hong,
and Han 2015) and RED-Net.

Overall Model Size (MB)
Res-var b 0.901 107
Res-var c 0.833 90

Res-var c-ft 0.902 90
Res-var d 0.819 90

Res-var d-ft 0.891 90
Res-var a 0.903 107

Table 2: The comparison of variant decoder structures.
Var a, var b, var c, var d are the network with the same en-
coder as shown in Fig. 3, and different RD-Unit as shown
in Fig. 6-(a), (b), (c) and (d), respectively. The suffix “-ft”
means that in the training process the model is initialized
with the var a result. The models are trained with Caffe plat-
form (Jia et al. 2014).

We show results on the LFW dataset, which has three cat-
egories, i.e., skin, hair and background. In this task, we eval-
uate the performance according to the pixel accuracy and
the F-measure of each category. Results are shown in Table

3. Comparing with Liu’s work, significant improvements of
the F-measure in all three categories and the pixel accuracy
can be observed. Especially, our work improves by roughly
6 percent in the hair category, and the error rate is reduced
by 50.6% in total pixel accuracy.

Figure 8: Comparison between VGG-Deconv (Noh, Hong,
and Han 2015) and our RED-Net on LFW.

Qualitative analysis

To qualitatively show the advantages of our proposed
method, we specifically compare the results of RED-Net
with prior and VGG-Deconv in Fig. 7. It can be observed
that our RED-Net with adaptive prior outperforms in eye-
brow regions when the boundaries of eyebrows are not clear,
as shown in Fig. 7 Row 1 and Row 3. Our RED-Net is more
robust when there is occlusion between hair and eyebrows,
and there is deformable variation in mouth region, as shown
in Row 4. We get results in eye regions when the skin has
complex textures and boundaries, as shown in Row 2. It can
be demonstrated that facial parts with similar appearance
such as light eyebrow and eyes, facial parts with large de-
formable variation can be segmented clearly by our method.

We also show the parsing results on LFW dataset in Fig.
8. We find that our result for hair regions is obviously better,
which is consistent with the quantitative results of F-hair.
Note that our results are visually better than the ground truth.
The ground truth is labeled based on superpixel (Kae et al.
2013), and may be inaccurate on the boundaries.

To explain the functions of modules and advantages of our

Acc F-bg F-hair F-skin
Liu’s 95.12 97.10 80.70 93.93

VGG-Deconv 97.06 97.43 78.05 94.45
Ours 97.59 98.08 86.93 95.20

Table 3: Results on the LFW dataset. The first row reports
the results of (Liu et al. 2015). The second row shows the
results of VGG-Deconv (Noh, Hong, and Han 2015). The
third row shows the results of our RED-Net.
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Figure 9: Outputs of last several modules (or layers) after
last unpooling layer.

RD-Units, Fig. 9 shows the decoding results from last sev-
eral modules (or layers) obtained from the Res-Deconv and
our RED-Net,respectively. For fair comparison and clear il-
lustration, we choose the feature maps after the last unpool-
ing layer. It can be observed that the feature map of decon-
volution layers in Res-Deconv shown in Fig. 9-(Deconv1-2)
is still sparse, while our result of the densification module
shown in Fig. 9-(densification) is much denser. Moreover,
our result of detail-learning module shown in Fig. 9-(detail)
has clearer boundaries than the result of the last deconvo-
lution layer in Res-Deconv in Fig. 9-(Deconv1-1). And our
prediction result in Fig. 9-(Ours) is more accurate than the
result in Fig. 9-(Res-deconv).

To explain the contribution of adaptive prior, Fig. 10
shows the result of with and without adaptive prior. It can be
observed that issue of facial parts with similar appearance
can be resolved in both VGG-Deconv network or our RED-
Net. It can be demonstrated that our adaptive prior mecha-
nism has a strong generalization ability.

Analysis of convergence

Here we show that our network can converge faster than
VGG-Deconv-Net(Noh, Hong, and Han 2015). All the ex-
periments are conducted on Helen with 8000 iterations. Fig.
11 shows the pixel accuracy against the number of iterations
on validation dataset for the two networks. It can be seen
that RED-Net reaches 89.93% accuracy (1.29 percent less
than final) with only 800 iterations, while VGG-Deconv-
Net(Noh, Hong, and Han 2015) reaches 89.10% accuracy
(0.95 percent less than final) with around 7400 iterations. So
our network converges much faster. We also show the com-
parison of the training loss between RED-Net and VGG-
Deconv-Net(Noh, Hong, and Han 2015) in Fig. 12. It can be
seen that the training loss of our RED-Net decreases faster.

Conclusion

In this paper, we propose a deep residual encoder-decoder
framework, i.e. RED-Net, and adaptive prior mechanism to
tackle the face parsing problem, especially for those facial
parts which have large variations of deformation and fairly
similar appearance, e.g. eyes, eyebrows and mouth. With

Figure 10: Prior analysis. Visualize the results of networks
without and with adaptive prior mechanism.

Figure 11: Validation accuracy curve.

Figure 12: Training loss curve.

the powerful RED-Net, efficient and discriminative features
are extracted. Adaptive prior mechanism incorporates face
structure constraint and further refines the parsing results.
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Experimental results demonstrate that our method outper-
forms the state-of-the-arts by a large margin, improving the
F-measure by 5.1% on Helen dataset, and reducing the er-
ror rate by 50.6% on LFW dataset. Specifically, the results
of our method in upper lip, lower lip, brows and eyes re-
gions are 15.7, 14.7, 7 and 10.3 percent higher than exist-
ing method. Qualitative analysis also show that these regions
can be segmented more clearly.
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