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Abstract

Multi-valued Decision Diagrams (MDDs) have been exten-
sively studied in the last ten years. Recently, efficient algo-
rithms implementing operators such as reduction, union, in-
tersection, difference, etc., have been designed. They directly
deal with the graph structure of the MDD and a time reduction
of several orders of magnitude in comparison to other existing
algorithms have been observed. These operators have permit-
ted a new look at MDDs, because extremely large MDDs can
finally be manipulated as shown by the models used to solve
complex application in music generation. However, MDDs
become so large (50GB) that minutes are sometimes required
to perform some operations. In order to accelerate the manip-
ulation of MDDs, parallel algorithms are required. In this pa-
per, we introduce such algorithms. We carefully design them
in order to overcome inherent difficulties of the paralleliza-
tion of sequential algorithms such as data dependencies, soft-
ware lock-out, false sharing, or load balancing. As a result, we
observe a speed-up , i.e. ratio between parallel and sequential
runtimes, growing linearly with the number of cores.

Introduction
Multi-valued Decision Diagrams (MDDs) have been exten-
sively studied in the last ten years, notably by the team of
J. Hooker, who recently published a book on this subject
(Bergman et al. 2016). They are a compressed representa-
tion of a set (Bryant 1986) and are used to model the set
of tuples of constraints. They are implemented in almost all
constraint programming solvers and have been increasingly
used to build models (Roy et al. 2016; Perez and Régin 2015;
Andersen et al. 2007; Hadzic et al. 2008; Hoda, van Hoeve,
and Hooker 2010; Bergman, van Hoeve, and Hooker 2011;
Gange, Stuckey, and Van Hentenryck 2013; Cheng and Yap
2010). They can be constructed in several ways, from tables,
automata, dynamic programming, etc.

MDDs have several advantages. They have a high com-
pression efficiency. For instance, an MDD having 14,000
nodes and 600,000 arcs and representing 1090 tuples has
been used to solve a music synchronization problem (Roy
et al. 2016). Unlike other compressed representations, op-
erations are performed directly on the compressed repre-
sentation, i.e. without decompression. The combinations of
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constraints represented by MDDs correspond to operations
performed on MDDs. Conjunction of constraints is accom-
plished by intersecting MDDs and disjunction by union.

Recently, efficient operators such as union, difference
negation, intersection, etc., have been designed (Perez and
Régin 2015; 2016). These are based on algorithms dealing
directly with the graph structure of the MDD instead of func-
tion decomposition, which requires reaching the leaves of
a branch as Shannon or Bryant did (Bryant 1986). By ex-
plicitly working on the structure, they dramatically accel-
erated the algorithm and observed a time reduction of sev-
eral orders of magnitude in comparison to other existing al-
gorithms. The design of efficient algorithms has permitted
a new look at MDDs, because extremely large MDDs can
finally be manipulated now. One successful application of
these ideas is the modelling of the maxOrder problem pro-
posed by Pachet in his ERC project Flow Machine (Pachet
2011). Perez and Régin (Perez and Régin 2015) solved the
problem by defining two MDDs, computing their difference,
applying the result 16 times, and performing 16 intersec-
tions. The time to compute the final MDD is equivalent to
that required for the algorithm of Pachet’s group, and 52GB
of memory was needed to represent it.

However, very large MDDs imply long times for perform-
ing operations even if these operations have a low complex-
ity. For example, in a recent study, more than 2,000 seconds
are needed for performing only two intersections (Perez and
Régin 2017). Thus, parallelism seems the only one way to
reduce these times.

Using a parallel CP solver is not an adequate answer
because classical method, such as work-stealing (Jaffar et
al. 2004; Michel, See, and Hentenryck 2009; Chu, Schulte,
and Stuckey 2009) or embarrassingly parallel search (Régin,
Rezgui, and Malapert 2013) requires to duplicate some parts
of the problem which is not possible with MDDs requiring
tens of gigabytes of memory. Therefore, parallel versions
of the sequential algorithms implementing the operators are
needed.

In this paper, we propose to parallelize the sequential
algorithms implementing operations for MDDs. More pre-
cisely, we design parallel versions of the algorithms pro-
posed in (Perez and Régin 2015), that is the reduction algo-
rithm, which merge equivalent nodes, and the generic apply
algorithm from which the other operators are built.
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The parallelization of sequential algorithms usually en-
counters several difficulties such as data dependencies, soft-
ware lock-out, false sharing, or load balancing. We will ex-
plain how the algorithms we propose overcome these dif-
ficulties. We will focus more particularly on the last two
which become very penalizing in practice when more than
four cores are involved. Notably, we will give parallel algo-
rithms without any software lock-out that are as simple as
their sequential version. We will present results showing an
acceleration growing linearly with the number of cores and
so proving that these difficulties have been avoided.

Note that the parallel algorithms we propose can also be
used for minimizing an acyclic automaton.

The paper is organized as follows. First, we present some
related works. Then, we recall some definitions about paral-
lelism and MDDs. Next, we detail the parallelization of the
reduction operator. Afterwards, we consider the APPLY al-
gorithm and detail its parallel version. Finally, we give some
experimental results for different sizes of MDDs and involv-
ing different number of cores, and we conclude.

Related Work
The processing in parallel of MDDs or automata has been
well studied and is still a hot topic Bergman et al. intro-
duced a parallel B&B search that branches on nodes in the
MDDs instead of branching on variable-value pairs as it is
done in conventional search methods (Bergman et al. 2014).
Other works focus on minimizing an automaton in paral-
lel, using specific algorithms (Ravikumar and Xiong 1996;
Tewari, Srivastava, and Gupta 2002) or by using the well-
known map-reduce principles (Hedayati Somarin 2016;
Dean and Ghemawat 2008). Finally for Binary Decision
Diagrams, parallel creation and manipulation algorithms
(Kimura and Clarke 1990; Stornetta and Brewer 1996) have
been designed. These algorithms use global hash-tables and
they are organized so that locks are only needed for these
global hash tables and the global tree nodes. In addition, a
thread safe unordered queue using asynchronous messages
is required. These algorithms and their implementation are
quite complex, define complex dedicated data structures and
use locks.

Background
Parallelism
When a parallel program is correct, that is when race condi-
tion and deadlock issues1 have been resolved, several other
aspects must be taken into account to reach a good scalabil-
ity. At least four difficulties that may impact that scalability
can be identified:

• Data dependencies: it is a situation in which an instruc-
tion refers to the data of a preceding instruction. Thus, no
program can run more quickly than the longest chain of
dependent calculations (known as the critical path), since

1Race conditions depends on the sequence or timing of pro-
cesses or threads for it to operate properly. A deadlock is a state in
which each member of a group is waiting for some other member
to take action (Coulouris, Dollimore, and Kindberg 2005).

calculations that depend upon prior calculations in the
chain must be executed in order.

• Software lock-out: it is the issue of performance degra-
dation due to the idle wait times spent by the CPUs in
kernel-level critical sections.

• Resource contention and particularly false sharing: it is
a conflict over access to a shared resource such as ran-
dom access memory, disk storage, cache memory, inter-
nal buses or external network devices. False sharing is a
term which applies when threads unwittingly impact the
performance of each other while modifying independent
variables sharing the same cache line.

• Load balancing: it refers to the distribution of workloads
across multiple computing resources, such as cores.

For convenience we will use the word worker to represent
an entity performing computation. Usually it corresponds to
a core.

Multi-valued Decision Diagram
The decision diagrams considered in this paper are reduced,
ordered multi-valued decision diagrams (MDD), which are
a generalization of binary decision diagrams (Bryant 1986).
They use a fixed variable ordering for canonical represen-
tation and shared sub-graphs for compression obtained by
means of a reduction operation. An MDD is a rooted di-
rected acyclic graph (DAG) used to represent some multi-
valued function f : {0...d − 1}n → true, false. Given the
n input variables, the DAG contains n + 1 layers of nodes,
such that each variable is represented at a specific layer of
the graph. Each node on a given layer has at most d outgoing
arcs to nodes in the next layer of the graph. Each arc is la-
beled by its corresponding integer. The arc (u, a, v) is from
node u to node v and labeled by a. All outgoing arcs of the
layer n reach tt, the true terminal node (the false terminal
node is typically omitted). There is an equivalence between
f(a1, ..., an) = true and the existence of a path from the
root node to the tt whose arcs are labeled a1, ..., an.

Let u be a node. The outgoing arcs of u are ordered by
their labels and denoted by ω+(u). The signature of u is
denoted by sig(u) and defined by the ordered list of ordered
pairs defined from the outgoing arcs by removing the first
element of the triplet representing the arc. Thus, (li, uj) ∈
sig(u) ⇔ (u, li, uj) ∈ ω+(u). The neighbors of u are the
nodes uj s.t. ∃(u, lj , uj) ∈ ω+(u). When considering u it is
equivalent to deal with ω+(u) or sig(u).

Parallel Reduction
The reduction of an MDD consists in removing nodes that
have no successor and merging equivalent nodes, i.e. nodes
having the same set of neighbors associated with the same
labels. This means that only nodes of the same layer can be
merged. In addition, two nodes can be merged iff they have
the same signature. Figure 1 gives an example of reduction.

The main difficulty is to identify nodes having the same
signature. The PREDUCE algorithm (Perez and Régin 2015)
improved previous algorithms that checked for each node
whether it can be merged with another node or not. It works
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MDD before reduction MDD after reduction

Figure 1: Reduction of an MDD. Nodes without successors
are deleted (e.g. node 4). Equivalent nodes are merged (e.g.
nodes 3 and w2).

per layer and groups the nodes having the same suffix of sig-
natures into packs2. Nodes that remain in the same pack with
their entire signature, and not only a suffix, can be merged
together. The worst-case time complexity is bounded by the
sum of the size of common suffix of the nodes.

Efficient parallelization of this algorithm is not trivial,
thus a simplified version of the sequential algorithm is con-
sidered first. Then, a more complex algorithm is presented
to fit the best complexity of the sequential algorithm.

Parallel Sort
The identification of nodes having the same signature can
be simply performed by sorting the node according to their
signature. Since nodes and labels are integers, a linear sort
algorithm can be used. We propose to consider a radix sort.

We reproduce the presentation in (Cormen, Leiserson, and
Rivest 1990). Consider that each element in the q-element
array A has δ digits, where digit 1 (resp. δ) is the least (resp.
most) significant digit. The radix sort algorithm consists of
calling for r = 1..δ a stable sort to sort array A on digit r.
The counting sort can be used as a stable sort. Counting sort
assumes that each of the q input elements is an integer in
[0, k], for some integer k. It determines, for each input ele-
ment x, the number of elements less than x. This informa-
tion can be used to place element x directly into its position
in the output array. For example, if there are 17 elements less
than x, then x belongs in output position 18. When several
elements have the same value we distinguish them by their
order of appearance in order to have a stable sort. Thus, the
time complexity of the radix sort is δO(q + k).

The parallel radix sort with w workers (Zagha and Blel-
loch 1991). It uses a parallel counting sort as stable sort. Let
V be a vector of q elements. The parallel counting sort splits
V into w subvectors, one for each worker. Then each worker
applies a counting sort on its subvector. Finally, the workers
put the nodes in their new position.

2The algorithm normally works with prefixes, but it can be
straightforwardly adapted to deal with suffixes.

Example. We propose to detail the parallel radix sort for a
vector of nodes of the MDD. We assume that there each node
has only one neighbors and one label. For the sake of clarity
we represent an ordered pair (li, uj) by ij, i.e. (l0, u1) is
written 01.

Consider the following vector of nodes, the second line
gives the index of the node, the third line is associated with
the signatures.

a b
0 1 2 3 4 5 6 7 8 9 V
10 00 11 11 00 10 10 01 11 01 sig

Using two workers (a and b), we can split the vector into
two independent parts and apply a counting sort. The two
parts are [0, 4] and [5, 9], b is always after a in order to
avoid collision. The first step of the radix sort considers
the rightmost digit. Let a#i (resp. b#i) be the number of
i counted by worker a (resp. b). These numbers are com-
puted by traversing the values. This is the counting step of
the counting sort. We obtain:

a#0 = 3 a#1 = 2 b#0 = 2 b#1 = 3

Then we determine the global indices of each digit by
workers, let iar (resp. ibr) be the position in the resulting
vector of the first value of the elements of part a (resp.
b) whose current digit is r. We have ia0 = 0; ib0 =
ia0 + a#0 = 3; ia1 = ib0 + b#0 = 3 + 2 = 5 and
ib1 = ia1 + a#1 = 7. When there are more than two
workers the same principle applies: the information of the
previous worker is used for the current worker. We have:

ia0 = 0 ia1 = 5 ib0 = 3 ib1 = 7

This step, denoted by the cumulative step, can also be
performed in parallel. Each worker receives a set of values
([0..k] is divided into w subranges) and performs the com-
putations for its set of values. Each worker j computes the
number of time each of its value is taken and cs(j) the cu-
mulative sum of these numbers. Then, we compute for each
worker j the sum of the cumulative sum of the previous
workers: scs(j) =

∑j−1
i=1 cs(i). This can be globally done

in O(w). From these scs values, each worker computes the
global indices of its values.

Using these positions, the workers a and b can indepen-
dently build the global vector without any collision and thus
without lock. So this last step, named the position step, can
also be performed in parallel by assigning to each vector its
initial subvector of elements. For example, a puts the value
10 of node 0 in position ia0 = 0 then, it increments ia0,
so ia0 = 1, then it puts the value 00 of node 1 in position
ia0 = 1 and increments it again, etc. The global vector is:

0 1 4 5 6 2 3 7 8 9
10 00 00 10 10 11 11 01 11 01

The same process has to be applied to the second digit in
order to sort the nodes. We finally obtain:

a b
1 4 7 9 0 5 6 2 3 8

00 00 01 01 10 10 10 11 11 11
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Complexity. For each worker, the counting step3 is in
O(q/w), the cumulative step is in O(k/w) and the posi-
tion step is in O(q/w). Thus, the overall time complexity
of the parallel counting sort is in O(q/w + k/w). The par-
allel radix sort considers all digits of the signatures, thus its
time complexity is in δ×O(q/w+k/w), which is more than
the sum of common suffix of the PREDUCE algorithm. For
instance, consider the following signatures of nodes: 0010,
1101, 1012, 0113, 1004, 0015, 0116. The algorithm will pro-
cess for each node all four digits while the sequential algo-
rithm will process only the least significant one.

In order to remedy this issue, the PREDUCE algorithm
works with packs, which are common suffixes. Two nodes
belong to the same pack when their signature have the same
suffix defined by the pack. Only nodes in the same pack can
be merged. So, if at a moment, the signature of a node u
has a different digit value for a given position than any other
node of its current pack, then u cannot be merged with any
node and it can be ignored. Nodes that remain in the same
pack will be merged at the end.

Working by digits such as the radix sort is similar as work-
ing by common suffixes. Thus, we propose to apply the
same mechanism for the parallel algorithm by introducing
the pack notion.

Parallel PREDUCE

Packs and leaders. For the sake of clarity, node at posi-
tion p in the layer is denoted by up. Consider the iteration r
of the radix sort. A pack is a set of nodes having signatures
sharing the same digits from 1 to r (1 being the least sig-
nificant digit). This means that for any iteration all nodes of
a pack are consecutive. A particular node of a pack can be
identified: its leader. The leader is the node of the pack hav-
ing the smallest position. Then, for any node up with p > 0,
either up is a leader and up−1 belongs to another pack than
up, or up is not a leader and up−1 belongs to the same pack
as up. Therefore, packs can be deduced from leader nodes.

At the beginning of the algorithm, all nodes are in the
same pack, and the pack leader is the first node. For the
previous example, all nodes have 0 as leader (first line):

0 0 0 0 0 0 0 0 0 0 ldr
0 1 2 3 4 5 6 7 8 9 V
10 00 11 11 00 10 10 01 11 01 sig

Then, packs are refined depending on the current digit
values, because nodes in a pack have signatures having the
same suffix. When a new pack is created, its leader is the
node having the smallest index of the nodes in the pack. The
identification of packs and leaders is performed after the po-
sition step of the counting sort.

For the previous example if we have one worker then the
initial pack is split into two packs when considering the least
significant digit. Node 2 is the leader of the new pack.

0 0 0 0 0 2 2 2 2 2 ldr
0 1 4 5 6 2 3 7 8 9 V
10 00 00 10 10 11 11 01 11 01 sig

3The count array can be initialized by traversing the elements
to set the count of their values to 0 after the different steps.

We precisely define when a pack is created for the itera-
tion r. Pack are defined by their leader. Node u0 is always
a leader. Consider p > 0. First, we assume that up−1 has
already been set. Node up is a leader iff up−1 was in the
same pack at the previous iteration and the rth digit of the
signature of up and up−1 are different, or up−1 was not in
the same pack at the previous iteration.

For the second iteration of the previous example we
obtain the following result:

1 1 7 7 0 0 0 2 2 2 ldr
1 4 7 9 0 5 6 2 3 8 V
00 00 01 01 10 10 10 11 11 11 sig

Nodes having the same leader at the end must be merged.

Parallel computation of packs and leaders. When work-
ers are introduced, a problem arises because when up is set,
it is possible that up−1 has not been set. After the positioning
step of the counting sort, each worker will define the leader
of its part by checking whether each element is a leader or
not. Then, a problem arises for consecutive nodes that are
handled by different workers, known as junction.

For instance in the previous example, after the
first counting sort, nodes are ordered as follows:
0, 1, 4, 5, 6, 2, 3, 7, 8, 9. Then, worker a considers the
five first nodes, and worker b the five last nodes. That is, a
deals with 0, 1, 4, 5, 6. Since all signatures have the same
first digit (0), then 0 is the leader of this group. In addition
node at position 0 is always a leader so 0 is a global leader.
Worker b deals with 2, 3, 7, 8, 9. Since all signatures have
the same first digit (1), then 2 is the leader of this group.
However, there is not enough information to deduce that 2
is a global leader. The leadership of node 2, at position 5,
will be deduced by comparing the previous pack of 2 and
the current digit of its signature of 2 with the data of node
at position 5− 1 = 4, which is not necessary available. The
w − 1 junctions will be studied when all the workers have
finished their work. The relation between nodes and leader
can be maintained by using a union find data structure
(Tarjan 1975). Each tree represents nodes of a pack. By
performing merge according to decreasing indices, the
depth of the tree can never be more than 2, so the time
complexity of these operations is globally linear, that is in
O(1) per node.

At last and for reducing the time complexity in practice,
if at any moment a pack contains only one element, then it
is removed from the vector of nodes and ranges of indices of
workers are accordingly redefined.

Algorithm. Algorithm 1 is a possible implementation. It
works by layer. For a layer, the successive digits of the sig-
natures are considered from the least significant digit. The
vector of nodes is partitioned into as many parts as workers,
each part having the same number of elements. Each worker
wj performs a counting sort on this set of nodes Vj and puts
the result in V (Function COUNTINGSORT(Vj , r, V )). Then,
each worker computes the leader of its part of the nodes
(Function COMPUTELEADERS(Vj , r, V )). The junctions are
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Algorithm 1 parallel reduce of an MDD.
PARAREDUCE(mdd,W )

// W is the set of workers
for each i from n− 1 to 0 do

V ← L[i], the set of nodes in layer i.
δ ← maxu∈V (size of sig(u))
for each r from 1 to δ while V �= ∅ do

Partition V into |W | parts: V1, ..., V|W |
parallel for wj ∈ W do

wj .INITUNIONFIND(Vj , r, V )

parallel for wj ∈ W do
wj .COUNTINGSORT(Vj , r, V )

parallel for wj ∈ W do
wj .COMPUTELEADERS(Vj , r, V )

Define leaders for junctions
Remove from V nodes in singleton packs

in parallel Merge in L[i] nodes u ∈ V with its
leader

managed and nodes that cannot be merged are removed from
V . Note that the internal data structures are managed at the
beginning of each loop. Finally, nodes that remain in V are
merged in L[i] in parallel by partitioning V and by keeping
only the leaders. If the leader of a node in Vj is not managed
by wj , then the node in Vj with leftmost index becomes a lo-
cal leader and nodes in Vj are merged with it instead of the
global leader. Then, local leaders are merged to global lead-
ers. Note that there is at most one local leader per worker, so
it does not impact the time complexity, which remains the
same as the one of the PREDUCE algorithms.

Parallelization difficulties. This algorithm overcomes the
four difficulties of the parallelization of a sequential algo-
rithm. The data dependencies are controlled by working by
layer. There is no software lock. Workers get the information
from different places, i.e. the Vi parts, and write the result in
different positions and these two actions are performed sep-
arately and so the chance of false sharing is reduced. At last,
the vector of nodes is always split in equal parts, thus the
workload is well balanced.

Discussion
The time complexity of the parallel reduction algorithm is
the same as the parallel radix sort involving w workers. It
is in O(δ(q/w + k/w)) (1) where q is the number of ele-
ments and k the greatest possible value and δ the number of
digits. If q = O(k) or if k is clearly smaller than q then the
complexity is in O(δq/w) (2).

If k is clearly greater than q, then there are two ways to re-
duce the complexity. First, a different algorithm (Perez and
Régin 2015) can be used. Indeed, the counting sort can be
relaxed because the reduction algorithm does not require to
sort the elements. Instead it searches to identify elements
having the same digits. Thus, we can use an algorithm sim-
ilar to the counting sort whose complexity is based only on
the number of values, and not on their range, i.e. [0..k]. This

r1
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0 1 0 1

tt

1 0 1

r2
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0
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tt

1

Figure 2: Intersection of two MDDs.

algorithm uses A, an array of values ranging from [0..k] ini-
tially at zero. Like the counting sort, it traverses the elements
to count the number of times a value appears. However at
the same time it builds the list of taken values and it uses
this list to define the position instead of the range [0..k]. In
this way, the ordering between the values is lost, but the al-
gorithm still groups together the elements having the same
value, without traversing the range [0..k]. So it can be used
for our purpose. Unfortunately this algorithm is quite com-
plex to parallelize because it requires to use a local queue
per worker and the compare-and-swap instruction to be cor-
rect and efficient. The detail of this algorithm is out of the
scope of this paper but can be found in (Perez 2017).

Second, the same algorithm is used but the number of dig-
its of the signature is increased. If k is greater than q then we
can reduce its size by splitting the number k into several dig-
its. The number k can be written with logm(k) digits in base
m. So, we can express the overall time complexity (1) by
logm(k)O(δ(q/w + m/w)). By using m = 256 we have
log256(k)O(δ(q/w+256/w)) ≤ 4O(δ(q/w+256/w)) for
k ≤ 232. This complexity is equals to 4O(δq/w) if q ≥ 256.
So, in practice (i.e. k ≤ 232), by writing k in base 256 we
multiply the initial complexity (2) by at most a factor of 4.

Parallel Apply
Perez and Régin introduced an efficient APPLY algorithm
(Perez and Régin 2015) in order to define operations be-
tween MDDs. From the MDDs mdd1 and mdd2 it computes
mddr = mdd1⊕mdd2, where ⊕ is union, intersection, dif-
ference, symmetric difference, complementary of union and
complementary of intersection4.

Their algorithm proceeds by associating nodes of the two
MDDs. Each node u of the resulting MDD is associated with
a node u1 of the first MDD and a node u2 of the second
MDD. So, each node of the resulting MDD can be repre-
sented either by an index, or by a pair (u1, u2). First, the
root is created from the two roots. Then, layers are succes-
sively built. From the nodes of layer i − 1, nodes of layer

4Unlike Perez and Régin, the complementary of an MDD M
is computed by making the difference between the universal MDD
and M . This avoids the need of a dedicated algorithm.
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Figure 3: Intersection of two nodes

i are built as follows. For each node u = (u1, u2) of layer
i−1, arcs outgoing from nodes u1 and u2 and labeled by the
same value l are considered. Note that there is only one arc
leaving a node u with a given label. Thus, there are four pos-
sibilities depending on whether there are v1 and v2 such that
(u1, l, v1) and (u2, l, v2) exist or not. The action that is per-
formed for each of these possibilities defines the operation
that is performed for the given layer. For instance, a union is
defined by creating a node v = (v1, v2) and an arc (u, l, v)
each time one of the arcs (u1, l, v1) or (u2, l, v2) exists. An
intersection is defined by creating a node v = (v1, v2) and an
arc (u, l, v) when both arcs (u1, l, v1) and (u2, l, v2) exist.
Figure 3 gives an example of the intersection of two nodes.
Thus, these operations can be simply defined by expressing
the condition for creating a node and an arc. More details can
be found in (Perez and Régin 2015). We assume that Func-
tion BUILDARCS&NODES implements this mechanism and
returns the array of created nodes with its length.

After each layer, the algorithm merges equivalent ordered
pairs (x1, x2), because a lot of them can be created. For in-
stance, consider a node u1 of the first MDD at layer i with
an arc (u1, l, v1) and v2 a node of the second MDD at layer
i + 1. Then, every arc of the second MDD labeled by l and
reaching v2 will provoke the creation of the ordered pair
(v1, v2). Function MERGEORDEREDPAIRS is in charge of
this task. At last, the computed MDD is reduced.

Parallelization. Function BUILDARCS&NODES can be
easily parallelized by splitting the nodes of the layer accord-
ing to the number of workers that are involved. The returned
arrays must be merged into one an array of created nodes.
This can be done in parallel, by using the length of each ar-
ray to distribute the workload among the workers. Since, an
ordered pair of node can be seen as a signature containing
two digits, algorithm PARAREDUCE can be used for imple-
menting Function MERGEORDEREDPAIRS.

Algorithm. Algorithm 2 is a possible implementation of
the parallel version of APPLY.

Complexity. Let mdd1 be the first MDD, mdd2 be the
second, n1 (resp. n2) be the number of nodes of mdd1
(resp. mdd2), and d be the maximum number of labels of a
layer. For any layer, for each node of mdd1 of this layer and
for each node of mdd2 of this layer, a node may be built.
In addition, this created node may have d outgoing arcs.
Thus, the complexity of the sequential APPLY algorithm is
in O(n1n2d). The time complexity of the parallel version of
APPLY can be divided by the number of workers.

Algorithm 2 Parallel Apply.
APPLY(mdd1,mdd2, op,W ): MDD

// W is the set of workers
// We assume that each node can access its signature
Define mdd s.t. L[i] is the set of nodes in layer i.
root ← CREATENODE(root(mdd1), root(mdd2))
L[0] ← {root}
for each i ∈ 1..n do

Partition L[i− 1] into |W | parts: V1, ..., V|W |
L[i] ← ∅
parallel for wj ∈ W do

arrj ← wj .BUILDARCS&NODES(Vj , op)

Build in parallel L[i] from arr1, ..., arr|W |
parallel for wj ∈ W do

wj .MERGEORDEREDPAIRS(L[i])

PARAREDUCE(mdd,W )
return mdd

Parallelization difficulties. The data dependencies are
controlled by working by layer. There is no explicit soft-
ware lock, but objects are created therefore it is important
to manage the memory per worker and independently from
the others. Some false sharings have been observed (See Ex-
periments) because the array of nodes per layer is shared. It
was solved by postponing as much as possible the access to
common cache (Sutter 2009).

Experiments
All the experiments have been made on a Dell machine hav-
ing four E7- 4870 Intel processors, each having 10 cores
with 256 GB of memory, 16 memory channels and running
under Scientific Linux. Each tested combination is followed
by a reduction. The dedicated algorithms is used when there
are very large values (See Discussion in Section Parallel Re-
duction).

Real instances. First, we have run the instances from
(Perez and Régin 2015; 2017). The first one named Max-
Order consists of intersecting and applying a symetric dif-
ference between two very large MDDs, the result contains
more than 1 million of nodes and 200 millions of arcs. The
second one is named Dispersion, consists of the intersection
of three MDDs representing different sum functions. Curves
from Figure 4 show the speed-up, i.e. ratio between parallel
and sequential runtimes, for these two problems. As we can
see, for these instances, the speed-up is significant. Thanks
to parallel algorithms, we are able to close previously hard
problems in seconds.

Random instances. We have also tested many random
MDDs generated by fixing a lower and upper bound on the
number of nodes on each layer and then building the outgo-
ing arcs with respect to some probabilities. This allow to
handle the different sizes of MDDs, like small ones with
high density, big ones with low density, etc.
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Figure 4: Relative speed-ups according to the number of
workers.

We have run instances with a high arc density (> 0.60).
The number of variables does not have an impact on the re-
sults. Figure 4 shows the application of the parallel inter-
section between two MDDs. The number of nodes by layer
varies from 20k to 100k and three main curves are presented:

• For 50k-90k and 75k-100k, the speed-up is a straight
line from 1 to 16 cores with 1 as coefficient, which cor-
responds to the number of available memory channels.
Then, it is a line with 0.65 as coefficient. Note that this
comes from the fact that the resulting MDDs are bigger
than 70 GB and so the memory channels are saturated.

• For 20k-50k, the speed-up ratio is lower, because the
amount of work is low and thus the time is hardly re-
ducible.

Thanks to these speed-ups, we are able to build MDDs rep-
resenting very large constraints in seconds or minutes while
hours was required before. This implies that we can rein-
force our model by intersecting constraints as a preprocess
before running the search for solutions.

Remarks. The sequential algorithm is less than 10% more
efficient than the parallel version running with one worker.
When some operations are done in less than one second, our
parallel algorithms are slower. An explanation can be the
time needed to create the required memory.

False Sharing. The blue line shows the False sharing
problem we had, as we can see, the algorithm scales until
eight workers, then fails to keep a good speed-up, and finally
loses efficiency with the growing number of workers.

Dedicated algorithm or more digits? Figure 5 compares
the complex algorithm (See Discussion in Section Parallel
Reduction) and the method of the augmentation of digits for
the parallel reduction when the values are very large. The

Figure 5: Very large values management.

dedicated algorithm outperforms the second method by at
most a factor of 2.5.

Laptop. On a simple Macbook pro 2013 using four cores,
we observe the following speed-up:

40 variables 20 values 40 values
5k-100k nodes/layer 3.78 3.37
10k-200k nodes/layer 3.67 3.84

Conclusion
A parallel version of the reduction and the apply algorithms
for MDDs have been presented. These algorithms do not
need any complex data structure and are simple to imple-
ment. They overcome the common difficulties encountered
when parallelizing a sequential algorithm. Experimental re-
sults show that they accelerate the sequential algorithms by
a linear factor according to the number of involved workers.

References
Andersen, H. R.; Hadzic, T.; Hooker, J. N.; and Tiedemann,
P. 2007. A constraint store based on multivalued decision di-
agrams. In CP 2017 - Principles and Practice of Constraint
Programming, 13th International Conference, Providence,
USA, Proceedings, 118–132.
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Perez, G., and Régin, J.-C. 2016. Constructions and in-place
operations for MDDs based constraints. In CPAIOR 2016
- Integration of AI and OR Techniques in Constraint Pro-
gramming, 13th International Conference, Banff, Canada,
Proceedings, 279–293.
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