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Abstract

Recently, hashing methods have been widely used in large-
scale image retrieval. However, most existing supervised
hashing methods do not consider the hierarchical relation of
labels, which means that they ignored the rich semantic in-
formation stored in the hierarchy. Moreover, most of previ-
ous works treat each bit in a hash code equally, which does
not meet the scenario of hierarchical labeled data. To tackle
the aforementioned problems, in this paper, we propose a
novel deep hashing method, called supervised hierarchical
deep hashing (SHDH), to perform hash code learning for hi-
erarchical labeled data. Specifically, we define a novel simi-
larity formula for hierarchical labeled data by weighting each
level, and design a deep neural network to obtain a hash code
for each data point. Extensive experiments on two real-world
public datasets show that the proposed method outperforms
the state-of-the-art baselines in the image retrieval task.

Introduction
Nearest neighbour (NN) search plays a pivotal role in mul-
timedia and related areas, such as image retrieval, pattern
recognition, and computer vision (Zheng et al. 2015). In big
data applications, it is, however, time-consuming to return
the exact nearest neighbours to the given queries. Hence, ap-
proximate nearest neighbour (ANN) search algorithms with
improved speed and memory saving have drawn more and
more attention from researchers in this big data era (Andoni
and Indyk 2008).

Due to its fast retrieval speed and low storage cost,
similarity-preserving hashing has been widely used for ANN
search (Zhu et al. 2016). The central idea of hashing is to
map the data points from the original feature space into bi-
nary codes in the Hamming space and preserve the pair-
wise similarities in the original space. With the binary-
code representation, hashing enables constant or sub-linear
time complexity for ANN search (Gong and Lazebnik 2011;
Zhang et al. 2014). Moreover, hashing can reduce the stor-
age cost dramatically.

Compared with traditional data-independent hashing
methods like Locality Sensitive Hashing (LSH) (Gionis,
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Indyk, and Motwani 1999; Raginsky and Lazebnik 2009)
which do not use any data for training, data-dependent
hashing methods, can achieve better accuracy with shorter
codes by learning hash functions from training data (Gong
and Lazebnik 2011; Zhang et al. 2014). Existing data-
dependent methods can be further divided into three cat-
egories: unsupervised methods (He, Wen, and Sun 2013;
Gong and Lazebnik 2011; Shen et al. 2015; Zhu et al. 2017),
supervised methods (Liu et al. 2012; Zhang et al. 2014;
Yuan et al. 2017), and semi-supervised methods (Wang,
Kumar, and Chang 2010; Zhang, Peng, and Zhang 2016;
Zhang and Zheng 2017). Unsupervised hashing works by
preserving the Euclidean similarity between the attributes of
training points, while supervised and semi-supervised hash-
ing try to preserve the semantic similarity constructed from
the semantic labels of the training points (Zhang et al. 2014;
Kang, Li, and Zhou 2016). Although there are also some
works to exploit other types of supervised information like
the ranking information for hashing (Li et al. 2013), the se-
mantic information is usually given in the form of pairwise
labels indicating whether two data points are known to be
similar or dissimilar. As far as we know, these supervised
and semi-supervised methods can mainly be used to deal
with the data with non-hierarchical labels.

However, there are indeed lots of hierarchical labeled
data, such as Imagenet (Deng et al. 2009), IAPRTC-12(Es-
calante et al. 2010) and CIFAR-100(Krizhevsky 2009). In-
tuitively, we can simply take hierarchical labeled data as
non-hierarchical labeled data, and then take advantage of
the existing algorithms. Obviously, it cannot achieve optimal
performance, because most of the existing methods are es-
sentially designed to deal with non-hierarchical labeled data
which do not consider special characteristics of hierarchical
labeled data. For example, in Figure 1, if taking the hierar-
chical ones as non-hierarchical labeled data, images Ia and
Ib have the same label “Rose”, the label of the image Ic is
“Sunflower”, and the labels for Id and Ie are respectively
“Ock” and “Tiger”. Given a query Iq with the ground truth
label “Rose”, the retrieved results may be “Ia, Ib, Ie, Id, and
Ic” in descending order without considering the hierarchy. It
does not make sense that the ranking positions of images Ie
and Id are higher than that of Ic, because the image Ic is also
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Figure 1: A hierarchical labeled dataset. The height of the hi-
erarchy is four. The different retrieved results where whether
the hierarchical relation is considered are demonstrated. The
longer a red bar is, the more similar the corresponding image
is.

a flower although it is not a rose.
To address the aforementioned problems, we propose a

novel supervised hierarchical deep hashing method for hier-
archical labeled data, denoted as SHDH. Specifically, we de-
fine a novel similarity formula for hierarchical labeled data
by weighting each level, and design a deep neural network
to obtain a hash code for each data point. Extensive experi-
ments on two real-world public datasets show that the pro-
posed method outperforms the state-of-the-art baselines in
the image retrieval task.

The main contributions in this paper are:

• To the best of our knowledge, the proposed SHDH is the
first method to utilize the hierarchical relation in hierar-
chical labeled data. Meanwhile, the bits in the hash code
learnt by SHDH are weighted.

• We design a novel similarity formula for hierarchical la-
beled data by weighting each level.

• Experimental results on two public datasets demonstrate
that the proposed SHDH method is effective.

The rest of this paper is organized as follows. Section 2 in-
troduces some related works. Section 3 describes the details
of the proposed model and the parameter learning algorithm.
Experimental results and analysis are demonstrated in Sec-
tion 4. Finally, Section 5 presents some concluding remarks.

Related Work

The existing hashing methods can be grouped into two cat-
egories: data-independent and data-dependent methods. For
data-independent methods, the hashing functions are learned
without any training data. Representative data-independent
methods include LSH (Andoni and Indyk 2008; Gionis,
Indyk, and Motwani 1999), Shift-invariant Kernels Hash-
ing (SIKH) (Raginsky and Lazebnik 2009), and lots of

extensions (Kulis, Jain, and Grauman 2009; Datar et al.
2004). For data-dependent methods, their hashing functions
are learned from training data. Generally speaking, data-
independent methods often require more number of bits
than data-dependent methods to achieve satisfactory perfor-
mance.

Furthermore, data-dependent hashing methods can be di-
vided into three folds: unsupervised, supervised, and semi-
supervised methods. Unsupervised methods use unlabeled
data to learn hash functions and try to keep the neighbor-
hood relation of data in the original space. Representative
unsupervised hashing methods include K-means Hashing
(KMH) (He, Wen, and Sun 2013), Iterative Quantization
(ITQ) (Gong and Lazebnik 2011), Asymmetric Innerprod-
uct Binary Coding (AIBC) (Shen et al. 2015), and Semantic-
assisted Visual Hashing (SAVH) (Zhu et al. 2017). Usually,
the hashing methods with supervised semantic information
outperform unsupervised methods due to the semantic gap
problem. In supervised hashing approaches, label informa-
tion is utilized to build the similarity matrix of training data
to learn the set of hashing functions. Lots of algorithms in
this category have been proposed, including Kernel-based
Supervised Hashing (KSH) (Liu et al. 2012), Latent Fac-
tor Hashing (LFH) (Zhang et al. 2014), Column Sampling
Based Discrete Supervised Hashing (COSDISH) (Kang,
Li, and Zhou 2016), and Reconstruction-based Supervised
Hashing (RSH) (Yuan et al. 2017). Semi-supervised algo-
rithms (Zhang, Peng, and Zhang 2016; Zhang and Zheng
2017) use both the labeled samples and the unlabeled ones
to learn the hash code. For example, the Semi-supervised
Hashing (SSH) (Wang, Kumar, and Chang 2010) minimizes
the error between the pairwise labeled data and maximizes
the variance of hash code over the labeled and unlabeled
data.

Despite their significance, few existing efforts in hashing
area focus on hierarchical labeled data. Meanwhile, some
recent methods performing simultaneously feature learn-
ing and hash code learning with deep neural networks,
have shown better performance (Li, Wang, and Kang 2016;
Qiu et al. 2017). Thus, we will present an effective deep
learning approach for hierarchical labeled data to perform
simultaneously feature learning and hash code learning.

Method

Hierarchical Similarity

As shown in Figure 1, it can be found that the “Root” node is
the ancestor of all data points, thus it has no discriminative
ability, and will not be considered in the definition of hierar-
chical similarity. Moreover, in this paper, different with the
definition of the level in the tree data structure, the level of
a node is defined by the number of edges from the node to
the root node. Thus, the levels of a hierarchy from top to
down can be denoted as 1st level, 2nd level, and so on. For
example, in Figure 1, “Plant” node is located in the 1st level.

It is reasonable that images have distinct similarity in dif-
ferent levels in a hierarchy. For example, in Figure 1, images
Ia and Ic are similar in the second level because they are
both flower. However, they are dissimilar in the third level
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because Ia belongs to rose but Ic belongs to sunflower. In
the light of this, we have to define hierarchical similarity for
two images in hierarchical labeled data. To define the hier-
archical similarity, we first introduce two definitions: level
similarity and level weight.

Definition 1 (Level Similarity) For two images i and j, the
similarity at the kth level in a hierarchy is defined as:

skij =

{
1, if Ancestork(i) = Ancestork(j);
0, otherwise. (1)

where Ancestork(i) is the ancestor node of image i at the
kth level.

Equation (1) means that if images i and j share the com-
mon ancestor node in the kth level, they are similar at this
level. On the contrary, they are dissimilar. For example, in
Figure 1, the level similarities between images Ia and Ic at
different levels are: s1IaIc = 1, s2IaIc = 1, and s3IaIc = 0.

Intuitively, the higher level is more important, because
we cannot reach the right descendant nodes if we choose
a wrong ancestor. We thus have to consider the weight for
each level in a hierarchy. Any functions which satisfy the
following two conditions could be used as the level weight:
(1) uk > uk+1, where k ∈ [1, 2, · · · ,K − 1]. It satisfies
the demand where the influence of ancestor nodes is greater
than that of descendant nodes. (2)

∑K
k=1 uk = 1. Thus, we

define level weight as:

Definition 2 (Level Weight) The importance of kth level in
a hierarchy where the number of levels is K, can be esti-
mated as:

uk =
2(K + 1− k)

K(K + 1)
, (2)

where k ∈ [1, 2, · · · ,K].

Based upon the two definitions above, the final hierarchi-
cal similarity between images i and j can be calculated by
the following definition:
Definition 3 (Hierarchical Similarity) For two images i
and j in a hierarchy where the number of levels is K, their
hierarchical similarity is:

sij = 2
K∑

k=1

uks
k
ij − 1. (3)

Equation (3) scales the final hierarchical similarity into a
real value between -1 and 1. It guarantees that the more com-
mon hierarchical labels image pairs have, the more similar
they are.

Supervised Hierarchical Deep Hashing

Figure 2 shows the proposed deep learning architecture. The
proposed SHDH model consists of two parts: feature learn-
ing and hash function learning. The feature learning part
includes a convolutional neural network (CNN) component
and two fully-connected layers. The CNN component con-
tains five convolutional layers. Specifically, the first convo-
lutional layer filters the input images with 64 kernels of size
11 × 11 with a stride of four pixels. The output of the first

convolutional layer will be response-normalized and max-
pooled (size 2 × 2) to be the input of the second convolu-
tional layer. The second layer has 256 kernels of size 5 ×
5 with a stride of one pixel and a pad of size 2 pixels. Its
output will be response-normalized and max-pooled (size 2
× 2) to be the input of the third convolutional layer. The
third, fourth and fifth layers have 256 kernels of size 3 × 3
with a stride of one pixel and a pad of size one pixel. The
fifth layer has a max-pooling layer with filter of size 2 × 2.
After the CNN component, the architecture holds two fully-
connected layers which have 4,096 hidden units. The acti-
vation function used in this part is Rectified Linear Units
(ReLu) (Krizhevsky, Sutskever, and Hinton 2012).

The hash function learning part includes a hashing layer
and an independent weighting layer. The hashing functions
are learnt by the hashing layer whose size is the length of
hash code. And no activation function used in this layer.
Note that the hashing layer is divided into K-segments and
K is the number of levels in a hierarchy. The size of 1st ∼
(K − 1)th segments is

⌊
L
K

⌋
, where L is the length of hash

code. And the size of the last segment is L−⌊
L
K

⌋×(K−1).
Lk is used to represent the size of kth segment, where
k ∈ [1, 2, · · · ,K]. Here, there is an implicit assumption that
L is larger than K. It is a reasonable assumption, since the
height of hierarchical labeled data is usually small, while
the length of hash code is usually large, such as 16, 32,
and 128 bits. Besides, the values in the weighting layer are
the weights calculated by Eq. (2) from the hierarchical la-
beled data, which are used to adjust the Hamming distance
among segmented hash code. Each value in the weighting
layer weights a corresponding segment in the hashing layer.

Objective Function Given a hierarchical labeled dataset
X = {xi}Ni=1 where xi is the ith data point and N is the
number of data points. Its semantic matrix S = {sij} can be
built via Eq. (3), where sij ∈ [−1, 1]. The goal of our SHDH
is to learn a L-bit binary codes vector hi ∈ {−1, 1}L for
each point xi, L is the length of hash code.

Assume there are M + 1 layers in our deep network con-
taining M − 1 layers for feature learning, one hashing layer
and one weight layer. In Figure 2, M = 8. The output of
the whole network is: bi = W Tf(xi;θ) + v ∈ R

L, where
the mapping f : Rd → R

4,096 is parameterized by θ and
θ represents the parameters of the feature learning part. W
∈ R

4,096×L is the projection matrix to be learnt at the M th

layer of the network, v ∈ R
L is the bias.

Now, we can perform hashing for the output bi at the
top layer of the network to obtain binary codes as follows:
hi = sgn(bi). The procedure above is forward. To learn the
parameters of our network, we have to define an objective
function.

First, for an image xi, its hash code is hi ∈ {−1, 1}L
consisting of hk

i , where hk
i is the hash code in the kth seg-

ment, k ∈ {1, ...,K}. Thus, the weighted Hamming dis-
tance between images xi and xj can be defined as:

D(hi,hj) =
1

2
(L−

K∑
k=1

uk(h
k
i )

Thk
j ). (4)
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Figure 2: The SHDH learning framework. It takes raw images as input. The training stage is illustrated in the left bottom corner.
A retrieval example in testing stage is presented in the right bottom corner.

We define the similarity-preserving objective function:

E1 =
K∑

k=1

(
1

Lk
uk(h

k
i )

Thk
j − skij)

2. (5)

Eq. (5) is used to make sure the similar images could share
same hash code in each segment, and it should be mini-
mized.

Second, to maximize the information from each hash bit,
each bit should be a balanced partition of the dataset (Do,
Doan, and Cheung 2016). Thus, we use the entropy to mea-
sure the balanced ability, just as below:

E2 =

K∑
k=1

uktr(h
k
i (h

k
j )

T ). (6)

E2 should be maximized which means “ −E2” should be
minimized. Thus, we ultimately combine Eq. (5) and Eq. (6)
to obtain the total objective function:

J = minE1 − αE2

= min

K∑

k=1

(
1

Lk
uk(h

k
i )

Thk
j − skij)

2

− α

K∑

k=1

uktr(h
k
i (h

k
j )

T ),

(7)

where α is hyper-parameter.

Learning Assume that H is all the hash code for N data
points where H = [h1,h2, ...,hN ]T . Since the elements
in H are discrete integer, J is not derivable. So, we relax
it as B from discrete to continuous by removing the sign

function. Thus the objective function Eq. (7) could be trans-
formed into the matrix form as below:

J = min ‖BABT − LS‖2F − αtr(BABT ), (8)

where A ∈ R
L×L is a diagonal matrix. It can be divided

into K small diagonal matrix whose size is Lk × Lk, and
{Akjj}Lk

j=1 = uk.
Stochastic gradient descent (SGD) is used to learn the pa-

rameters. The learning rate η is initialized as 0.01, and up-
dated by η ← 2

3η empirically. In particular, a minibatch data
will be sampled in each iteration for learning. The derivative
of Eq.(8) with respect to B is given by:

∂J

∂B
=2(BATBTBA+BABTBAT

− STBA− SBAT )− αBAT − αBA.

Then, the derivative value can be fed into the underlying
network via the back-propagation (BP) algorithm to update
all parameters.

The outline of the proposed supervised hierarchical deep
hashing (SHDH) is described in Algorithm 1.

Experiments

Datasets and Setting

We carried out experiments on two public benchmark
datasets: CIFAR-100 and IAPRTC-12. CIFAR-100 is an im-
age dataset containing 60,000 colour images of 32×32 pix-
els. It has 100 classes and each class contains 600 images.
The 100 classes in the CIFAR-100 are grouped into 20 su-
perclasses. Each image has a “fine” label (the class which
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Algorithm 1 The Learning Algorithm for SHDH
Require: Training images X = {xi}Ni=1, the hierarchical

labels of the training images, the length of hash code L,
the number of levels in the hierarchy K, the max itera-
tive count T , the size of minibatch (default 128).

Ensure: The hash code for all data points.
1: Initialize the weights and bias of whole network.
2: Initialize the learning rate η as 0.01.
3: S ← using Eq. (3), S ∈ R

N×N .
4: repeat
5: Update η ← 2η/3 every 20 iterations empirically.
6: Randomly sample from X to get a minibatch.

For each image xi, perform as below:
7: for k = 1, · · · ,K do
8: Calculate the output hk

i of image xi by forward
propagation.

9: end for
10: Merge {hk

i }Kk=1, to get H .
11: Update the parameters {W ,v,θ} by back propaga-

tion.
12: until up to T
13: Put all data points into the network to calculate their

hash code.

it belongs to) and a “coarse” label (the superclass which it
belongs to). Thus, the height of the hierarchical labels with a
“Root” node in CIFAR-100 is three. The IAPRTC-12 dataset
has 20,000 segmented images. Each image has been man-
ually segmented, and the resultant regions have been anno-
tated according to a predefined vocabulary of labels. The vo-
cabulary is organized according to a hierarchy of concepts.
The height of the hierarchical labels in IAPRTC-12 is seven.
For both datasets, we randomly selected 90% as the training
set and the left 10% as the test set. The hyper-parameter α in
SHDH is empirically set as one. The weights and bias in the
feature learning part are initialized as the values pre-trained
in VGG-F (Chatfield et al. 2014). The parameters including
weights W and bias v in the hashing layer are initialized to
be a quite small real number between 0 and 0.001 empiri-
cally. The learning rate η is initialized as 0.01.

We compared our methods with six state-of-the-art hash-
ing methods, where four of them are supervised, the other
two are unsupervised. The four supervised methods include
DPSH (Li, Wang, and Kang 2016), COSDISH (Kang, Li,
and Zhou 2016), LFH (Zhang et al. 2014), and KSH (Liu
et al. 2012). The two unsupervised methods are KMH (He,
Wen, and Sun 2013) and ITQ (Gong and Lazebnik 2011).
For all of these six baselines, we employed the implemen-
tations provided by the original authors, and used the de-
fault parameters recommended by the corresponding pa-
pers. Moreover, to study the influence of hierarchical labels
separately, we replaced the values in the similarity matrix
for KSH and COSDISH by using hierarchical similarity to
obtain two new methods, KSH+H and COSDISH+H. “H”
means hierarchical version. ITQ and KMH cannot be mod-
ified as “H”-version because they are unsupervised. LFH
and DPSH cannot be modified as “H”-version because when

similarity is a real value except zero and one, the likelihood
functions used in their papers are meaningless.

We resized all images to 224×224 pixels and directly
used the raw images as input for the deep hashing meth-
ods including SHDH and DPSH. The left six methods use
hand-crafted features as stated on the original papers. We
represented each image by a 512-D GIST vector.

Evaluation Criterion

Cai (Cai 2016) has claimed that the performance of some
hashing algorithms (e.g., LSH) can easily be boosted if
one uses multiple hash tables, which is an important fac-
tor should be considered in the evaluation while most of the
existing papers failed to correctly measure the search time
which is essential for the ANN search problem. However,
hash table is not a standard configuration for hashing, which
can be replaced by other data structures. In addition, data
structures, such as the number of hash tables, the index of
hash tables and the hierarchy of hash tables (Liu, He, and
Lang 2013)), will have a significant impact on the search
time evaluation. The main purpose of our work is to study
the impact of the hierarchy in hierarchical labeled data on
hashing, not focus on the efficiency which can be studied by
other researches. Thus, we focus on the effectiveness eval-
uation, and in order to ensure the fairness of evaluations,
the distance between a data point and a query will be cal-
culated by brute-force search for all methods and different
code length.

To verify the effectiveness of hash code, we measured
the ranking quality of retrieved list for different methods
by Average Cumulative Gain (ACG), Discounted Cumula-
tive Gain (DCG), Normalized Discounted Cumulative Gain
(NDCG) (Järvelin and Kekäläinen 2000), and Weighted Re-
call. Note that we proposed the Weighted Recall metric to
measure the recall in the scenario of hierarchical labeled
data, defined as:

Weighted Recall(q)@n =

∑n
i=1 sqi∑N
i=1 sqi

,

where n is the number of top returned data points, sqi rep-
resents the similarity between the query q and ith data point
in the ranking list, N is the length of the ranking list.

Results on CIFAR-100

Table 1 summarizes the comparative results of different
hashing methods on the CIFAR-100 dataset. We have sev-
eral observations from Table 1: (1) our SHDH outperforms
the other supervised and unsupervised baselines for different
code length. For example, comparing with the best competi-
tor (DPSH), the results of our SHDH have a relative increase
of 12.5% ∼ 18.4% on ACG, 10.7% ∼ 16.7% on DCG, and
8.7% ∼ 11.4% on NDCG; (2) the hierarchical semantic la-
bels can improve the performance of hashing methods. For
example, COSDISH+H and KSH+H perform respectively
better than COSDISH and KSH, which means the inher-
ent hierarchical information is valuable to improve hashing
performance; (3) among all the supervised approaches, the
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Table 1: Results on the CIFAR-100 dataset. The ranking results are measured by ACG, DCG, and NDCG@N (N=100).

Methods ACG@100 DCG@100 NDCG@100
32 48 64 32 48 64 32 48 64

KMH 0.2023 - 0.2261 6.0749 - 6.7295 0.4169 - 0.4189
ITQ 0.2091 0.2312 0.2427 6.1814 6.7583 7.0593 0.4197 0.4243 0.4272

COSDISH+H 0.1345 0.1860 0.2008 4.2678 5.5619 5.9169 0.4072 0.4417 0.4523
KSH+H 0.1611 0.1576 0.1718 4.9904 4.9282 5.3378 0.3940 0.3897 0.3924
DPSH 0.4643 0.4973 0.5140 11.5129 12.2878 12.7072 0.5650 0.5693 0.5751

COSDISH 0.1366 0.1428 0.1501 4.5079 4.6957 4.8601 0.4063 0.4156 0.4127
LFH 0.1152 0.1291 0.1271 3.7847 4.3299 4.3239 0.3924 0.4008 0.4011
KSH 0.1291 0.1393 0.1509 3.3520 4.3009 4.8293 0.3711 0.3766 0.3763

SHDH 0.5225 0.5724 0.6084 12.7460 13.9575 14.7861 0.6141 0.6281 0.6406

Table 2: Results on the IAPRTC-12 dataset. The ranking results are evaluated by ACG, DCG, and NDCG@N (N=100).

Methods ACG@100 DCG@100 NDCG@100
48 64 128 48 64 128 48 64 128

KMH - 3.7716 3.7446 - 87.5121 87.0493 - 0.6427 0.6373
ITQ 3.8351 3.8502 3.8609 88.5562 88.9057 89.2016 0.6626 0.6633 0.6652

COSDISH+H 3.8249 3.7245 3.8448 88.3121 86.3037 88.5056 0.6957 0.6885 0.6970
KSH+H 3.7304 3.7535 3.7779 86.5606 87.0894 87.5743 0.6459 0.6494 0.6518
DPSH 4.0085 4.0227 4.0980 91.4972 92.0570 93.4613 0.6618 0.6607 0.6630

COSDISH 3.6856 3.6781 3.7018 85.2368 85.1622 85.7606 0.6412 0.6443 0.6408
LFH 3.7076 3.6851 3.6988 85.7599 85.2662 85.6601 0.6390 0.6365 0.6400
KSH 3.8357 3.8317 3.7909 88.5041 88.5589 87.8282 0.6507 0.6482 0.6408

SHDH 4.4870 4.5284 4.5869 100.6373 101.4812 102.6919 0.7372 0.7440 0.7489

deep learning based approaches (SHDH and DPSH) give rel-
atively better results, and it confirms that the learnt represen-
tations by deep network from raw images are more effective
than hand-crafted features to learn hash code.

Figure 3 (a) ∼ (c) are the Weighted Recall curves for dif-
ferent methods over different weighted Hamming distance
at 32, 48, and 64 bits, respectively, which shows our method
has a consistent advantage over baselines. Figure 3 (g) ∼ (i)
are the Weighted Recall results over top-n retrieved results,
where n ranges from 1 to 5,000. Our approach also outper-
forms other state-of-the-art hashing methods. The Weighted
Recall curves at different length of hash code are also illus-
trated in Figure 4 (a). From the figure, our SHDH model
performs better than baselines, especially when the code
length increases. This is because when the code length in-
creases, the learnt hash functions can increase the discrimi-
native ability for hierarchical similarity among images.

Results on IAPRTC-12

Table 2 shows the performance comparison of different
hashing methods over IAPRTC-12 dataset, and our SHDH
performs better than other approaches regardless of the
length of codes. Obviously, it can be found that all baselines
cannot achieve optimal performance for hierarchical labeled
data. Figure 3 (j) ∼ (l) are the Weighted Recall results over
top-n returned neighbors, where n ranges from 1 to 5,000.
These curves show a consistent advantage against baselines.
Moreover, our SHDH provides the best performance at dif-
ferent code length, shown in Figure 4 (b).

The results of the Weighted Recall over different weighted

Hamming distance are shown in Figure 3 (d) ∼ (f). In these
figures, our method is not the best one. The reason is that our
SHDH has better discriminative ability at the same weighted
Hamming distance due to considering the hierarchical rela-
tion. For example, DPSH returns 4,483 data points while our
SHDH only returns 2,065 points when the weighted Ham-
ming distance is zero and the code length is 64 bits. Thus,
the better discriminative ability leads to better precision (Ta-
ble 2) but not-so-good Weighted Recall.

Sensitivity to Hyper-Parameter

Figure 5 shows the effect of the hyper-parameter α over
CIFAR-100. We can find that SHDH is not sensitive to α.
For example, SHDH can achieve good performance on both
datasets with 0.5 ≤ α ≤ 2. We can also obtain similar con-
clusion over IAPRTC-12 dataset, and the figure is not in-
cluded in this paper due to the limitation of space.

Conclusion

In this paper, we have proposed a novel supervised hierar-
chical deep hashing method for hierarchical labeled data.
To the best of our knowledge, SHDH is the first method to
utilize the hierarchical labels of images in supervised hash-
ing area. Extensive experiments on two real-world public
datasets have shown that the proposed SHDH method out-
performs the state-of-the-art hashing algorithms.

In the future, we will further verify the effectiveness of
the proposed SHDH method on larger datasets, such as Im-
ageNet. Moreover, we will also explore more deep hashing
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Figure 3: Weighted Recall curves on CIFAR-100 and IAPRTC-12. (a) ∼ (f) show the Weighted Recall within various weighted
Hamming distance at different number of bits. (g) ∼ (l) show the Weighted Recall@n at different number of bits.
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Figure 4: Weighted Recall@n (n=10,000) over (a) CIFAR-
100 and (b) IAPRTC-12.

methods to process hierarchical labeled data. What’s more,
the performance of hashing methods for non-hierarchical la-
beled data will be further improved by constructing their hi-
erarchy automatically.
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