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Abstract
Protein complex is a group of associated polypeptide chains
which plays essential roles in biological process. Given a
graph representing protein-protein interactions (PPI) net-
work, it is critical but non-trivial to detect protein complexes.
In this paper, we propose a semi-supervised network embed-
ding model by adopting graph convolutional networks to ef-
fectively detect densely connected subgraphs. We conduct ex-
tensive experiment on two popular PPI networks with various
data sizes and densities. The experimental results show our
approach achieves state-of-the-art performance.

Introduction
Protein complex is a complex graph structure that is linked
by protein-protein interactions (PPI), which plays an essen-
tial role in biological process. In general, the PPI network
can be represented as an undirected and unweighted graph
where proteins are represented as vertices and their interac-
tions as edges. Each protein complex consists of two or more
proteins that are shown as densely connected subgraphs,
which indicates graph based clustering methods should be
utilized to discover them.

Recently, network embedding has gained significant at-
tention on improving the performance of many graph clus-
tering methods (Wang, Cui, and Zhu 2016). However, most
network embedding methods heavily rely on the attributes
of each vertex in the network, which is not suitable for PPI
network since there is no any metadata associated with each
node except protein name.

In this paper, we propose a semi-supervised network em-
bedding model by adopting graph convolutional network
(GCN) that is capable of capturing both local and global
structure of PPI network even there is no any information as-
sociated with each vertex in PPI network. We conduct exten-
sive experiments on two widely used PPI datasets. The ex-
perimental results demonstrate that our method consistently
outperforms the previous methods.

Model Description
PPI data come in the form of connections between pro-
teins, which is easily described as a graph model. Proteins
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are represented as vertices and their interactions are rep-
resented as edges in the graph. Assume we have a graph
G = (V,E), where V represents a set of vertices in the
graph, V = v1, ..., vn. E represent a set of edges in the
graph, E = e1, ..., en. Each edge is associated with two ver-
tices. Let H = h1, . . . , hn be the set of neighbor vertices
of v, and n is the number of the neighbor vertices of v. For
PPI network, there is no weight for edges. In this section, we
elaborate our semi-supervised network embedding model.

Component for the First-Order proximity. As described
earlier, there is no attributes attached to each vertex in PPI
network, we propose a method to select the important neigh-
bor vertices of each vertex by using the vectors generated by
DeepWalk as its attributes. We first apply DeepWalk to the
graph to get a 64-dimensions vector for each vertex. And
then the Euclidean metric is employed to compute the tight-
ness score Scorev,hi between v and each hi. Finally, we
keep these neighbor vertices that have tightness score higher
than the average score as attributes of v.

Once we have the attributes for each vertex, we then can
use the attributes as supervised information to exploit the
first-order proximity and refine the representations in the la-
tent space to constrain the similarity of a pair of vertexes.

Component for the Second-Order proximity. The second-
order proximity describes the pairwise similarity between
vertices’ neighborhood structure.

We design a GCN (Kipf and Welling 2016) based auto-
encoder (Yang et al. 2015) to preserve the second-order
proximity of the graph. Here, we use the attributes from each
vertex as input channels of the GCN, and then after encoding
of l convolutional layers, we can get a representation that is
learned from the original graph. For the decoding part, we
simply use an inner product decoder.

In our proposed model, we can naturally incorporate ver-
tices’ attributes to simultaneously optimize the first-order
and second-order proximity referring to the following def-
inition:

Definition 1 Given an undirected, unweighted graph G =
(V,E) with N = |V | vertices. We have an adjacency matrix
A of G and an N × D matrix X as input, D is the number
of attributes per vertex. With a stochastic latent variables zi,
we can summarize an N × F output matrix Z. where F is
the number of output attributes.
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Data set Vertices Edges Ave. degree Density
Krogan 5364 61289 22.85 0.0043

Dip 4972 17836 7.17 0.0014

Table 1: Features of PPI datasets

Every network layer can then be written as a non-linear func-
tion:

H
(l+1)

= f(H
(l)

, A) = ReLU(AH
(l)

W
(l)

)

where H(0) = X and H(L) = Z, L is the number of layers,
W (l) is a weight matrix for the l-th network layer and ReLU
is the activation function.

Model Optimization
We use a common graph Laplacian regularization term loss
function to optimize:

L = Lfirst + λLsecond =

n∑

i,j=1

||yi − yj ||2 + λ

L∑

0

||H(l+1) −H
l||2

where Lfirst denotes the supervised loss of the first-order
proximity (the labeled part of the graph). Lsecond denotes
the unsupervised loss of the second-order proximity, and λ
is a trade-off factor, yi and yj are two matrices constructed
based on selected neighbor vertices and each vertex is 64-
dimensions vector generated by DeepWalk.

Experiments
Experimental setup
Datasets We conduct experiments on two widely used
datasets: Krogan1 and Dip2. The detailed statistics are pre-
sented in Table 1.

Baseline Methods We choose three different types of
clustering methods: K-means, DBSCAN (Ester et al. 1996)
and COACH (Min et al. 2009). We also compare our model
with two network embedding models: DeepWalk (Perozzi,
Al-Rfou, and Skiena 2014) and SDNE-SN (Wang, Cui, and
Zhu 2016).

Implementation Details For COACH, we set DENSITY,
AFFINITY, and CLOSENESS, to 0.7, 0.2 and 0.5, respec-
tively. For K-means and DBSCAN, we use the default set-
tings. Also, we set dropout rate to 0.2 for all convolutional
layers. We train the model for a maximum of 200 epochs
using Adam optimizer with a learning rate of 0.01 and early
stopping with a window size of 10.

Experimental Results
In our experiments, the results are evaluated with F-measure.
As shown in Figure 1, compared to previous methods, our
approach achieves better results on both two datasets. On
Dip data, our model achieves the 0.528 F-Measure, which is
around 20% higher than using COACH only. COACH+Our

1http://interactome-cmp.ucsf.edu/
2http://dip.doe-mbi.ucla.edu/

Figure 1: Comparison results on Krogan and Dip dataset

Model (denoted as Our Model) is also 9.5% higher than
the COACH+SDNE-SN (denoted as SDEN-SN) method
that is the second best method, and 17% higher than the
COACH+DeepWalk (denoted as DeepWalk) method. Also,
we compared the clustering quality of each method summa-
rized in Table 2. As expected, our model can detect more
protein complexes than other methods on two datasets.

Data set Our Model COACH DeepWalk SDNE-SN
Krogan 610 570 570 580

Dip 808 748 750 840

Table 2: Number of Protein Complexes Detection

Conclusions and Future Work
In this paper, we proposed a network embedding model to
capture the local and global structure of PPI networks effec-
tively. Extensive experiments show that our model achieves
state-of-art performance.
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