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Abstract

Many real-life problems require optimizing functions with ex-
pensive evaluations. Bayesian Optimization (BO) and Search-
based Optimization (SO) are two broad families of algorithms
that try to find the global optima of a function with the goal of
minimizing the number of function evaluations. A large body
of existing work deals with the single-fidelity setting, where
function evaluations are very expensive but accurate. How-
ever, in many applications, we have access to multiple-fidelity
functions that vary in their cost and accuracy of evaluation. In
this paper, we propose a novel approach called Multi-fidelity
Hybrid (MF-Hybrid) that combines the best attributes of both
BO and SO methods to discover the global optima of a black-
box function with minimal cost. Our experiments on multiple
benchmark functions show that the MF-Hybrid algorithm out-
performs existing single-fidelity and multi-fidelity optimiza-
tion algorithms.

Introduction

We consider the problem of finding the global optima of a
potentially expensive black-box function, f, without access
to its derivative. Furthermore, we assume the existence of
one or more lower fidelity functions with successively lower
costs but higher errors (e.g., evaluating hyper-parameters of a
learning algorithm using subsets of validation data). Cost in
this context refers to any resource consumed while evaluating
f,e.g., the computational time to evaluate a query. Evaluating
these functions can be very costly in terms of the resources
consumed.

There are two kinds of expensive function optimization
approaches in the literature: 1) Bayesian Optimization (BO)
methods typically employ a Gaussian Process (GP) to gain
information about f. A GP is a statistical model that takes
evaluated points as input and produces a normal distribu-
tion for where the function may be at every point in the
domain. Standard BO algorithms employ a GP to select a
point to query that trades off exploitation (selecting the most
promising point) and exploration (selecting a point for infor-
mation gain) (Shahriari et al. 2016) ; and 2) Search-based
Optimization (SO) is a family of algorithms that simultane-
ously searches the domain at a local-scale and a global-scale.
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SO methods partition the domain into hyper-rectangles called
nodes that are evaluated at their centers. The algorithm de-
cides which nodes contain promising regions and divides
them into smaller nodes. The LOGO algorithm is an ex-
cellent example of SO (Kawaguchi, Maruyama, and Zheng
2016). These two families of algorithms can be combined
into a Single-fidelity Hybrid (SF-Hybrid) algorithm which
has the same structure as a SO framework but employs a GP
to prevent querying unfavorable regions. One such example
is BaMSOO, which yields better regrets than both BO and
SO (Wang et al. 2014).

Multi-fidelity BO (MF-BO) extends BO by using low-
fidelity approximations of f to efficiently gain information
(Kandasamy et al. 2016). It maintains a GP for each fidelity
to effectively use lower fidelities to gain information in re-
gions that may be unfavorable and use high fidelities for more
promising regions. MF-BO relies heavily on GPs which may
perform poorly if the user makes invalid assumptions about
f,e.g., the user chooses a bad kernel.

We develop a novel Multi-fidelity Hybrid (MF-Hybrid) al-
gorithm referred as MF-BaMLOGO that combines elements
from MF-BO with SF-Hybrid to create a global optimiza-
tion algorithm that improves upon both. MF-BaMLOGO
maintains a GP for each fidelity, estimates and updates the
error of different fidelities, and employs the GPs to choose
an appropriate fidelity for a given point; all of which come
from MF-BO. MF-BaMLOGO selects points to query with
the LOGO algorithm, which allows MF-BaMLOGO to be
less dependent on GPs. MF-BaMLOGO was tested against
several other optimization algorithms on diverse benchmark
functions. Our algorithm converges to the optima with lesser
cost than state-of-the-art optimization algorithms.

Problem Setup

We want to maximize a d dimensional black-box function f :
X — R, where X = [0, 1] without loss of generality. Let
x* = arg mazxex f(x) be the true maximum of f. We do
not have access to derivatives of f and we are only allowed to
query f atsome x € X. We also have access to M —1 succes-
sively lower fidelity functions f = f(M) f(M=1) ¢(1)
Each fidelity has an associated error 0 = ¢(M) < (M-1) <

- < €M) where |fM) — f()| = () and associated costs
A S A=) 55 A1) > (0, We define threshold



values vM =1 41 > 0 for selecting the fidelities. We
maintain a GP for fidelities 1 < ¢ < M that employs the
dataset ; = {(x1,%1), ..., (Xn,Yn)}, where x; is an input
from X andy; = f (@) (x;) is the corresponding fidelity evalu-
ation. Using this GP, we can compute a normal distribution of
the function evaluation f(*)(x) for any input in the domain,
i.e., amean p;(x) and a standard deviation o;(x). We define
the simple regret for t iterations as Ry, = f(M)(x*) — 7,
where f(M)(x*) is the global maxima and %; is the best
value from f(M) queried so far; and the cumulative cost as
Cy = Z )\(mJ) where m; is the fidelity queried at itera-
tion j. It is Common to plot simple regret agalnst cumulative
cost to measure the performance of a given algorithm in
finding the global maximum.

Multi-Fidelity Hybrid Approach

Multi-fidelity Bayesian Locally Oriented Global Optimiza-
tion (MF-BaMLOGO) extends SF-Hybrid to handle multi-
fidelity functions by improving upon elements taken from
MEF-BO. The main method—outlined below—takes the argu-
ments f(M) . f(1) and returns the best input uncovered by
querying M) after some stopping condition is met. Usually
this is when the total cost of the function evaluations exceeds
some predefined budget.

1. Select a query point x with the SO model

2. Select the appropriate fidelity ¢ with a method similar to

the MF-BO algorithm
. If x is worth evaluating, compute f(*)(x)
. Update the GPs using the aggregate training data

. Repeat the above four steps until convergence or cost bud-
get is met

Nodes are used to select query points in step 1, and are
structured and chosen to be extended in exactly the same
way as in LOGO. Each query to f(*) generates a node with a
hyper-rectangle domain with x at its center and a depth h > 1.
To expand a node, the algorithm splits it along its longest
dimension into three parts. The centers of the three newly
created nodes are evaluated and their depths are incremented.
The algorithm is initialized with a single node covering the
full domain and attempts to expand nodes that may likely
contain x* according to the LOGO algorithm.

The fidelity chosen in step 2 is done in a similar way to MF-
BO. We employ threshold values (™), ... ~(}) to compare
against the confidence of the i*” fidelity’s GP so that we can
choose the smallest fidelity that gives us the most information.
Before we actually evaluate the center of a node, we want to
get a sense of how promising the region is. We can compute
upper and lower confidence bounds of x, I/ (x) and £(x), b
using the GPs. We know L£(x) < f(x) < U(x) with high
probability. Therefore, if we predict U (x) to be smaller than
our current best value from fidelity M, then we should not
query f()(x) to avoid wasting resources.
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Figure 1: Plots of simple regret against cumulative cost for
the Hartmann functions (top), Currin Exponential function
(bottom left), and Hosaki function (bottom right). The aver-
age of five test runs are plotted in solid lines and their highs
and lows are shaded around them.

Experiments and Results

MF-BaMLOGO was tested against RAND (random query-
ing); single fidelity algorithms GP-UCB, LOGO, and BaM-
LOGO; and the multi-fidelity algorithm MF-GP-UCB on
several test functions. All test functions had costs A(*) =
10*~M . The Hartman3D test function had three fidelities,
where the accuracy was controlled by offsetting the «
parameter by (3 — i) * (0.01,—-0.01,—0.1,0.1)T. Hart-
man6D had four fidelities with an offset of (4 — i)
(0.001, —0.001, —0.01,0.01)” for the o parameter. Cur-
rinExp had two fidelities, where f()(zy,z5) = (f(z1 +
.05,1’2 + 05) + f(£C1 + .05,max(0,x2 — 05)) + f(xl —
05,29 +.05) + f(z1 — .05, max(0, z2 — .05)))/4. Hosaki
had three fidelities with an error term defined by ¢(*) =
0.5 ~isin(z; + &;)cos(wy + sin(8;))?, where § =
(4.1,3.2,0)T. An algorithm with a small simple regret at
small values of cumulative cost is able to converge closer
to the global optima with lesser cost, i.e., lower is better on
simple regret graphs. Our results in Fig. 1 show that MF-
BaMLOGO performs better than all the baseline approaches.
Our algorithm is more robust because the worst runs are still
competitive against the other algorithms.
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