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Abstract

The existing image captioning approaches typically train a
one-stage sentence decoder, which is difficult to generate rich
fine-grained descriptions. On the other hand, multi-stage im-
age caption model is hard to train due to the vanishing gradient
problem. In this paper, we propose a coarse-to-fine multi-stage
prediction framework for image captioning, composed of mul-
tiple decoders each of which operates on the output of the
previous stage, producing increasingly refined image descrip-
tions. Our proposed learning approach addresses the difficulty
of vanishing gradients during training by providing a learning
objective function that enforces intermediate supervisions. Par-
ticularly, we optimize our model with a reinforcement learning
approach which utilizes the output of each intermediate de-
coder’s test-time inference algorithm as well as the output
of its preceding decoder to normalize the rewards, which si-
multaneously solves the well-known exposure bias problem
and the loss-evaluation mismatch problem. We extensively
evaluate the proposed approach on MSCOCO and show that
our approach can achieve the state-of-the-art performance.

Introduction

The challenge of image captioning lies in designing a model
that can effectively utilize the image information and gener-
ate more human-like rich image descriptions. Motivated by
the recent advances in natural language processing, current
image captioning approaches typically follow the encoding-
decoding framework (Ranzato et al. 2016), which consists of
a Convolutional Neural Network (CNN) based image encoder
and a Recurrent Neural Network (RNN) based sentence de-
coder, with various variants for image captioning (Fang et al.
2015; Mao et al. 2014; Wu et al. 2016). Most of these exist-
ing image captioning approaches are trained by maximizing
the likelihood of each ground-truth word given the previous
ground-truth words and the image with back propagation.

There are three major problems in these existing image
captioning methods. Firstly, it is extremely hard for them
to generate rich fine-grained descriptions. This is because
rich descriptions require high-complexity models, where the
problem of vanishing gradients often occurs, considering
the back-propagated gradients diminish in strength as they
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Figure 1: Illustration of our proposed coarse-to-fine frame-
work. Our model consists of one image encoder (CNN) and
a sequence of sentence decoders (attention-based LSTM net-
works), and it takes the image as input and refines the image
descriptions from coarse to fine. Here we show the increas-
ingly improved image descriptions in two stages (gray and
dark gray).

propagate through many layers of a complex network. Sec-
ondly, there is an exposure bias between the training and
the testing (Ranzato et al. 2016; Wiseman and Rush 2016;
Gu, Cho, and Li 2017). Specifically, the sentence decoder
is trained to predict a word given the previous ground-truth
words, while at testing time, the caption generation is accom-
plished by greedy search or with beam search, which predicts
the next word based on the previously generated words that is
different from the training mode. Since the model has never
been exposed to its own predictions, it will result in error
accumulation at test time. To address the exposure bias prob-
lem, scheduled sampling (Bengio et al. 2015), i.e., randomly
selecting between previous ground-truth words and previ-
ously generated words, has become the current dominant
training procedure to fit RNNs based models. However, it
can only mitigate the exposure bias but cannot largely solve
it. Thirdly, there is a loss-evaluation mismatch (Ranzato et
al. 2016). Specifically, language models are usually trained
to minimize the cross-entropy loss at each time-step, while
at testing time, we evaluate the generated captions with the
sentence-level evaluation metrics, e.g., BLEU-n (Papineni et
al. 2002), CIDEr (Vedantam, Lawrence Zitnick, and Parikh
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2015), SPICE (Anderson et al. 2016), etc., which are non-
differentiable and cannot be directly used as training loss.

In this paper, considering the great challenge of generating
rich image descriptions in one stage, we propose a coarse-to-
fine multi-stage prediction framework. Our model consists
of an image encoder and a sequence of sentence decoders
that repeatedly generate image descriptions in finer details.
However, directly composing such multi-stage decoders in
an image captioning model faces the risk of the vanishing
gradients problem. Motivated by the works on image recog-
nition (Zhang, Lee, and Lee 2016; Fu, Zheng, and Mei 2017),
which show that supervising very deep networks at interme-
diate layers aids in learning, we also enforce intermediate
supervisions for each stage. Furthermore, inspired by the re-
cent image captioning work (Rennie et al. 2017), which uses
Reinforcement Learning (RL) to address the loss-evaluation
mismatch problem and include the inference process as a
baseline in training to address the exposure bias problem,
we also design a similar RL-based training method but ex-
tend it from one-stage (Rennie et al. 2017) to our multi-stage
framework, where rewards are introduced at each stage as in-
termediate supervision. Particularly, we optimize our model
with a RL-based approach which utilizes the output of each in-
termediate decoder’s test-time inference algorithm as well as
the output of its preceding decoder to normalize the rewards.
In addition, to cope with our coarse-to-fine learning frame-
work, we adopt a stacked attention model to extract more
fine-grained visual attention information for word prediction
at each stage. Figure 1 illustrates our proposed coarse-to-fine
framework, which consists of three stacked Long Short-Term
Memory (LSTM) networks. The first LSTM generates the
coarse-scale image description, and the subsequent LSTM
networks serve as the fine-scale decoders. At each stage in
our model, attention weights and hidden vector produced by
the preceding stage are used as inputs, which are taken as
the disambiguating cues to the subsequent stage. As a result,
each stage of the decoder generates words with increasingly
refined attention weights as well as words.

The main contributions of this work include: (a) a coarse-
to-fine framework which increases the model complexity
gradually with increasingly refined attention weights for im-
age captioning and (b) a reinforcement learning method that
directly optimizes model with the normalized intermediate
rewards. Experiments show outstanding performance of our
approach on MSCOCO (Lin et al. 2014).

Related Works
Image Captioning with Maximum Likelihood Estima-
tion. The information gap between the visual content of
the images and their corresponding descriptions has been
extensively studied (Vinyals et al. 2015; Fang et al. 2015;
Mao et al. 2014; Wu et al. 2016). The classical image cap-
tioning framework is based on the CNN image encoder and
the RNN based sentence decoder (Vinyals et al. 2015). Only
providing the global image feature is not sufficient, as the
power of RNNs lies in its capability to model the contex-
tual information between time steps, while the global image
representation weakens the RNN’s memory of the visual in-
formation. To better incorporate the image information into

the language processing, a few approaches have been pro-
posed (You et al. 2016; Yang et al. 2016b). Visual attention
for image captioning was first being introduced by (Xu et al.
2015) which incorporates the spatial attention on convolu-
tional features of images into the encoder-decoder framework
through the soft and hard attention mechanisms. Their work
was later followed by (Yang et al. 2016a) and (Liu et al.
2017b) which further improves the visual attention mecha-
nism. However, all these approaches are typically trained by
maximising the likelihood estimation, often called as Teacher-
Forcing (Williams and Zipser 1989). Instead of training the
model with the handcrafted loss, some researchers applied the
adversarial training for image captioning, called Professor-
Forcing (Lamb et al. 2016), which uses adversarial training
to encourage the dynamics of the RNNs to be the same as
that of training conditioned on previous ground truth words.

Recently, some works have proposed to encode more dis-
criminative visual information into the captioning model.
They leverage visual attributes of the image to enhance
the visual information using some weakly supervised ap-
proach. In (You et al. 2016; Yao et al. 2017), they incorpo-
rate high-level attributes into the encoder-decoder framework
and achieve large improvements. Both of (You et al. 2016)
and (Wu et al. 2016) treat the attribute detection problem as
a multi-instance learning (MIL) problem and train a corre-
sponding CNN by minimizing the element-wise logistic loss
function. (Liu et al. 2017a) uses R-FCN (Li et al. 2016) to
detect the visual attributes and adopts a sequential attention
mechanism to translate the attributes to a word sequence.
Image Captioning with Reinforcement Learning. Sev-
eral attempts have been made to use reinforcement learning
to address the discrepancy between the training and the test-
ing objectives for image captioning (Rennie et al. 2017).
The first work of training RNN-based sequence model with
policy gradient was proposed by (Ranzato et al. 2016), in
which a REINFORCE-based approach was used to calcu-
late the sentence-level reward and a Monte-Carlo technique
was employed for training. Similarly, (Liu et al. 2017c) esti-
mates the action value by averaging three roll-out sequences
which is the same as (Yu et al. 2017). Instead of using the
sentence-level reward in training, (Bahdanau et al. 2017) use
the token-level reward in temporal difference training for
sequence generation. Recently, the self-critical learning ap-
proach proposed by (Rennie et al. 2017) utilizes an improved
REINFORCE algorithm with a reward obtained by the cur-
rent model against the baseline, i.e., the inference algorithm.

All these existing researches on image captioning mainly
focus on one-stage training (Mao et al. 2014; Vinyals et al.
2015; Rennie et al. 2017). However, it is challenging to gen-
erate a rich description for the image in one stage. Rather
than generating image description in one-step, in this pa-
per, we propose a coarse-to-fine model by stacking multiple
intermediate sentence decoders and optimizing them with
sentence-level evaluation metrics, where the coarse decoder
generates the coarse caption and reduces the computational
burden for the fine-scale sentence decoders to generate com-
plex and rich image descriptions. Note that our coarse-to-fine
concept at high level is similar to the coarse-to-fine reason-
ing (Kiddon and Domingos 2011), while the latter is not for
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image captioning. Our RL-based supervision for solving the
loss-evaluation mismatch problem is related to (Rennie et al.
2017), while ours is designed for our multi-stage coarse-to-
fine model and (Rennie et al. 2017) is for the conventional
one-stage model.

Methodology

In this paper, we consider the problem of learning to gen-
erate image description Ŷ = {Ŷ0, . . . , ŶT−1} for an image
I, where Ŷt ∈ D is the predicted word, D is the dictionary,
and T denotes the sequence length. Our algorithm builds
a coarse-to-fine model with the same target as those one-
stage models, but with the additional intermediate layers
between the output layer and the input layer. We first train
the model by maximizing log-likelihood of each successive
target word conditioned on the input image and the gold his-
tory of target words Y = {Y0, . . . , YT−1}, and then optimize
the model with sentence-level evaluation metrics. We denote
by Ŷi, i ∈ {0, · · · , Nf} the predicted word sequence of the
i-th stage decoder, and Nf is the total number of fine stages.
As a result, each intermediate sentence decoder predicts the
increasingly refined image description, and the prediction of
the last decoder is taken as the final image description. Note
that we treat stage i = 0 as the coarse decoder, and stages
i >= 1 as the fine decoders.

Image Encoding

We first encode the given image I to the spatial image
features V = {V0, · · · , Vk×k−1}, Vi ∈ R

dv with CNN:
V = CNN(I), where k × k is the number of regions, each
feature channel Vi depicts a region of the image, and dv is the
dimension of the feature vector for each region. Specifically,
we extract the image features from the final convolutional
layer of CNN, and use spatial adaptive average pooling to
resize the features to a fixed-size spatial representation of
k × k × dv .

Coarse-to-Fine Decoding

The overall coarse-to-fine sentence decoder consists of one
coarse decoder and a sequence of attention-based fine de-
coders that repeatedly produce refined attention maps for the
prediction of each word based on the cues from the preceding
decoder. The first stage of our model is a coarse decoder
which predicts coarse description from the global image fea-
ture. In the subsequent stages, each stage i ∈ {1, · · · , Nf} is
a fine decoder which predicts the improved image description
based on image features and the outputs of the preceding
stage. Particularly, we use the attention weights of the pre-
ceding stage to provide the following stage beliefs of regions
for word prediction. More formally, we decode the image
features in multiple stages, where the prediction Ŷi of each
stage is a refinement of the prediction Ŷi−1 of previous stage.

Figure 2 illustrates the coarse-to-fine decoding architec-
ture, where the top row contains one coarse decoder and
two stacked attention-based fine decoders under the training
mode, and the bottom row shows the fine decoders under its
inference mode (greedy decoding) for computing rewards so
as to incorporate intermediate supervisions. In the following,

we will introduce the adopted coarse decoder, our proposed
fine decoder, our proposed stacked attention model and our
proposed RL-based process for incorporating intermediate
supervisions.

Coarse Decoder. We start by decoding in a coarse search
space in the first stage (i = 0), where we learn a coarse
decoder with an LSTM network, called LSTMcoarse. At each
time step t ∈ [0, T − 1], the input to LSTMcoarse consists of
the previous target word yt−1, concatenated with the global
image feature, and the previous hidden states. The operation
of the LSTMcoarse can be described as:

o0t , h
0
t = LSTMcoarse(h

0
t−1, i

0
t , yt−1) (1)

i0t =[f(V);h
Nf

t−1] (2)

where h0
t−1 and h

Nf

t−1 are the hidden states, o0t is the cell
output, yt−1 = WeYt−1 is the embedding of previous
word Yt−1. We obtain the global image feature f(V) by
taking a mean-pooling over the spatial image features as
1

k×k

∑k×k−1
i=0 Vi. The t-th decoded word Ŷ 0

t of LSTMcoarse

is drawn from the dictionary D according to the softmax
probability: Ŷ 0

t ∼ Softmax(W0
oo

0
t + b0

o).

Fine Decoder. In the subsequent stages, each fine decoder
predicts the word Ŷ i

t based on the image features V again,
and the attention weights αi−1

t and the hidden state hi−1
t

from the preceding LSTM. Each fine decoder consists of
an LSTMi

fine network and an attention model. At each time
step t, the input to LSTMi

fine consists of the attended image
feature, the previous word embedding yt−1, its previous hid-
den state hi

t−1, and the updated hidden state hi−1
t from the

preceding LSTM. Note that when t = 1, h0
t is the hidden

output of LSTMcoarse; otherwise hi−1
t is the hidden output of

the preceding LSTMi−1
fine . Therefore, the updating procedure

of LSTMi
fine can be written as:

oit, h
i
t = LSTMi

fine(h
i
t−1, i

i
t, yt−1) (3)

iit = [g(V,αi−1
t , hi−1

t );hi−1
t ] (4)

where oit is the cell output of LSTMi
fine, and g(·) is the spatial

attention function which feeds attended visual representa-
tions as the additional inputs to LSTMi

fine at each time step to
emphasise the detailed visual information. During the infer-
ence, the final output word Ŷt is drawn from D according to
the softmax probability: Ŷt ∼ Softmax(WNf

o o
Nf

t + b
Nf
o ).

Stacked Attention Model. As aforementioned, our coarse
decoder generates words based on the global image features.
However, in many cases, each word is only related to a small
region of an image. Using the global image feature for word
prediction could lead to sub-optimal results due to the noises
introduced from the irrelevant regions for each prediction (Gu
et al. 2017b).

Therefore, the attention mechanism has been introduced to
significantly improve the performance of image captioning. It
typically produces a spatial map highlighting image regions
relevant to each predicted word. In this research, to extract
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Figure 2: Illustration of the proposed coarse-to-fine decoding
using intermediate supervision (reward) after each stage. The
top row (gray) contains one coarse decoder (left) and two
visual attention-based fine decoders under the training mode.
The bottom row shows the fine decoders under its inference
mode (greedy decoding) for computing rewards.

more fine-grained visual information for word prediction, we
adopt a stacked attention model to filter out noises gradually
and pinpoint the regions that are highly relevant to the word
prediction. In each fine stage i, our attention model operates
on both image features V and attention weights αi−1

t from
the preceding stage.

Formally, for the time step t of stage i, the stacked attention
model is defined as:

g(V,αi−1
t , hi−1

t ) =
k×k−1∑
n=0

αi,n
t · (Wi

vαVn + bi
vα) (5)

where αi,n
t corresponds to the attention probability of each

image region. We compute the attention probability αi,n
t as

follows:

αi
t =softmax(Wi

αA
i
t + bi

α) (6)

Ai,n
t =tanh(Wi

vaVn +Wi
hah̄

i−1
t ) (7)

h̄i−1
t =hi−1

t +
k×k−1∑
n=0

αi−1,n
t · (Wi−1

vα Vn + bi−1
vα ) (8)

where hi−1
t is the updated hidden state of LSTMi−1

fine , which is
added to the aggregated image features to form a new hidden
representation h̄i−1

t . Note that when i = 1, we set α0
t to zero.

Learning

The coarse-to-fine approach described above results in a deep
architecture. Training such a deep network can be prone to
the vanishing gradient problem, where the magnitude of gra-
dients decreases in strength when back-propagated through
multiple intermediate layers. A natural approach to address
this problem is to incorporate supervised training objectives
into the intermediate layers. Each stage of the coarse-to-fine

sentence decoder is trained to predict the words repeatedly.
We first train the network by defining a loss function for each
stage i that minimizes the cross-entropy (XE) loss, i.e.,

Li
XE(θ0:i) = −

T−1∑
t=0

log(pθ0:i(Yt | Y0:t−1, I)), (9)

where the Yt is the ground-truth word, and θ0:i is the parame-
ters up to the stage-i decoder. By adding the losses at each
stage i, we obtain the overall learning objective for the full
architecture:

LXE(θ) =

Nf∑
i=0

Li
XE(θ0:i)

=−
Nf∑
i=0

T−1∑
t=0

log(pθ0:i(Yt | Y0:t−1, I)) (10)

where pθ0:i(Yt | Y0:t−1, I) is the output probability of word
Yt given by the LTSMi decoder. We share the weights of the
models across all time steps.

However, training with the loss function of Equation 10
is not sufficient. As mentioned in Section 1, the existing
log-likelihood training methods have the problem of the
discrepancy between their training and testing modes, where
the model is often trained with scheduled sampling, while in
testing, greed decoding or beam search is commonly used to
get higher scores. Besides, the log-likelihood score of the pre-
diction does not correlate well with the standard evaluation
metrics such as BLEU, and CIDEr. Many researchers have
explored in the direction of optimizing the image captioning
model with the evaluation metrics (e.g., CIDEr in (Rennie
et al. 2017)). To optimise the evaluation metrics during each
stage, we consider the image caption generation process as a
reinforcement learning problem, i.e., given an environment
(previous states), we want to get an agent (e.g., RNN, LSTM
or GRU) to look at the environment (image features, hidden
states, and previous words), and make an action (the predic-
tion of the next word). After generating a complete sentence,
the agent will observe a sentence-level reward and update its
internal state.

We cast our generative model in the reinforcement learning
terminology as in (Ranzato et al. 2016; Rennie et al. 2017).
The LSTM-based decoder of each stage can be viewed as an
agent that interacts with the external environment. The policy
network parametrized by θ0:i defines a policy pθ0:i , which
receives a state (preceding outputs, internal state of LSTM
and image features) and produces an action Ỹ i

t ∼ pθ0:i which
is the prediction of the next word sampled from the LSTM at
time step t. Once we have a complete predicted sentence Ỹi,
the agent observes a reward r(Ỹi) (e.g., CIDEr score) of the
sentence. The goal of RL-based training is to minimize the
negative expected rewards (punishments) of multi-stages, :

LRL(θ) = −
Nf∑
i=1

EỸi∼pθ0:i
[r(Ỹi)] ≈ −

Nf∑
i=1

r(Ỹi) (11)

where Ỹi = {Ỹ i
0 , · · · , Ỹ i

T−1}, and Ỹ i
t is sampled from the

stage i at time step t. r(Ỹi) is calculated by comparing the
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generated sentence to the corresponding reference sentences
using the standard evaluation metric. Note that we do not
consider i = 0 in Equation 11 as the coarse decoder does not
has a preceding stage. After that, we calculate the expected
gradient using the Monte-Carlo sample Ỹi from pθ0:i as:

∇θLRL(θ) =

Nf∑
i=1

∇θ0:iLRL(θ0:i) (12)

≈−
Nf∑
i=1

r(Ỹi) · ∇θ0:i log pθ0:i(Ỹ
i) (13)

To reduce the variance of the gradient estimate in Equation 13,
we follow the REINFORCE approach from SCST (Rennie et
al. 2017) to approximate Equation 13 as:

∇θLRL(θ) ≈ −
Nf∑
i=1

Δr(Ỹi) · ∇θ0:i log pθ0:i(Ỹ
i) (14)

where Δr(Ỹi) is the relative reward which can reduce the
variance of the gradient estimate. The principal idea of our
RL-based coarse-to-fine learning approach is to baseline the
REINFORCE algorithm with the reward r(Ŷi) obtained in
each stage under the inference algorithm at test time, as well
as the reward r(Ỹi−1) obtained by its preceding decoder at
train time. Particularly, Δr(Ỹi) is defined as:

Δr(Ỹi) =
[
r(Ỹi)− r(Ŷi)

]
+
[
r(Ỹi)− r(Ỹi−1)

]
(15)

where Ỹi is a sampled caption of the i-th stage and Ŷi

is obtained by the conventional greedy decoding. The first
term in Equation 15 tends to increase the probability of the
samples of stage i that score higher than the results of stage i
at test-mode (greedy decoding). In other words, we supress
those samples that have the worse scores than the greedy
decoding results. The second term increases the probability
of the samples from stage i that outperform the samples from
stage i− 1, and suppresses the inferior samples.

Experiments

In this section, we first describe the dataset used in our exper-
iments, and then introduce the baseline methods for compar-
isons and the implementation details followed by the detailed
results. We report all the results using MSCOCO caption
evaluation tool1.

Datasets and Setting

We evaluate the proposed approach on MSCOCO dataset.
The dataset contrains 123,000 images, where each image has
five reference captions. We follow the setting of (Karpathy
and Fei-Fei 2015) by using 5,000 images for offline validation
and 5,000 images for offline testing. The widely used BLEU,
METEOR, ROUGE, CIDEr, and SPICE scores are used to
measure the quality of the generated captions. We further test
on the MSCOCO test set consisting of 40,775 images, and
then conduct the online comparison against the state-of-the-
art via the online MSCOCO evaluation server.

1https://github.com/tylin/coco-caption

Baseline Approaches for Comparisons

To gain insight into the effectiveness of our proposed ap-
proach, we compare the following models with each other:
LSTM and LSTM3 layers. We implement a one layer
LSTM-based image captioning model based on the frame-
work proposed by (Vinyals et al. 2015). We also add two
additional LSTM networks after the one layer LSTM model,
which is named as LSTM3 layers. We first train these two mod-
els with XE loss, and then optimize the CIDEr metric with
SCST (Rennie et al. 2017).
LSTM+ATTSoft and LSTM+ATTTop-Down. We imple-
ment two types of visual attention-based image caption-
ing models: the Soft-attention model (LSTM+ATTSoft) pro-
posed by (Xu et al. 2015) and the Top-Down attention model
(LSTM+ATTTop-Down) proposed by (Anderson et al. 2017).
We encode the image with ResNet-101 and apply the spatially
adaptive pooling to get a fixed-size output of 14× 14× 2048.
At each time step, the attention model produces an attention
mask over the 196 spatial locations. LSTM+ATTTop-Down con-
sists of two LSTM networks, where the first LSTM takes the
mean-pooled image feature as input, and the second LSTM
predicts the words based on the attended image features and
the hidden state of the first LSTM. Similarly, we also train
these two models with XE Loss and the RL-based sentence-
level metric.
Stack-Cap and Stack-Cap∗. Stack-Cap is our proposed
method and Stack-Cap∗ is a simplified version. In particu-
lar, Stack-Cap∗ incorporates the multiple attention models
into LSTM3 layers. Here we treat the first LSTM as the coarse
decoder, and the subsequent two attention-based LSTM net-
works (Nf = 2) as the fine decoders. Stack-Cap has the
architecture similar to Stack-Cap∗, except that it applies the
proposed stacked attention model instead of the independent
attention model. We train these two models (Stack-Cap∗ and
Stack-Cap) with the proposed coarse-to-fine (C2F) learning
approach.

Implementation Details

In this paper, we set the number of hidden units of each
LSTM to 512, the number of hidden units in the attention
layer to 512, and the vocabulary size of the word embedding
to 9,487. In our implementation, the parameters are randomly
initialized except the image CNN, for which we encode the
full image with the ResNet-101 pre-trained on ImageNet.

We first train our model under the cross-entropy cost us-
ing Adam (Kingma and Ba 2015) optimizer with an initial
learning rate of 4 × 10−4 and a momentum parameter of
0.9. After that, we run the proposed RL-based approach on
the just trained model to be optimized for the CIDEr metric.
During this stage, we use Adam with a learning rate 5×10−5.
After each epoch, we evaluate the model on the validation set
and select the model with the best CIDEr score for testing.
During testing, we apply beam search which can increase the
performance of greedy decoding. Unlike greedy decoding
which keeps only a single hypothesis during decoding, Beam
search keeps K > 1 (K = 5 in our experiments) hypotheses
that have the highest scores at each time step, and returns the
hypothesis with the highest log probability at the end.
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Quantitative Analysis

In this experiment, we first optimize the models with the
standard cross-entropy (XE) loss. We report the performance
of our model and the baselines on the Karpathy test split in
Table 1. Note that all results are reported without fine-tuning
of the ResNet-101.

Approach B@1 B@2 B@3 B@4 M C
LSTM (XE) 72.1 54.8 39.6 28.5 24.3 91.4
LSTM3 layers (XE) 70.5 53.1 38.9 28.3 23.2 85.7
LSTM+AttSoft (XE) 73.8 57.2 43.1 33.0 25.7 101.0
LSTM+AttTop-Down (XE) 74.9 58.6 44.5 33.3 25.8 103.4
Stack-Cap∗ (XE) 75.6 59.6 45.6 34.6 26.3 108.0
Stack-Cap (XE) 76.2 60.4 46.4 35.2 26.5 109.1

Table 1: Performance comparisons on MSCOCO, where
B@n is short for BLEU-n, M is short for METEOR, and
C is short for CIDEr. All values are reported as the percent-
age (Bold numbers are the best results).

It can be seen from Table 1 that our coarse-to-fine im-
age captioning model (Stack-Cap) achieves the best per-
formances in all metrics. The two coarse-to-fine models,
Stack-Cap and Stack-Cap∗, give similar performance. Note
that although these two coarse-to-fine models have the same
number of LSTM units as LSTM3 layers, directly adding two
additional LSTM layers in LSTM3 layers without interme-
diate supervision decreases the performance of LSTM as
the model experiences overfitting. Our coarse-to-fine ap-
proach can optimize the network gradually with the inter-
mediate supervision and avoid overfitting. We also observe
that Soft attention (LSTM+ATTSoft) and Top-Down atten-
tion (LSTM+ATTTop-Down) can significantly improve the per-
formance of image captioning. Our best model (Stack-Cap)
with stacked attention networks outperforms the Stack-Cap∗,
which demonstrates that adjusting the attention on the rel-
evant visual clues progressively can generate better image
descriptions.

Approach B@1 B@2 B@3 B@4 M C
LSTM (CIDEr) 76.7 58.3 42.8 30.8 25.5 100.2
LSTM3 layers (CIDEr) 73.0 56.1 41.1 29.9 25.1 95.9
LSTM+AttSoft (CIDEr) 77.3 59.3 44.1 32.1 25.9 104.8
LSTM+AttTop-Down (CIDEr) 76.7 60.4 45.6 33.9 26.5 112.7
Stack-Cap∗ (C2F) 77.9 61.6 46.7 35.0 26.9 115.9
Stack-Cap (C2F) 78.6 62.5 47.9 36.1 27.4 120.4

Table 2: Performance comparisons with the baselines on
MSCOCO Karpathy test split. Our Stack-Cap (C2F) model
achieves significant grains across all metrics.

After optimizing the models with XE loss, we optimize
them for the CIDEr metric with the RL-based algorithms. The
performances of the four models optimized for CIDEr with
the SCST (Rennie et al. 2017) and the performances of two
models optimized with the proposed coarse-to-fine (C2F)
learning are also reported in Table 2. We can see that our
Stack-Cap model obtains significant gains across all metrics.

Table 3 compares the results of our Stack-Cap (C2F) model
with those of the existing methods on MSCOCO Karpathy

test split, where Stack-Cap achieves the best performance in
all metrics.

Online Evaluation. Table 4 reports the performance of our
proposed Stack-Cap model trained with the coarse-to-fine
learning on the official MSCOCO evaluation server2. We
can see that our approach achieves very competitive perfor-
mance, compared to the state-of-the-art. Note that the results
of SCST:Att2in (Ens. 4) are achieved by the ensemble of four
models, while our results are generated by the single model.

Figure 3: Visualizations of the generated captions and image
attention maps on MSCOCO. Ground-Truth (GT) descrip-
tions and the generated description of each stage are shown
for each example. The columns from left to right correspond
to the outputs of the three LSTM decoders from coarse to
fine (coarse: black, refined: purple, final: red).

Qualitative Analysis

To demonstrate that using the proposed coarse-to-fine ap-
proach can generate better image descriptions stage-by-stage
that correlate well with the adaptively attended regions, we
visualize the spatial attention weight for word in the gener-
ated captions. We upsample the attention weights by a factor
of 16 and apply a Gaussian filter to make it the same size as
the input image, and stack all the upsamped spatial attention
maps into the original input image.

Figure 3 shows some generated captions. By reasoning
via multiple attention layers progressively, the Stack-Cap
model can gradually filter out noises and pinpoint the regions
that are highly relevant to the current word prediction. We
can find that our Stack-Cap model learns alignments that
correspond strongly with human intuition. Taking the first
image as an example, compared with the caption generated
in the coarse stage, the first refined caption generated by the
first fine decoder contains “dog,” and the second fine decoder
not only produces “dog,” but also identifies “umbrella.”

Besides, our approach can generate more descriptive sen-
tences. For example, the attention visualizations of the jets
image show that the Stack-Cap model can query the rela-
tionship of those “jets” as well as the long trail of smoke

2https://competitions.codalab.org/competitions/3221
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Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE
Google NIC (Vinyals et al. 2015) — — — 27.7 — 23.7 85.5 —
Hard-Attention (Xu et al. 2015) 70.7 49.2 34.4 24.3 23.9 — — —
Soft-Attention (Xu et al. 2015) 71.8 50.4 35.7 25.0 23.0 — — —
VAE (Pu et al. 2016) 72.0 52.0 37.0 28.0 24.0 — 90.0 —
Google NICv2 (Vinyals et al. 2016) — — — 32.1 25.7 — 99.8 —
Attributes-CNN+RNN (Wu et al. 2016) 74.0 56.0 42.0 31.0 26.0 — 94.0 —
CNNL+RHN (Gu et al. 2017a) 72.3 55.3 41.3 30.6 25.2 — 98.9 18.3
PG-SPIDEr-TAG (Liu et al. 2017c) 75.4 59.1 44.5 33.2 25.7 55.0 101.3 —
Adaptive (Lu et al. 2017) 74.2 58.0 43.9 33.2 26.6 — 108.5 —
SCST:Att2in (Rennie et al. 2017) — — — 33.3 26.3 55.3 111.4 —
SCST:Att2in (Ens. 4) (Rennie et al. 2017) — — — 34.8 26.9 56.3 115.2 —
Stack-Cap (C2F) 78.6 62.5 47.9 36.1 27.4 56.9 120.4 20.9

Table 3: Comparisons of the image captioning performance of the existing methods on MSCOCO Karpathy test split. Our
Stack-Cap (C2F) model with the coarse-to-fine learning achieves significant gains across all metrics.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Approach c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Google NIC 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6
Hard-Attention 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 89.3
PG-SPIDEr-TAG 75.1 91.6 59.1 84.2 44.5 73.8 33.1 62.4 25.5 33.9 55.1 69.4 104.2 107.1
Adaptive 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9
SCST:Att2in (Ens. 4) 78.1 93.1 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Ours: Stack-Cap (C2F) 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3

Table 4: Leaderboard of the published image captioning models (as of 10/09/2017) on the online MSCOCO test server. Our single
Stack-Cap model trained with the coarse-to-fine learning yields comparable performance with the state-of-the-art approaches on
all reported metrics.

behind them, as there are strong attention weights that encom-
pass this salient region. This, together with other examples,
suggests that the stacked attention can more effectively ex-
plore the visual information for sequence prediction. In other
words, our approach via the stacked attention can consider
visual information in the image from coarse to fine, aligning
well with the human visual system, where we usually use a
coarse-to-fine procedure to understand pictures.

Conclusion

In this paper, we have presented a coarse-to-fine image cap-
tioning model which utilizes a stacked visual attention model
in conjunction with multiple LSTM networks to achieve bet-
ter image descriptions. Unlike the conventional one-stage
models, our approach allows generating captions from coarse
to fine, which we found to be very beneficial for image cap-
tioning. Our model achieves comparable performance with
the state-of-the-art approach using ensemble on the online
MSCOCO test server. Future research directions include in-
tegrating extra attributes learning into image captioning, and
incorporating beam search into the training procedure.
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