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When considering how to reduce the learning effort re-
quired for Reinforcement Learning (RL) agents on complex
tasks, designers can apply several common approaches. Re-
ward shaping boosts the immediate reward provided by the
environment, effectively encouraging (or discouraging) spe-
cific actions. Curriculum learning (Bengio et al. 2009) aims
to help an agent learn a complex task by learning a sequence
of simpler tasks. Hints may also be provided (e.g., a yellow
brick road), which fall outside the notion of shaping or a
curricula. Despite the prevalence of these approaches, few
studies examine how they compare to (or complement) each
other or when an approach is better.

As a first step in this direction, we analyze shaping, hints,
and curricula for a Deep RL agent in Malmo (Johnson et
al. 2016), a research platform for Minecraft. Figure 1 (left)
shows the layouts used in our study, which are distinguished
by the number of rooms, the placement of the target, and
whether color is included. For all rooms, the starting posi-
tion of the agent is selected from five blocks at the bottom
of the room (highlighted gray). In one-room situations and
the right-most two-room situation, the target is always cho-
sen from the five blocks at the top of the room (highlighted
gray). In the left-most two-room situation, the target is set
just beyond the doorway. Visual hints are provided in some
situations by coloring some of the floor blocks blue.

We seek to answer whether shaping, hints, or the curric-
ula have the most impact on performance, which we mea-
sure as the time to reach the target, the distance from the tar-
get, the cumulative reward, or the number of actions taken.
For this task, performance is most impacted by the curricu-
lum used and hints while shaping had less impact, suggest-
ing that designing an effective curriculum and providing ap-
propriate hints deserve more attention for similar navigation
tasks with Deep RL agents. Our methodology provides an
evaluation protocol, serving as a foundation for further stud-
ies that tease apart when (and why) methods excel or fail.

Reinforcement Learning (RL)

RL agents learn a mapping of world states to actions (i.e., a
policy) through trial and error in dynamic or static environ-
ments. Reward signals from the environment guide learn-
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Figure 1: Example Minecraft room layouts (left) and a
screenshot (right) of the black target and blue floor coloring.

ing. This type of learning can be done in both discrete and
continuous action spaces. Significant advancements in RL
have moved the field past discrete action spaces in toy prob-
lems toward continuous actions and more challenging do-
mains. As training of agents in these domains have improved
through the use of architectures such as Deep Q-Networks
(DQNps), researchers have been conducting their research in
more realistic simulators (e.g., Malmo, Gazebo).

Several challenges come with these kinds of problems.
Many of the spaces are very large, making it difficult for
agents to fully explore the state-action space during training.
Additionally, larger state spaces increase the reward sparsity.
Methods such as curriculum learning and shaping have been
used to combat these challenges.

Curriculum Learning (Bengio et al. 2009) allows an
agent to learn a complex task (e.g., navigating two rooms to
a target) by learning a sequence of easier tasks (e.g., navigate
in a single room, navigate to a doorway, navigate through
two rooms). It leverages the benefits of transfer learning to
increase the learning speed and robustness of a target task
with the use of many source tasks. Research conducted on
curriculum learning has spanned a number of different do-
mains and problems leading to a plethora of curricula de-
sign methodologies. Some of these problems require cur-
riculum learning to be solved efficiently. Recently, Narvekar
et al. (2016) examined strategies for decomposing a target
task into easier source tasks and found that domain-specific
curricula design and reward structure choices are needed to
achieve optimal behavior. Matiisen et al. (2017) proposed a



framework for automatic curriculum learning and examined
training task selection. While their work inspired our target
task, they did not investigate which source tasks are more
beneficial for learning the target task.

Reward Shaping provides the agent with an additional
reward to improve its performance. This reward is provided
by the designer, not from the environment, and estimates
how well an agent is currently achieving its task. Shaping
aims to decrease exploration time, i.e., the time the agent ex-
plores suboptimal actions, which more efficiently explores
larger action spaces. Shaping functions are often designed to
be task specific (e.g., Ng et al. (1999) use relative distance
to shape the reward). Recent work by Florensa et al. (2017)
created source tasks increasingly further from the target and
examined shaping for a curriculum within a single task. In
that study, shaping provided no improvement.

Experiments

Our DQN, inspired by Mnih et al. (2015), consists of 3
convoluntional layers sized 32x96, 13x45, and 2x10 respec-
tively. The input image to our network is scaled to 640x480.
A frameskip of 5 allows performing a single action over
many frames and speeds up training. In addition, the DQN
uses experience replay of the past 60 experienced episodes.
From this batch of episodes, a separate target network is
trained on it to generate target Q values, ultimately provid-
ing stability to the network.

We performed a complete factorial experiment where we
varied the training regime (T), color (C), shaping (S), and
testing room type (R). The agent moves constantly forward
at max speed and can the turn at a speed of 0, 0.3, or -0.3
of its maximum turning speed. We trained networks accord-
ing to four curricula: {AA, AB, BA, BB}, where A (B) de-
notes the top-left (bottom-left) room in Figure 1. Shaping,
when enabled, decreased the reward with the L1 distance to
the goal. Coloring, when enabled, consisted of using blue
squares shown in Figure 1. This generated 16 networks (i.e.,
4 training regimes x color on/off x shaping on/off).

We tested the networks on four two-room variations of
the lower-right room of Figure 1, differing by the color: (a)
no color, (b) color around the target, (c) color around the
threshold, and (d) color around both. We created 30 rooms
of each type with the start and target position randomized.
We ran each of the 16 networks on these 120 rooms and
collected the final distance to target, the time taken to reach
the target (or time out at 10 seconds), the cumulative reward
(without shaping), and the total number of actions.

Results show that the training regime and color hinting
most impact the agent’s ability to reach the target; shaping
has less impact. We discuss the the final distance to the target
analysis using a factorial ANOVA — which performs simul-
taneous pairwise tests between the factors — to highlight the
factors that most impact performance. Results for time, re-
ward, and number of actions follow a similar pattern, though
space limits prevent their inclusion.

Table 1 summarizes the factorial ANOVA for distance and
is ordered by the increasing p-value for p < 0.05 (right
column). Factors that significantly impact the distance, evi-
denced by p < 0.01, are color with training regime (C:T),
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Factor Df SumSg MeanSg Fval Pr (>F)
C:T 3 598 199.4 19.71 1.4le-12
T 3 364 121.3 12.00 8.87e-08
T:R 9 392 43.6 4.31 1.44e-05
C:S:T 3 107 35.7 3.53 0.0144
R 3 102 33.9 3.36 0.0182
S:T 3 86 28.7 2.84 0.0370
c 1 43 43.3 4.28 0.0388
C:T:R 9 176 19.6 1.94 0.0432
S:R 3 80 26.7 2.64 0.0482
Residuals 1856 18771 10.1

Table 1: Multi-factor ANOVA on final distance from tar-
get for Color (C), Shaping (S), Training Regime (T), and
Room (R). Only rows with p < 0.05 are shown.

training regime alone (T), and training regime with room
type (T:R). Shaping (S) appears in later rows of the distance
table indicating its effect is less significant; however, shap-
ing does appear to have more impact for time and actions.
Higher values in the “SumSq” column indicate greater con-
tribution of the factor(s) to the variability in performance.

Summary and Future Work

We examined the role of reward shaping, curricula, and vi-
sual hints in a Deep RL agent and found that the combina-
tion of curricula and hints had the most impact followed by
curricula alone. This suggests that curricula design plays the
biggest role for our study. Our methodology establishes an
evaluation protocol for eventually understanding when and
why these methods are applicable. Future work will gener-
alize these results to a robotics domain, more complex tasks,
and more sophisticated curricula, hints, and reward shaping.

Acknowledgments

The authors thank NRL for funding this research and for
reviewer comments that helped improve the presentation.

References

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009. Cur-
riculum learning. Proc. ICML 41-48.

Florensa, C.; Held, D.; Wulfmeier, M.; and Abbeel, P.
2017. Reverse curriculum generation for reinforcement learning.
arXiv:1707.05300.

Johnson, M.; Hofmann, K.; Hutton, T.; and Bignell, D. 2016. The
Malmo platform for artificial intelligence experimentation. In Proc.
1JCAI, 4246-4247.

Matiisen, T.; Oliver, A.; Cohen, T.; and Schulman, J.
Teacher-student curriculum learning. arXiv:1707.00183.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep rein-
forcement learning. Nature 518(7540):529-533.

Narvekar, S.; Sinapov, J.; Leonetti, M.; and Stone, P. 2016. Source
task creation for curriculum learning. In Proc. AAMAS, 566-574.

2017.

Ng, A.; Harada, D.; and Russell, S. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping.
In Proc. ICML, 278-287.



