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Abstract

A new approach for real-time scene text recognition is pro-
posed in this paper. A novel binary convolutional encoder-
decoder network (B-CEDNet) together with a bidirectional
recurrent neural network (Bi-RNN). The B-CEDNet is en-
gaged as a visual front-end to provide elaborated charac-
ter detection, and a back-end Bi-RNN performs character-
level sequential correction and classification based on learned
contextual knowledge. The front-end B-CEDNet can process
multiple regions containing characters using a one-off for-
ward operation, and is trained under binary constraints with
significant compression. Hence it leads to both remarkable
inference run-time speedup as well as memory usage reduc-
tion. With the elaborated character detection, the back-end
Bi-RNN merely processes a low dimension feature sequence
with category and spatial information of extracted characters
for sequence correction and classification. By training with
over 1,000,000 synthetic scene text images, the B-CEDNet
achieves a recall rate of 0.86, precision of 0.88 and F-score
of 0.87 on ICDAR-03 and ICDAR-13. With the correction
and classification by Bi-RNN, the proposed real-time scene
text recognition achieves state-of-the-art accuracy while only
consumes less than 1-ms inference run-time. The flow pro-
cessing flow is realized on GPU with a small network size of
1.01 MB for B-CEDNet and 3.23 MB for Bi-RNN, which is
much faster and smaller than the existing solutions.

Introduction

The success of convolutional neural network (CNN) has re-
sulted in a potential general machine learning engine for
various computer vision applications (LeCun et al. 1998;
Krizhevsky, Sutskever, and Hinton 2012), such as text detec-
tion, recognition and interpretation from images. Applica-
tions, such as Advanced Driver Assistance System (ADAS)
for road signs with text, however, require a real-time pro-
cessing capability that is beyond the existing approaches
(Jaderberg et al. 2014; Jaderberg, Vedaldi, and Zisserman
2014) in terms of processing functionality, efficiency and la-
tency.

For a real-time scene text recognition application, one
needs a method with memory efficiency and fast process-
ing time. In this paper, we reveal that binary features (Cour-
bariaux and Bengio 2016) can effectively and efficiently
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represent the scene text image. Combining with deconvolu-
tion technique, we introduce a binary convolutional encoder-
decoder network (B-CEDNet) for real-time one-shot charac-
ter detection and recognition. The scene text recognition is
further enhanced with a back-end character-level sequential
correction and classification, based on a bidirectional recur-
rent neural network (Bi-RNN). Instead of detecting charac-
ters sequentially (Bissacco et al. 2013; Wang et al. 2012; Shi,
Bai, and Yao 2015), our proposed method, called Squeezed-
Text, can detect multiple characters simultaneously and ex-
tracts a length-variable character sequence with correspond-
ing spatial information. This sequence will be subsequently
fed into a Bi-RNN, which then learns the detection error
characteristics from the previous stage to provides character-
level correction and classification based on the spatial and
contextual cues.

By training with over 1,000,000 synthetic scene text im-
ages, the proposed SqueezedText can achieve recall rate of
0.86, precision of 0.88 and F-score of 0.87 on ICDAR-03
(Lucas et al. 2003) dataset. More importantly, it achieves
state-of-the-art accuracy of 93.8%, 92.7%, 94.3% 96.1% and
83.6% on ICDAR-03, ICDAR-13, IIIT5K, STV and Syn-
the90K datasets. SqueezedText is realized on GPU with a
small network size of 1.01 MB for B-CEDNet and 3.23 MB
for Bi-RNN; and consumes less than 1 ms inference run-
time on average. It is up to 4× faster and 6× smaller than
state-of-the-art work.

The contributions of this paper are summarized as fol-
lows:

• We propose a novel binary convolutional encoder-decoder
neural network model, which acts as a visual front-end
module to provide unconstrained scene text detection
and recognition. It effectively detects individual character
with high recall rate, realizing an extremely fast run-time
speed and small memory consumption.

• We reveal that the text features can be learned and en-
coded in binary format without loss of discriminative in-
formation. This information can be further decoded and
recovered to perform multi-character detection and recog-
nition in parallel.

• We further design a back-end bidirectional RNN (Bi-
RNN) to provide fast and robust scene text recognition
with correction and classification.
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Related work

It is challenging to recognize text from the natural images
since the text image will suffer from noise, blur, distortion,
occlusion and variation. Generally, there are two categories
of methods that can be applied, character-level method and
word-level method. The character-level method (Mishra,
Alahari, and Jawahar 2012b; 2012a; Sawaki, Murase, and
Hagita 2000; Zhou and Lopresti 1997; Zhou, Lopresti, and
Lei 1997; Novikova et al. 2012) performs an individual char-
acter detection and recognition. It relies on a multi-scale
sliding window strategy to localize and recognize charac-
ters. A robust word recognition relies on a strong charac-
ter detector which will be run on different parts of the im-
age for many times. The word-level methods such as (Jader-
berg et al. 2014; Rodriguez-Serrano, Perronnin, and Mey-
lan 2013) treat scene text recognition as an image classifica-
tion problem, and assign a class label to each English word.
(Rodriguez-Serrano, Perronnin, and Meylan 2013) proposed
to embed word labels and word images into a common Eu-
clidean space. The text recognition is equivalent to finding
the closest word label in this space when given a word im-
age. This space is learned by Structed SVM (Hare et al.
2016) by enforcing matching label-image pairs to be closer
than non-matching pairs. (Jaderberg et al. 2014) presented
a deep neural network model which is trained on data pro-
duced by a synthetic text generation engine. This network
encodes 90,000 character sequence and achieves the state-
of-the-art recognition performance.

We propose a binary convolutional encoder-decoder neu-
ral network model to provide unconstrained scene text de-
tection and recognition, which effectively detects individual
character with high recall rate, realizing an extremely fast
run-time speed and small memory consumption. With the
elaborated character detection by B-CEBDNet, the back-end
Bi-RNN merely processes a low dimension feature sequence
for sequence classification.

Approach

SqueezedText overview

The overall recognition pipeline is illustrated in Fig 1. Given
a scene text image with size of WI × HI , the proposed B-
CEDNet produces C salience maps with size of WI × HI

which can be combined into a 3D array S ∈ RWI×HI×C .
Note that C denotes the number of characters plus a back-
ground class. A character sequence with spatial information
U = [u1, u2, · · · , uT ] is extracted from S by firstly thresh-
olding S with confidence factor Fconf and then performing
binary morphologic filtering with kernel size of Mmf . Here,
ut ∈ RDu

denotes label vector indicating the category, po-
sition, width and height of detected character. The extracted
sequence U will be fed into a Bi-RNN network (Ma and
Hovy 2016) that corrects the detecting error in U by per-
forming a contextual correction and classification and then
outputs the recognition results.

B-CEDNet for character detection

Binary feature encoding and decoding for real-time
character detection There exists large amounts of redun-
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Figure 1: SqueezedText overview: The B-CEDNet produces
salience maps for each character which reveal their category
and spatial information. Thresholding and morphologic fil-
tering find the position and size of character region which
will be organized to a vector sequence for contextual correc-
tion and text classification provided by Bi-RNN.

dancy in real-valued feature encoding, which prohibits the
deployment of traditional CNN on embedded devices for
real-time scene text recognition. It has been shown that both
weights and the activations can be constrained in binary
format during training without a significant accuracy loss
(Courbariaux and Bengio 2016). The binary weights and
activations result in a large amount of memory reduction.
More importantly, the convolution can be realized by bitwise
XNOR followed by bit-count operation (Courbariaux and
Bengio 2016), which leads to a much higher level of com-
puting parallelism when compared with conventional CNNs.

In the conventional CNN, multiple convolutional blocks
are stacked together, forming a convolutional encoder that
generates discriminative features with lower dimension (Le-
Cun et al. 1998). Then, a classification is performed by a
fully-connected layer based on the output of the convolu-
tional encoder. When the traditional CNN is applied for
scene text recognition, generally an input image is divided
(from left to right) into patches with equal size and stride,
and the classification is performed on each patch by CNN
(Shi, Bai, and Yao 2015; Jaderberg, Vedaldi, and Zisserman
2014). This approach can cause duplicated detection if one
character lies in multiple patches, or meaningless detection
if multiple characters lie in just one patch, requiring addi-
tional complex post-processing. The reason behind is that
the traditional CNN is designed to recognize one object for
one image. Although the features provided by the convolu-
tional layers are highly correlated to a corresponding region
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in an image, this spatial information is ignored by the fully-
connected layer which naively treats the multi-dimensional
features as a one-dimension vector to perform the classifica-
tion with loss of accuracy.

In our method, we firstly extract the features using binary
convolutional encoder, and then use deconvolution tech-
nique (Kim and Hwang 2016; Badrinarayanan, Kendall,
and Cipolla 2015) to reconstruct a rich set of discrimina-
tive features from the output of convolutional encoder. Note
that all the features are in binary format. Combined with
binary decoding operation, less discriminative information
is suppressed and the highly discriminative information is
boosted. More importantly, the binary weights, activation
and convolution operation lead to a massive computing par-
allelism with a great reduction of memory usage.

B-CEDNet architecture Fig. 2 illustrates the architecture
of the proposed Binary Convolutional Encoder-decoder Net-
work (B-CEDNet). The B-CEDNet consists of three main
modules, adapter module, binary encoder module and binary
decoder module.

Adapter. The adapter module (block-0) contains a
full-precision convolutional layer, followed by a batch-
normalization (BN) layer and binarization (Binrz) layer. It
transforms the input data into binary format before feeding
the data into the binary encoder module.

Binary convolutional encoder. The binary encoder mod-
ule consists of 4 blocks (block-1 to -4), each of which
has one binary convolutional (BinConv) layer, one batch-
normalization (BN) layer, one pooling layer and one bina-
rization (Binrz) layer. The BinConv layer takes binary fea-
ture maps abk−1 ∈ {−1,+1}Wk−1×Hk−1×Dk−1 as input and
performs binary convolution operation which is illustrated
as follows:

sk(x, y, z) =

wk∑

i=1

hk∑

j=1

Dk−1∑

l=1

XNOR(wb
k(i, j, l, z), a

b
k−1(i+ x− 1, j + y − 1, l)),

(1)

where XNOR(·) is defined as bitwise XNOR operation,
wb

k ∈ {−1,+1}wk×hk×Dk−1×Dk are the binary weights
in k-th block and sk ∈ R

Wk×Hk×Dk is the output of the
spatial convolution. Note that the BinConv operation can be
implemented on GPU by concatenating 32 binary variables
into 32-bit registers and a 32× speedup can be obtained
on bitwise operations (XNOR) (Courbariaux and Bengio
2016). Then sk will be normalized by the BN layer be-
fore pooling and binarization. The output of k-th BN layer
ak ∈ R

Wk×Hk×Dk is represented by

ak(x, y, z) =
sk(x, y, z)− μ(x, y, z)√

σ2(x, y, z) + ε
γ(x, y, z) + β(x, y, z),

(2)
where μ and σ2 are the expectation and variance over the
mini-batch, while γ and β are learnable parameters (Ioffe
and Szegedy 2015) and ε is a small value avoiding the in-
finite output. The output of the BN layer is subsequently
down-sampled by the pooling layer. Here we apply 2 × 2

max-pooling to filter out the strongest activation which will
be binarized by the Binrz layer. The binarized activations abk
of k-th block can be represented as

ab
k(x, y, z) =

{
−1, ak(x, y, z) ≤ 0

+1, ak(x, y, z) > 0
. (3)

Binary convolutional decoder. What is more for the de-
coder module, it transforms the compact high-level repre-
sentation ab5 ∈ {−1,+1}W5×H5×D5 generated by the en-
coder into a set of salience maps S ∈ R

WI×HI×C which in-
dicate the spatial probability distribution over category space
including 26 characters and a background class. The decoder
module is composed of 6 convolutional blocks (block-5 to -
10). Block-5 to -8 are formed by one unpooling layer, one
BinConv layer, one BN layer and one Binrz layer. Note
that there exists a symmetric structure along block-1 to -
8. Thus the unpooling layers (Badrinarayanan, Kendall, and
Cipolla 2015) within block-5 to -8 simply assign the input
pixels back to their original position according to the index
generated by the corresponding max-pooling layer and pad
the remains with −1. The up-sampled feature maps then go
through the binary convolution, normalization and binariza-
tion. The output of block-8 ab8 ∈ {−1,+1}W8×H8×D8 will
be processed by block-9 and -10 to generate spatial salience
maps. Block-9 and -10 form a 2-D spatial classifier with 1×1
convolution window and softmax output. It produces the
posterior probability distribution S over the category space
for each pixel in the original image.

Text sequence extraction

To hunt the candidates of character regions, we first perform
thresholding to S with thresholding factor Fconf . Then a bi-
nary image Idom ∈ {0, 1}WI×HI indicating the dominated
area of texts is generated by averaging S along the 3rd di-
mension, non-zero thresholding and binary morphologic fil-
tering with a kernel size Mmf . Afterwards, we apply Idom
as a mask to each slide of S that removes most of the iso-
lated false detection with low confidence value, which can
be illustrated by the following equation:

S′(x, y, z) = S(x, y, z) · Idom(x, y). (4)

where x, y and z are the index of the 3D array S. To facilitate
the evaluation of the position and the size of each charac-
ter, we conduct another binary morphologic filtering to each
S′(:, :, z), z = 1, 2, · · ·C, and extract the character regions
with their position pc = (xc, yc)

T , size sc = (wc, hc)
T

and categories qc ∈ {1, 2, · · · , C} by finding the con-
nected component. Finally, we construct a vector sequence
U = [u1, u2, · · · , uT ] with ut = (pT

c , sTc , qc)
T . Note that

the elements in U are ordered from left to right and will
be fed to Bi-RNN one by one for contextual correction and
classification.

Bi-RNN for contextual text correction and
classification

In text sequence extraction, the false detections which
mostly occur near the edge of an image have been removed.
However, there still exist some false detections with high
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Figure 2: The architecture of Binary Convolutional Encoder-decoder Network (B-CEDNet).
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Figure 3: Bi-RNN architecture for contextual text correction
and classification: The “update” gate decides which element
in the sequence to be accepted to update the state ct based on
the category and spatial information in ut; and “reset” gate
determines where is the end of a word.

confidence value within the dominated area of text. These
false detections are due to the similar local features between
characters. For example, the upper part of ‘Y’ is similar to
the upper part of ‘X’, which could mislead the B-CEDNet
to generate the false activation of ‘X’ together with the true
activation ‘Y’. This insertion error is highly correlated to
the ground-true character and is hard to be removed by the
thresholding and morphologic filtering. Another common
detection error is that some true activations with small area
could be removed by the morphologic filtering. It causes a
deletion error in text sequence. To correct the insertion and
deletion error, we apply a bidirectional RNN model (Ng et
al. 2014) for character-level correction and classification.

The architecture of the RNN model for character-level
sequence correction and classification is shown in Fig. 3.
The model consists of an encoder and a decoder (Chan et
al. 2015). The N -layer encoder maps the input sequence
U = [u1, u2, · · · , uT ] to a high-level representation cN with
bidirectional RNN architecture (Chan et al. 2015). Given an
input sequence ut containing character label qc and the cor-
responding spatial information pc and sc, the forward, back-
ward, and combined activations of the jth hidden layer of
the encoder are computed as:

f
j
t = GRU(fjt−1, c

j−1
t ),

b
j
t = GRU(bj

t+1, c
j−1
t ),

h
j
t = f

j
t + b

j
t

(5)

where GRU denotes the gated recurrent unit function that
can be represented by

d = σ(cj−1
t · Ud + s

j
t−1 · Wd),

r = σ(cj−1
t · Ur + s

j
t−1 · Wr),

g = tanh(cj−1
t · Uh + (sjt−1 ◦ r) · Wh)

st = (1 − d) ◦ g + d ◦ st−1

(6)

In Eq. 6, d and r are “update” gate and “reset” gate, which
determine how to combine the previous memory and how
much of the previous memory to keep around. The input of
the first layer c0t = ut and c

j
t , j > 0 is represented as:

ct = tanh(Wj
pyr · [hj−1

2t , h
j−1
2t+1]

T + bj
pyr) (7)

where bj
pyr is the bias and Wj

pyr is the output matrix of jth
hidden layer. The gating units d and r allow the network to
selectively reject the false detections and decide where is the
end of a sequence based on the current state st and the input
sequence U . The bidirectional structure considers not only
the past context but also the future context. This contextual
information is useful and complementary, and can improve
the representation capacity and accuracy of the model. Next,
the RNN decoder is an M -layer recurrent neural network
that generates the output sequence character by character.
It produces an output sequence based on the encoded repre-
sentation cN using an attention mechanism (Bahdanau, Cho,
and Bengio 2014). At the jth decoder layer, the hidden acti-
vations are computed as

e
j
t = GRU(ejt−1, e

j−1
t ), (8)

where e
j
t is jth hidden layer activation at time step t. There-

after, the final hidden layer activation eMt is used as part of
the contentbased attention mechanism (Bahdanau, Cho, and
Bengio 2014):

βtk = φ1(e
M
t )Tφ2(c

N
k )

αtk =
βtk∑
j βtj

at =
∑

j

αtjcj

(9)

where φ1 and φ2 denote the feedforward affine transforms
followed by a tanh nonlinearity. The weighted sum of the
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Figure 4: Examples in the synthetic dataset for training of
B-CEDNet. There are 1 million training images with pixel-
wise labels.

encoded hidden states at is then concatenated with dMt , and
passed through another affine transform followed by a ReLU
before the final softmax output layer. The softmax output is
a sequence V = [v1, v2, · · · , vK ] where vt ∈ R

C′ indicates
the probability distribution over the character space at tth
time step.

Training

B-CEDNet training. The B-CEDNet can be trained and op-
timized under binary constraints proposed in (Courbariaux
and Bengio 2016), which can significantly reduce memory
usage and also improve level of parallelism. In this paper, we
apply cross-entropy error as the loss function by removing
the Binrz layer in block-10. For our application, the predic-
tion error J is represented as follows:

J(w) = − 1

Ns ·W10 ·H10

Ns∑

i=1

W10∑

m=1

H10∑

n=1

C∑

c=1

[1{Y (i)(x, y) = c} ln ea10(m,n,c)

∑C
l=1 e

a10(m,n,l)
],

(10)

where Ns is the number of training samples in a mini-batch,
C is the number of classes (characters and background), w is
the filter weights, Y (i) ∈ {1, ..., C}H10×W10 is the 2-D label
of i-th training image, and a10 ∈ R

H10×W10×C is the output
of the BN layer in block-10. To achieve generality of trained
model, it usually needs a large amount of labeled data for
training. However, the existing datasets are limited to word-
level annotation (Veit et al. 2016) or cannot provide enough
pixel-wise labeled data (Karatzas et al. 2013). Therefore,
we create a text rendering engine that generates texts with
different fonts, graylevels and projective distortions. The la-
beled image has the same size with the corresponding text
image and provides a pixel-wise labeling over the category
space. This dataset contains over 1,000,000 synthesized text
images. Some examples are shown in Fig. 4.

Bidirectional RNN training. To train the RNN model for
character-level correction and classification, we also use the
cross-entropy loss per time step summed over the output se-
quence V :

L(U, V ) = −
K∑

t=1

C′∑

c=1

1{c == θt} ln vt(c)∑C′
i=1 vt(i)

(11)

where θt is the index of ground true character. Note that
we need a large dataset that captures the stochastic char-
acteristics of error in sequence extraction phase. Thus, we
build another dataset with training sequence and correspond-
ing labeled sequence. The training sequence is output of se-
quence extraction (U ) and the label sequence is the ground-
true word in synthetic dataset.

Experiments

Datasets

To evaluate the effectiveness of the proposed method, we
conducted experiments on standard benchmarks for the
scene text recognition. Since SqueezedText contains two
neural networks, we conducted two-stage training for the
whole flow. The B-CEDNet is trained on synthetic scene
text dataset with 1 million training images. The Bi-RNN
model is trained on a dataset constructed from the charac-
ter sequence output by B-CEDNet and sequence extraction
operation.

Four popular benchmarks for scene text recognition
are used for performance evaluation, ICDAR-2003 (IC03),
ICDAR-2013 (IC13), IIIT 5k-word (IIIT5k) and Synth90k.
IC03(Lucas et al. 2003) contains 251 scene images with la-
beled text bounding boxes. In the experiment, we ignore im-
ages that contain either non-alphabetic characters or have
less than three characters, and obtain 860 cropped text im-
ages. IC13 (Karatzas et al. 2013) inherits most of its data
from IC03 and have 1015 ground truths cropped word im-
ages. IIIT5k (Mishra, Alahari, and Jawahar 2012a) contains
3,000 cropped word test images collected from the Inter-
net. SVT (Wang, Babenko, and Belongie 2011) dataset con-
sists of 249 street view images collected from Google Street
View, from which 647 word images are cropped. Each word
image corresponds to a 50 lexicon. Synth90k (Jaderberg et
al. 2014) is a synthetic scene text dataset containing 8 mil-
lion images with ground-true labels and we randomly select
5,000 images for performance evaluation.

Implementation details

Both the B-CEDNet model and the Bi-RNN model are built
based on Tensorflow 0.9v (Abadi et al. 2016). For the B-
CEDNet, we implement the C-level binary convolution, bi-
narization, un-pooling operation and morphologic filtering
with GPU support based on cuBlas library. The network ar-
chitecture for B-CEDNet and Bi-RNN is built with Python
interface. The experiments are carried out on Dell Precision
T7500 server with Intel Xeon 5600 processor, 64GB mem-
ory and NVIDIA TITAN X GPU. The training images for
B-CEDNet are in the size of 128 × 32. The testing images
are resized to the same scale. The training data for the Bi-
RNN is generated using the approach mentioned in Sec.
with varying confidence thresholding and size of filtering
kernel. Both networks are trained using Adam optimizer
with learning rate of 0.0005, default decay rates β1 = 0.9
and β2 = 0.999, and a batch size of 20. The B-CEDNet
is trained for up to 50 epochs and the bidirectional RNN is
trained for 40 epochs before the convergence is observed.
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Figure 5: Visualization of binary activation of each convolutional block as well as the generated salience maps and bounding
boxes.

Table 1: Accuracy comparison of existing scene text recognition approaches.
IIIT5k IC03 IC13 SVT

50 1k None 50 Full 50k None None 50

(Rodriguez-Serrano, Gordo, and Perronnin 2015) 76.1 57.4 - - - - - - -
(Jaderberg, Vedaldi, and Zisserman 2014) - - - 96.2 91.5 - - - 86.1
(Su and Lu 2014) - - - 92.0 82.0 - - - -
(Gordo 2015) 93.3 86.6 - - - - - - -
(Jaderberg et al. 2016) 97.1 92.7 - 98.7 98.6 93.3 93.1 90.8 95.4
(Jaderberg et al. 2014) 95.5 89.6 - 97.8 97.0 93.4 89.6 81.8 -
(Shi, Bai, and Yao 2015) 97.6 94.4 78.2 98.7 97.6 95.5 89.4 86.7 96.4

(Liu and Chen 2016) 97.7 94.5 83.3 96.9 95.3 - 89.9 89.1 95.5
(Lee and Osindero 2016) 96.8 94.4 78.4 97.9 97.0 - 89.6 90.0 96.3
(He and Huang 2016) 94.0 91.5 - 97.0 93.8 - - - 93.5
OURS (binary) 96.9 94.3 86.6 98.4 97.9 93.8 93.1 92.7 96.1
OURS (full-precision) 97.0 94.1 87.0 98.8 97.9 93.8 93.1 92.9 95.2
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Figure 6: The trade-off between confidence threshold and
character retrieval performance.

Comparative evaluation

Binary features and character detection Fig. 5 visual-
izes the binary activation of each convolutional block. The
feature maps from left to right correspond to the output bi-
nary activation of Binrz layers. The left-most is the input
image which is converted by the adapter block into binary
images in various styles. These binary features are further
encoded into high-level representations by binary convolu-
tion pooling and binarization. In the binary decoder network,
the activations from the background are suppressed through
propagation while the activation closely related to the tar-
get characters are retained (see DC-8 to -10). Fig. 7 shows
the salience map and pixel-wise prediction produced by the
B-CEDNet. The B-CEDNet can provide pixel-wise classifi-
cation with prediction error lower than 10%, which indicates
that the B-CEDNet can effectively capture the class-specific

Image Sailence map Prediction

Figure 7: Test images and corresponding salience maps and
predictions. In salience map, high confidence text region are
rendered with red and white colors. The pxiel-wise predic-
tions are labeled with different colors.

shape information of the character.

Character extraction In this experiment, we compare the
character retrieval performance of the B-CEDNet and its
full-precision version (CEDNet) on IC03 dataset. We use
the extracted spatial information of characters to generate
bounding box which will be compared with the ground
truth. A detection is considered as successful if the predicted
bounding box overlaps with ground-true bounding box. As
shown in Fig. 6, the B-CEDNet maintains high recall with
small confidence threshold Fconf and experiences a rapid
drop when Fconf goes higher than 0.6, Fig. 6 (a). Accord-
ingly, the precision increases with Fconf but the B-CEDNet
shows much higher precision than the full-precision one
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Figure 8: Run-time comparison between B-CEDNet and it
full-precision version (CEDNet).

Table 2: Storage and speed comparison between B-CEDNet
and existing methods.

Network Size (MB) Inference Time (ms)

(Jaderberg et al. 2016) 1960 MB 1000
(Jaderberg et al. 2014) 1216 MB -
(Shi, Bai, and Yao 2016) 25.2 MB 4
Ours 4.30 MB < 1

since the CEDNet generates a large amount of false alarms
when low Fconf is applied, Fig. 6 (b). Different from the
CEDNet that has monotone increasing F-score, there exists
a trade-off between recall and precision for B-CEDNet to
ensure the best retrieval performance.

Sequential classification Table. 1 shows the recogni-
tion accuracy on the aforementioned four public datasets
achieved by our method (including binary version and full-
precision version) and also the related works. In the lexi-
con case, our method achieves the state-of-the-art perfor-
mance and performs best in IC03 dataset with 98.4% accu-
racy. In the non-lexicon scenario, our method outperforms
the existing methods with a large margin. The non-lexicon
recognition accuracy on IIIT5k, IC03 and IC13 is 2-8%
higher than the methods in (Shi, Bai, and Yao 2015; Jader-
berg, Vedaldi, and Zisserman 2014; Jaderberg et al. 2014;
He and Huang 2016; Lee and Osindero 2016; Liu and Chen
2016). The accuracy gain in non-lexicon case comes from
explicit spatial information in the feature sequence input
to Bi-RNN. It helps Bi-RNN recognize the false character
detection based on learned error characteristics of previous
stages and potential language model. On the other hand, the
binary version still have comparable accuracy with the full-
precision version, which shows that the text features can be
learned and encoded in binary format without loss of dis-
criminative information.

Speed and memory usage Fig. 8 compares the inference
time for B-CEDNet running on baseline kernel and XNOR
kernel (Courbariaux and Bengio 2016). Baseline kernel is
an optimized matrix multiplication kernel, while the XNOR
kernel is tailored for bit-count operation in binary network.
We measure the inference time with a batch of input im-
ages (size of 32) to obtain higher utilization of the GPU.
Due to the bit-count operation and huge memory access re-

duction, the B-CEDNet achieves an average of 0.38 ms in-
ference time and 5× speedup with XNOR kernel on TITAN
X GPU compared with baseline kernel.

Table 2 reports the storage space and inference time of
the SqueezedText and existing neural network based ap-
proach. In B-CEDNet, all layers have weight-sharing con-
nections, and the fully-connected layers are replaced by the
binary decoder network which has much less parameters.
The binary weights and activations lead to a great amount
of storage reduction. Due to the elaborated character ex-
traction of B-CEDNet, the Bi-RNN processes feature se-
quence with much lower dimension when compared with
the work in (Shi, Bai, and Yao 2015), leading to a fast infer-
ence. The total storage requirement of SqueezedText is only
4.24 MB which is much smaller (up to 5×) than the memory
space reported in (Jaderberg, Vedaldi, and Zisserman 2014;
Jaderberg et al. 2014; Shi, Bai, and Yao 2015). In terms of
processing time, the proposed SqueezedText achieves 4×
speedup when compared with the state-of-the-art method
proposed in (Shi, Bai, and Yao 2015).

Conclusion

In this paper, we proposed a real-time scene text recognition
method, called SqueezedText. Firstly, a binary convolutional
encoder-decoder neural network (B-CEDNet) is developed
to perform unconstrained character detection and recogni-
tion. Our study reveals that the binary representation (with
deconvolution) can lead to an effective and efficient multi-
character detection and recognition. Furthermore, a back-
end bidirectional recurrent neural network (Bi-RNN) can be
used for a character level sequential correction and classi-
fication. The proposed SqueezedText achieves the state-of-
the-art performance in run-time speed, memory usage and
accuracy as compared to benched results on ICDAR-03,
ICDAR-13, IIIT5K, SVT and Synthe90K datasets.
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