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Abstract 
Cross-view person identification (CVPI) from multiple 
temporally synchronized videos taken by multiple weara-
ble cameras from different, varying views is a very chal-
lenging but important problem, which has attracted more in-
terests recently. Current state-of-the-art performance of 
CVPI is achieved by matching appearance and motion fea-
tures across videos, while the matching of pose features 
does not work effectively given the high inaccuracy of the 
3D human pose estimation on videos/images collected in the 
wild. In this paper, we introduce a new metric of confidence 
to the 3D human pose estimation and show that the combi-
nation of the inaccurately estimated human pose and the in-
ferred confidence metric can be used to boost the CVPI per-
formance –the estimated pose information can be integrated 
to the appearance and motion features to achieve the new 
state-of-the-art CVPI performance. More specifically, the 
estimated confidence metric is measured at each human-
body joint and the joints with higher confidence are 
weighted more in the pose matching for CVPI. In the exper-
iments, we validate the proposed method on three wearable-
camera video datasets and compare the performance against 
several other existing CVPI methods.  

Introduction   
Video-based surveillance has been widely used in many 
security, civil, and military applications. Traditional sur-
veillance videos are captured by multi-camera network, 
where all the cameras are installed at fixed locations. Since 
they cannot move freely, they can only cover limited areas 
from pre-fixed view angles. In recent years, wearable cam-
eras, like Google Glass and GoPro, have been introduced 
to many applications to expand the video coverage. Com-
pared with fixed cameras, wearable cameras are mounted 
over the head of the wearers and can move with the wear-
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ers to better capture the scene of interest. For example, in a 
sport game or a protest event, multiple policemen can wear 
cameras to record videos at different locations and from 
different view angles, which can facilitate the detection of 
abnormal persons and activities.  

One fundamental problem in analyzing these multiple 
videos taken by wearable cameras is cross-view person 
identification (CVPI) – identifying the same person from 
these multiple videos (Zheng et al. 2017). As in (Zheng et 
al. 2017), we assume all the videos are temporally syn-
chronized, which can be achieved by sharing clock across 
all the cameras. Given the temporal synchronization, if the 
corresponding frames across multiple videos cover the 
same person, this person must bear a unique pose and mo-
tion in 3D space. As a result, we can estimate 3D pose and 
motion on each video and match them across these videos 
to achieve CVPI. As in many person re-identification 
methods, appearance feature matching can also be used for 
CVPI (Zheng et al. 2017), although the extracted 2D ap-
pearance features may vary under different views.  

Previous work (Zheng et al. 2017) has shown the effec-
tiveness of using appearance and motion features for CVPI, 
especially when using the view-invariant motion features 
extracted by supervised deep learning. It also showed that 
the appearance features and motion features can comple-
ment each other to improve the CVPI performance. How-
ever, the use of pose features for CVPI (Zheng et al. 2016) 
is not very successful due to the high inaccuracy of the 3D 
human pose estimation (HPE) on videos/images collected 
in the wild. For example, for the body joints in 3D HPE, 
the mean Euclidean distance between the ground-truth 3D 
locations and the estimations of Pavlakos et al. (2017) is 
71.90 mm, which is about 1/7 of the length of human torso 
in Human 3.6M dataset (Ionescu et al. 2014), which is col-
lected in a highly-controlled lab environment with very 
simple background. In outdoor environments, with more 
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Figure 1: An illustration of 3D HPE with confidence. Left: 
Different views of the same person taken at the same time. 
Middle: (HPE-localized) joints with confidence larger than 
0.7. Right: (HPE-localized) Joints with confidence larger 
than 0.1. 

camera motion and view-angle change, the accuracy of 3D 
HPE can be much worse (Zhou et al. 2017).   

In 3D HPE, the localization accuracy of different joints 
is highly inconsistent. As shown in Pavlakos at al. (2017), 
the 3D localization error at wrist is much larger than that at 
hip -- 101.48mm versus 28.81mm. This inconsistency 
comes from possible occlusions and different degrees of 
freedom. While using poorly estimated joint locations may 
significantly influence the accuracy of CVPI, the basic idea 
of this work is to identify a subset of accurately localized 
joints and then use them to improve CVPI.  

To achieve this goal, we extend the 3D HPE to not only 
estimate the location of each joint, but also provide a con-
fidence for each localized joint – the joints with higher 
confidence will be weighted more when matching 3D pos-
es for CVPI. An example is shown in Fig. 1, where two 
images of the same person are taken from different views 
at the same time. Due to self-occlusions, the estimated lo-
cations of the right arm from a 3D HPE algorithm are 
largely incorrect. Without considering the right arm, we 
can match the estimated 3D poses from these two images 
much better. In this paper, we introduce a confidence met-
ric for the estimated location of each joint in 3D HPE and 
combine HPE and the confidence metric to boost CVPI. 
Note that the goal of this paper is not to develop a new 
HPE algorithm with higher accuracy. Instead, we simply 
select one existing HPE algorithm, derive confidence at 
each joint and then apply them for CVPI. 

 In this paper, we derive the confidence at each joint 
from three aspects: (1) 2D confidence, which is derived 
from the process of 2D HPE; (2) 3D confidence, which 
refers to the certainty of 3D HPE from 2D joint heat-maps; 
(3) temporal confidence, which reflects the stability of 
joints’ locations over time. These three aspects cover all 
the major steps of current 3D HPE methods. Confidence-

weighted pose matching is performed between each pair of 
corresponded frames and then summarized over all the 
frames to obtain a pose-matching score between two vide-
os. Then, for a given video, the matched video is the one 
with the smallest matching distance in the gallery dataset. 
Finally, we integrate the pose matching with appearance 
and motion feature matching for CVPI. Experimental re-
sults show that the use of the poses estimated with confi-
dence can complement the appearance and motion features 
in CVPI. 

Our main contributions include: (1) we introduce a new 
metric of confidence to 3D HPE; (2) we show the combi-
nation of the inaccurately estimated human pose and in-
ferred confidence metric can improve the CVPI perfor-
mance; (3) we achieve a new state-of-the-art performance 
of CVPI. 

Related work
In this section, we briefly review the related works on per-
son identification, human pose estimation, and confidence 
analysis.  

Person identification 
CVPI aims at associating person from temporally synchro-
nized video taken by wearable cameras, which is proposed 
by Zheng et al. (2016, 2017). Compared with traditional 
person re-identification, the temporal synchronization 
brings new features for person identification. First, the 3D 
human poses of the same person are identical in the same 
frame of a pair of synchronized videos. Zheng et al. (2016) 
adapt the method in (Gupta et al. 2014) to estimate 3D hu-
man poses and use the distance of poses as the matching 
metric, but resulting in unsatisfactory CVPI performance. 
Besides pose, human motion is also consistent in 3D space 
if the same person present in synchronized videos. In order 
to compare the optical flow from different views, a triplet 
network is trained to learn view-invariant features (Zheng 
et al. 2017). Then, Euclidean distance between these fea-
tures is used as a metric for CVPI. The combination of the 
appearance features and these learned motion features does 
lead to much better CVPI accuracy, but the cross-dataset 
accuracy is still lower than unsupervised methods. 

Other related work is person re-identification, which 
aims to match persons captured in different time. The 
works on person re-identification can be roughly divided 
into two parts: effective feature extraction (Yang et al. 
2017) and discriminative distance metrics learning (Li and 
Wang 2013; Yang et al. 2016). Recently, end-to-end CNN-
based methods (Chen et al. 2017; Wang et al. 2016) have 
been developed to learn features and metrics at the same 
time. 
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Figure 2: An illustration of the proposed framework for CVPI. First, we estimate 3D pose from the probe video. Then we compute its 
confidence metric. We then apply the same algorithms to estimate the 3D pose and the confidence metric for each video in the gallery 
set. Finally, we calculate the confidence-weighted pose distance between the probe video and each video in the gallery set. The video 
in the gallery set with the minimal distance is taken as the matched one. 

Human pose estimation 
Due to the powerful learning capacity, convolution neural 
network (CNN) has become a main building block for 3D 
HPE. As a fundamental step, 2D HPE from a single image 
has achieved high accuracy in various scenes (Newell, 
Yang, and Deng 2016; Insafutdinov et al. 2017; Andriluka 
et al. 2014). In contrast, the accuracy of 3D HPE is still far 
from satisfactory. A popular idea is to train a CNN to di-
rectly regress joint locations (Li and Chan 2014). After this, 
many improvements have been proposed, such as adding 
viewpoint prediction (Ghezelghieh et al. 2016), enforcing 
structural constraints (Tekin et al. 2016) and learning a 
way to fuse 2D and 3D information (Tekin et al. 2017). 
These algorithms are mainly developed for controlled lab 
environments. Their performances cannot be preserved 
when the images/videos are taken in outdoor environments 
or in the wild. To alleviate this problem, two-step approach 
is usually employed (Chen and Ramanan 2016; Wu et al. 
2016; Zhou et al. 2016 and Zhou et al. 2017). The first step 
is to estimate 2D joint heat-maps, which can benefit from 
existing methods. Then, the 3D locations are regressed 
from the 2D joint heat-maps.  

Our goal is to improve CVPI performance by introduc-
ing a confidence metric to each joint in the estimated 3D 
human pose instead of developing a new 3D HPE method. 
In this paper, we select one recent 3D HPE algorithm pro-
posed by Zhou et al. (2016) to derive the confidence on 
each joint for CVPI. However, the proposed approach can 
be easily applied to other HPE algorithms. 

Confidence Metric 
Confidence reflects the certainty of an algorithm on its 
output. In this paper, we focus on confidence analysis over 
a single output instead of its statistical meaning over an 
output set. There have been existing works on confidence 

analysis for human pose estimation, face recognition, and 
other related topics (Jammalamadaka et al. 2012; Dutta, 
Veldhuis, and Spreeuwers 2015; Drevelle and Bonnifait 
2013; Amin et al. 2014 and Zhang et al. 2014). Jammal-
amadaka et al. (2012) train a human pose evaluator to pre-
dict whether an algorithm returns a correct result given 
new test data. Amin et al. (2014) design a component to 
identify true positive pose estimation hypotheses with high 
confidence. These methods derive a confidence value for 
the entire pose estimation. In this paper, we focus on deriv-
ing a confidence value for each joint localized by HPE. 

Cross-View Person Identification
In this paper, we propose to utilize 3D human pose for 
CVPI. Namely, CVPI is completed by matching the 3D 
human poses extracted from different videos. Considering 
the high inaccuracy of 3D human pose estimation, we in-
troduce a metric of confidence to the 3D pose estimation. 
Specifically, the metric of confidence measures the certain-
ty of each joint’s location predicted by 3D human pose 
estimation method. Then, this confidence metric is used as 
weights in computing the Euclidean distance between a 
pair of 3D poses. The distance between two videos is the 
sum of pose distance over all the frames. For a probe video, 
the matched video is the one with the smallest distance in 
the gallery dataset.  

As shown in Fig. 2, the proposed method can be divided 
into three parts: 3D human pose estimation from videos, 
confidence estimation on each joint, and person identifica-
tion by matching 3D human pose weighted by confidence. 
We introduce the person identification in this section and 
the other two parts will be described in the following two 
sections. In order to compute the distance between poses, 
they should be normalized into the same view and scale. 
Our normalization includes three steps: rescale the limb’s 
length to a constant value; translate the pelvis to the origin 
of axis; rotate the zenith and azimuthal of torso (the seg-
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ment between pelvis and spine) to a constant angle because 
this body part can be assumed to be rigid. Assuming that 
we have obtained the normalized 3D poses and their confi-
dence at each joint, the distance DP between a pair of poses 
is defined as 

1 2 1 2

2
1
min ( ), ( ) ( ) ( )

J

P
j

D W j W j S j S j         (1) 

where 1 2( ) ( ( ) )S j S j  represents the 3D location of j-th joint 
of the first (second) 3D pose, whose corresponding confi-
dence value is 1 2( ) ( ( ) )W j W j , and J is the total number of 
joints. For each joint, we compare its confidence in the two 
considered poses and select the smaller one as the weight.  

In matching two videos, we only use a subset of joints 
that are captured in both two corresponding frames to 
compute this distance. If a joint is detected in one video but 
not the other, this joint will not be considered in computing 
the distance. The final distance DP between a pair of videos 
is the sum of distance over all the frames. 

Further, we integrate the pose-based CVPI method with 
appearance- and motion-based CVPI methods by 

M A PD D D D                          (2) 

where D is the fused distance, DM, DA and DP are the 
matching distance computed by motion, appearance and 
pose respectively, ,  are coefficients to balance the dif-
ferent value ranges of the three distances. Here, we use 
(Zheng et al. 2017) and (Yan et al. 2016) to compute the 
motion and appearance distances, respectively. Specifically, 
for each video, two feature vectors are derived to represent 
the motion or appearance features respectively. The former 
uses the optical flows while the latter uses the color and 
LBP features. Then, the Euclidean distance between mo-
tion (appearance) feature vectors derived from two videos 
are taken as the distance DM (DA). The values of  and  are 
selected on validation dataset of SEQ1 (one of the datasets, 
see detail in the experiment section) and then we use these 
values for all three datasets. The final values for ,  are 
0.5 and 10 respectively, since the pose-based distance DP is 
typically much smaller than the appearance-based distance 
DA. The influence of these values on CVPI performance 
will be analyzed in the experiment section. 

3D Human Pose Estimation 
As mentioned above, we select the 3D HPE method pro-
posed by Zhou et al. (2016) to develop the proposed meth-
od of confidence estimation and pose-based CVPI.  The 3D 
HPE consists of two steps: 2D HPE and 3D HPE from 2D 
heat-maps. Since the original method assumes all joints are 
captured by cameras, we adapt it to handle the case of var-
ying number of captured joints in real videos. In the fol-
lowing, we first review this HPE algorithm and then intro-
duce our adaptation.  

2D Human Pose Estimation 
Due to the remarkable performance, the stacked hourglass 
network architecture (Newell, Yang, and Deng 2016) is 
used for 2D HPE, which is performed on each frame inde-
pendently. On each frame, the output Y is J heat-maps, 
each of which represents a 2D probability distribution for 
one joint. This network is trained by using the following 
Euclidean loss 

'
2

1

1 J

D j j
j

L Y Y
J

                      (3) 

where Yj and Yj’ are the predicted heat-map and the 
ground-truth heat-map for j-th joint. The final 2D locations 
are the coordinates of peak value in heat-maps. Since this 
module is trained on the wild images, it shows great per-
formance in the videos taken by wearable cameras. 

 3D HPE Using Heat-maps 
After getting the 2D heat-maps on all the frames of a video, 
3D HPE for a sequence is formulated as an energy minimi-
zation problem. Given a sequence of 2D poses over all the 
frames, the 3D pose is estimated by minimizing the follow-
ing loss function with respect to C, R, T 

2

1
1

( ; ) + ( )
2

k
n

t t it i tt
i F

L P P R c B T R  (4) 

where 2 J
tP R  is the 2D locations at time t obtained from 

the corresponding 2D heat-maps, itc is the corresponding 
coefficient in the frame t for the i-th basis pose iB B , B is 
the dictionary of 3D poses, tR  and tT denote the camera 
rotation and translation. For notational convenience, we 
use { }itC c , { }tR R and { }tT T to represent the set of 
parameters in all frames. Finally, all these parameters are 
denoted as { , , }C R T , R( ) is the prior on parameters , 

F represents the Frobenius norm. Refer to (Zhou et al. 
2016) for more details. The final 3D pose at time t is de-
fined as  

1

k

t it i
i

S c B                                 (5) 

Since the 3D pose is rebuilt with a 3D pose dictionary, it 
always satisfies the structure constraints of human body. 

Adaptation to Handle Missing Body Parts 
Zhou et al. (2016) assume that all 2D joints are captured by 
the camera. In practice, some body parts may not be view-
able in some frames of a video due to view-angle changes 
and occlusions. In this case, the above 2D HPE may return 
false locations for the missing joints, as shown in the top 
row of Fig. 3. Such incorrectly localized joints may violate 
the structure constraint of human body and prevent from 
rebuilding the correct 3D pose using 3D pose dictionary. 
Even if the algorithm produces an eclectic 3D pose, it will 
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Figure 3: An illustration of 3D HPE results. Top: original 
image sequence with estimated 2D pose; Middle and Bottom: 
estimated 3D human pose without and with the adaptation to 
handle missing body parts. Green lines represent left limbs 
while the red lines represent the right limbs. 

not conform to the true 3D pose in the image, as shown in 
the second row of Fig. 3. Using these false 3D poses may 
seriously hurt the performance of CVPI.  

The peak value of heat-maps for joints with severely in-
correct location is always smaller than that of normal joints. 
Based on this fact, we introduce the concept of visibility to 
the original algorithm. We assign a binary visibility label 
to every joint by comparing the maximal value of their 
heat-maps with a fixed threshold. Specially, the label is 1 if 
the peak value is larger than 0.1, and 0 otherwise. This 
threshold is selected through experiments on the validation 
dataset of SEQ1 and it is used to other two datasets. Then, 
we add the visibility label into the loss function (4), lead-
ing to 

2

1
1

( ; ) + ( )
2

k
n

t t t it i tt
i F

L P P R c B T R
   

(6) 

where 1{0,1} J
t represents the visibility label of each 

joint at time t. Eq. (6) can be rewritten as 
2

1
1

( ; ) + ( )
2

k
n

t t t it t i t tt
i F

L P P R c B T R
 
(7) 

As in the original algorithm, we minimize (7) through 
updating C, R or T alternately while fixing the others. The 
first term t tP  in Eq. (7), which represents the 2D locations 
of visible joints, can be calculated in advance. Therefore, 
the update manner of minimizing Eq. (7) is the same as 
that of minimizing Eq. (4) in the original method except 
for changing the dictionary using the visibility matrix in 
advance. The parameters are kept the same as the original 

algorithm. Sample results of our adapted HPE algorithm 
are shown in the bottom row of Fig. 3. 

Confidence Metric to 3D HPE
In this section, we define the confidence of each joint in a 
3D pose estimation, which includes three aspects: confi-
dence of 2D HPE, confidence of 3D HPE from 2D heat-
maps and the temporal confidence. The first two focus on 
spatial space, while the last one is on the temporal space. 

Confidence of 2D HPE 
The confidence of 2D HPE is the certainty of the estimated 
2D locations of joints. In fact, a heat-map is defined as a 
per-pixel likelihood for joint’s locations. So we regard the 
value of heat-maps as the confidence of 2D joint locations. 
However the resolution of heat-maps is a quarter of that of 
the original images, indicating that the value of heat-maps 
is not very smooth. To improve robustness, the confidence 
of location p is defined as a weighted average of its four 
neighbors and itself. Supposing the j-th joint is detected at 
location p at time t, its 2D confidence is defined as 

2

( )
( ) 0.5 ( ) 0.5 0.25 ( )D

t
p N p

W j Y p Y p  (8) 

where 2 ( )D
tW j R  is the 2D confidence of j-th joint at time 

t, Y(p) denotes the value of heat-map Y at location p at time 
t, N(p) represents the four neighbors of p. Such 2D confi-
dence reflects the certainty of the map projecting visual 
appearance to 2D locations. 

Confidence of 3D HPE 
Since there may exist multiple possible 3D poses for a 
fixed 2D pose, 3D HPE is a selection process. As a result, 
confidence of 3D HPE denotes the certainty of 3D pose 
selection process given fixed 2D joint locations or heat-
maps. The definition of this confidence is related to the 3D 
HPE algorithm.  

Our current definition is based on the loss (7), which 
minimizes the distance between the estimated 2D pose from 
images and the projected 2D pose from 3D pose, i.e.,  

23 ( ) ( ) ( ) ( ) ( )D
t t t t t t F

W j j P j R S j T j  (9) 

where  3 ( )D
tW j R  is the 3D confidence of j-th joint at 

time t. Clearly, the 3D confidence of missing joints is zero, 
which means no impact of missing joints on the later pose 
matching. 

Temporal Confidence 
The above two kinds of confidence mainly focus on spatial 
space. To model the consistency of joint locations over 
time, we employ a temporal confidence, which describes 
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the smoothness of a joint location over time. As a result, 
the temporal confidence is defined as the distance between 
the joints’ locations in adjacent frames 

1 2
( ) - ( ) ( )T

t t tW j S j S j                        (10) 

where  ( )T
tW j R  is the temporal confidence of j-th joint at 

time t, whose 3D location is ( )tS j . As in Eq. (10), a sud-
den change of a joint’s location means low confidence, 
which conforms to the motion pattern of human. 

To fuse the confidence in different aspects, the final con-
fidence is defined as 

3 32 ( ) ( )( ) ( )
D D T TD W j W jW j W j e e                  (11) 

where W(j) R is the final confidence of j-th joint, 3D, 
T R are the coefficients for different confidence, which 

fit the final confidence value to the interval of [0, 1]. For 
convenience, we omit the subscript t of confidence here. 
As shown in Eq. (11), we use the same coefficients for 
different joints. In experiments, these two coefficients are 
selected by using validation dataset of SEQ1 – 3D and T 
are set to 0.2 and 0.5 respectively for all the datasets.  

Experiments 
In this section, we will describe the datasets, evaluation 
metrics and the experimental results including quantitative 
comparison and qualitative examples. 

Dataset and Evaluation Metrics 
We evaluate the proposed method on three datasets: SEQ1, 
SEQ2 (Zheng et al. 2016) and SYN (Zheng et al. 2017), all 
of which are human-walking videos. These datasets are 
taken by two temporally synchronized GoPro cameras with 
different views. As a result, these dataset consist of video 
pairs and each pair of videos actually capture the same 
walking subject from different views. The length of each 
video is 120 frames. All subjects wear similar clothes. 
SEQ1 and SEQ2 contain 114 and 88 video pairs performed 
by 6 subjects. In some videos, portions of human body 
parts are invisible due to occlusions and camera angles. 
SYN contains 208 video pairs performed by 14 subjects. 
Compared to the first two datasets, SYN has less camera 
motion. Besides, all the human body parts in SYN are visi-

ble. For fair comparison, the frame resolution of all the 
videos is normalized to 64×128. 

While the proposed method is unsupervised, several of 
the selected comparison methods are supervised. Therefore, 
we randomly split the dataset into two equal-size datasets 
for training and testing respectively, as in Zheng et al. 
(2016 and 2017). Like previous methods, we employ the 
Cumulative Matching Characteristics (CMC) ranks as our 
metric for CVPI evaluation. One camera’s videos are probe 
set and videos from the other are used as gallery set. We 
calculate the distance for each pair and rank them.  

Effects of Confidence 
In this section, we investigate the influence of different 
confidence metrics on CVPI performance. The results are 
shown in Table 1. In this table, ‘Pose’ denotes the CVPI 
performance just by using 3D human pose without any 
confidence, ‘Pose+2D’, ‘Pose+3D’ and ‘Pose+T’ are the 
performance using 3D pose weighted by the confidence of 
2D HPE, the confidence of 3D HPE, and temporal confi-
dence respectively. ‘CPose’ is the performance of the pro-
posed method by using fused confidence. Since some body 
parts are occluded in the video of SEQ1 and SEQ2, the 
accuracy is much lower than that of SYN. The low accura-
cy shows the difficulty of accurate 3D HPE for videos cap-
tured by wearable cameras. For all three datasets, adding 
any one of the three confidences can improve the pose-
based CVPI performance substantially. This verifies the 
combination of the inaccurately estimated pose with a 
joint-based confidence can boost the CVPI performance. 
From this table, we also find 2D confidence can help im-
prove the CVPI performance more than the other two kinds 
of confidence. In most cases, the proposed method by us-
ing fused confidence leads to the best performance. In the 
following, we will employ ‘CPose’ for comparsion. 

Quantitative Comparison 
In this section, we compare our method (denoted as CPose) 
with other state-of-the-art methods, including DVR (Wang 
et al. 2014), 3DHPE (Zheng et al. 2016), RFA (Yan et al. 
2016 and Zheng et al. 2017) and Flow (Zheng et al. 2017). 
In these methods, 3DHPE and our proposed method are 
unsupervised since they do not use the identity information 

Table 1. CMC performance of the pose-based CVPI when using different confidence metrics. 

dataset SEQ1 SEQ2 SYN 
CMC Rank 1 5 10 20 1 5 10 20 1 5 10 20 

Pose 12.81 38.60 54.56 65.61 18.64 42.27 55.00 66.14 52.50 73.17 81.15 89.90 
Pose+2D 25.26 68.95 78.77 90.53 30.68 62.27 73.86 87.27 63.94 87.98 92.79 95.58 
Pose+3D 22.98 66.49 77.19 86.32 24.77 54.09 69.09 82.05 59.42 82.31 91.83 94.90 
Pose+T 22.46 59.12 75.79 87.02 28.86 55.91 70.68 82.95 57.02 81.93 89.62 94.13 
CPose 30.00 67.02 79.30 88.77 29.55 65.68 76.36 87.95 63.65 85.96 92.31 95.58 
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of person. Other methods need to learn the parameters us-
ing training dataset. The results are shown in Table 2. The 
proposed method achieves much higher performance than 
DVR and 3DHPE, which validates the effectiveness of the 
combination of human pose with confidence metric. Since 
our method is unsupervised, the performance is inferior to 
that of Flow and RFA. Even so, we still outperform RFA 
in SYN in term of CMC rank 1. The reason may be that 
SYN contains less occlusions. 

In the bottom four rows of Table 2, we give the results 
for combined methods. Adding pose to Flow (or RFA) 
leads to better performance than the original Flow (or 
RFA). Combining pose, Flow and RFA achieves the high-
est performance in most cases, which verifies that the hu-
man poses, although inaccurately estimated, can still com-
plement motion and appearance features for improving 
CVPI.  

To show the influence of the value of  on the 
CVPI performance, we conduct experiments on SEQ1 us-

 The results are shown in Table 3. For 
saving space, we only show the average scores over CMC 
rank 1, 5, 10 and 20. From this table, we can see the CVPI 

 

Cross-dataset Testing 
Like Zheng et al. (2017), we also compare cross-dataset 
performance. For fair comparison, we perform this testing 
on SEQ2 using the parameters trained on SEQ1. The re-
sults are shown in Table 4. Note that for the two unsuper-
vised methods, the CVPI performances keep unchanged. 
Our method achieves the best cross-dataset testing perfor-
mance and the performance gain is over 12% in term of 
CMC rank 1. Besides, we can see that the two pose-based 
methods, 3DHPE and our proposed method, show much 
better cross-data testing performance than the appearance 
or optical-flow based methods. This shows that pose is a 
more robust cue with high generalization ability than opti-
cal or appearance in CVPI. Although SEQ1 and SEQ2 
share similar background and subjects, the supervised 
methods still do not perform well on cross-dataset testing. 
In our opinion, this may be caused by over-fitting in train-
ing due to the large number of trained parameters and the 
small number of training samples.  

Qualitative Results 
In Fig. 3, we show the 3D human pose estimation results 
for a video sequence and we can see that some body parts 
of this sequence are not captured by cameras. Furthermore, 
we can see that the number of missing body parts is chang-
ing over time. The predicted 2D pose results are super-
posed on the images. As shown in the top row, the 2D lo-
cations for missing body joints are severely incorrect. The 
3D pose obtained by the original algorithm is given in the 
second row. Due to the influence of false 2D locations of 

Table 4. Cross-data performance in terms of CMC rank. 

Rank 1 5 10 20 
3DHPE 17.95 51.82 71.14 89.55 

RFA 5.00 14.77 32.50 63.63 
Flow 11.36 25.00 38.64 63.64 

CPose 29.55 65.68 76.36 87.95 
 

Table 3: CMC performance of SEQ1 using different  

 
 0.2   0.3  0.4   0.5   0.6   0.7   0.8   

7  96.50 96.45 96.40 96.14 95.57 95.31 95.04 
8  96.65 96.66 96.64 96.58 96.45 96.18 95.83 
9  96.45 96.49 96.58 96.67 96.67 96.49 96.40 

10 96.58 96.49 96.49 96.67 96.67 96.54 96.40 
11 96.40 96.54 96.58 96.58 96.67 96.58 96.62 
12 96.45 96.45 96.45 96.54 96.62 96.67 96.62 
13 96.40 96.54 96.49 96.45 96.40 96.49 96.58 

 

Table 2: Comparison of the proposed method with state-of-the-art methods on SEQ 1, SEQ 2 and SYN dataset in terms of CMC rank. 

dataset SEQ1 SEQ2 SYN 
CMC Rank 1 5 10 20 1 5 10 20 1 5 10 20 

DVR 16.14 50.53 66.84 82.83 11.14 34.09 53.64 77.05 12.69 41.83 59.04 75.87 
3DHPE 16.14 50.70 67.02 81.93 17.95 51.82 71.14 89.55 8.65 35.67 50.48 64.52 

RFA 68.42 96.84 98.25 99.30 69.77 96.36 98.41 99.32 56.83 92.40 97.02 98.85 
Flow 79.82 92.28 95.26 97.54 76.36 87.05 92.73 96.82 72.21 90.00 94.90 98.08 

Flow+RFA 87.02 97.37 97.89 98.95 82.05 94.39 96.59 99.32 82.12 98.37 99.33 100 
CPose 30.00 67.02 79.30 88.77 29.55 65.68 76.36 87.95 63.96 85.96 92.31 95.58 

CPose+RFA 84.56 97.19 98.24 99.65 77.05 98.19 99.32 100 84.51 98.72 99.60 100 
CPose+Flow 85.97 93.86 97.37 98.07 80.45 91.36 95.23 98.64 84.14 95.69 98.44 99.71 

CPose+RFA+Flow 91.75 97.37 98.42 99.12 86.36 96.13 98.63 99.77 91.54 99.81 100 100 

Note: 3DHPE and the proposed CPose are unsupervised methods. 
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(a) SEQ1                                                         (b) SEQ2                                               (c) SYN 

Figure 4: Sample matching results. (a), (b) and (c) are from SEQ1, SEQ2 and SYN dataset respectively. Top two rows are correct 
matching video pairs. The bottom three rows show failure cases. The third row is the probe input video. The fourth row is the returned 
matching video, which is incorrect, and the last row is the true matching video for the probe in the third row. 

invisible joints, the 3D locations of visible joints are also 
wrong. In the last row, we give the estimated 3D pose with 
our adaptation. From Fig. 3, we can find our algorithm can 
return reasonable pose for visible human body parts at any 
time, which we use for pose-based CVPI.  

Sample matching results are shown in Fig. 4. The three 
columns are samples from SEQ1, SEQ2 and SYN respec-
tively. The top two rows are correct matching video pairs. 
Incorrect matching video pairs are shown in the bottom 
three rows, where the third row are probe inputs, the fourth 
row gives the returned false sequence and the true match-
ing sequence is shown in the fifth row. The 3D human 
movements in the matched video pairs are completely con-
sistent. In the correctly matched videos from SEQ1 and 
SEQ2, some body parts are missing. Nevertheless, our al-
gorithm still returns the correct matching results. This 
shows that using some of body parts is sufficient for CVPI. 
For failure cases, the main reasons include the missing of 
too many key body parts and the overly large difference of 
the camera views. For example, the failed matching in 
SEQ1 in Fig. 4 may be caused by the totally opposite view 
angles of the truth matched video pairs, as indicated in 
rows 3 and 5 in Fig. 4(c). As a result, the visible parts in 
the probe are invisible in the true matching video, which 
leads to a false matching. Similarly, due to the camera-
view difference, many key body parts are occluded in the 
probe video of SEQ2, which results in a false matching. 
The false matching video in SYN has very similar move-
ment as the probe video.  

Conclusion 
In this paper, we developed a new metric of confidence to 
3D human pose estimation (HPE), which measures the 
localization confidence of each joint, and used the estimat-
ed poses for cross-view person identification (CVPI), i.e., 
identifying the same person from temporally synchronized 
videos. Based on an existing 3D human pose estimation 
method, the confidence metric is defined in three aspects: 
2D HPE confidence, 3D HPE confidence and temporal 
confidence. Then, we combined the inaccurately estimated 
human pose with the confidence metric for CVPI, by using 
confidence as weight in matching poses estimated from 
two videos. We found that the derived confidence can 
promote the pose-based CVPI. Finally, we integrated the 
estimated pose information into motion and appearance 
features and found that pose information well complements 
the motion and appearance features in CVPI and the inte-
gration of the pose, motion, and appearance features leads 
to new state-of-the-art CVPI performance. 

There are two directions for the future work. First, com-
pared to the current hand-crafted fusion of different confi-
dences, supervised learning may be applied to produce a 
better fusion with further improved CVPI performance. 
Second, we can use CNN to learn the confidence metric, 
which can be combined with pose estimation through con-
fidence weighted loss. 
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