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Abstract

This paper presents a Generative Adversarial Network (GAN)
to model multi-turn dialogue generation, which trains a latent
hierarchical recurrent encoder-decoder simultaneously with a
discriminative classifier that make the prior approximate to
the posterior. Experiments show that our model achieves bet-
ter results.

Introduction
Generative Adversarial Nets (GANs) (Goodfellow et al.
2014) have made significant progress in learning smooth la-
tent variable representations of continuous data. However,
directly applying GAN on discrete text data is difficult.
Current approaches usually combine it with reinforcement
learning or continuous approximations (Kim et al. 2017), but
none of them have demonstrated convincing advantages. Us-
ing GAN with reinforcement learning (RL) (Li et al. 2017)
has been made to investigate dialogue generation, while the
model variance is too high.

Recently (Serban et al. 2017) proposed the Variational
Hierarchical Recurrent Encoder-Decoder (VHRED) model
which borrows the idea from conditional variational autoen-
coders (CVAE) (Sohn, Lee, and Yan 2015) to model multi-
turn dialogue generation. However, the approximated pos-
terior distribution needs to be specified and the prior dis-
tribution is not guaranteed to be the same as the marginal
posterior distribution in the global optimum.

Inspired by the recent success of Adversarial Autoen-
coder (Makhzani et al. 2015), in this paper, we propose an
end-to-end differentiable GAN framework (D-GAN) for di-
alogue generation, which learns a discriminator that mea-
sures the differences between the continuous latent repre-
sentation of prior and posterior distribution. Specifically, in
a conversation, a response x is generated as follows: A latent
variable z is sampled from a prior distribution pθ(z|c) based
on the current dialogue context c, then the response is gen-
erated from the distribution pθ(x|z, c). In training phrase,
we generate response from posterior pθ(z|c, x) and the dis-
criminator is trained to distinguish between samples from
the prior and posterior distribution, thereby pushing the prior
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distribution to match the posterior. The posterior take the in-
put x and a random noise η with a fixed distributionn (e.g.,
Gaussian), which can learn any arbitrary distribution and no
longer constrained to be Gaussian.

We demonstrate that the GAN framework can be effec-
tively used for common dialogue generation and generate
more consistent latent variables than VHRED model.

Related work
VHRED The variational hierarchical recurrent encoder
decoder (VHRED) model has previously been proposed for
dialogue modeling. The response x is generated from the
distribution pθ(x|z, c). In contrast to calculating the exact
log-likelihood, it can be efficiently trained by optimizing a
valid lower bound. The objective takes the following form:

− log pθ(x|c) = − log

∫
z

pθ(z|c)pθ(x|z, c)dz
≤ −Eqφ(z|x,c)[log p(x|z, c)] + KL(qφ(z|x, c)||p(z)|c)))

(1)

Adversarial autoencoders CVAE model typically use a
factorial Gaussian as the prior, which enables closed-form
optimization while restricting the expressive power of the
model. Adversarial autoencoders replace the KL divergence
with an adversarial training criterion to allow richer families
of priors. Our work differs in that we do not sample from a
fixed prior distribution, both prior and posterior are instead
parameterized through the neural network.

Model
We decompose a dialogue into two levels: sequences of ut-
terances and sub-sequences of words, as in (Serban et al.
2017). Let w1, . . . ,wN be a dialogue with N utterances,
where wn = (wn,1, . . . , wn,Mn) is the n-th utterance. The
probability distribution of the utterance sequence factorizes
as:

N∏
n=1

Mn∏
m=1

Pθ(wm,n|wm,<n,w<n) (2)

where θ represents the model parameters and w<n encodes
the dialog context until step n. A word encoder and context
encoder is implemented to separately model the dynamics of
these two levels.
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In the training phase, we have access to the golden re-
sponse and generate latent variables with z1 = fφ(c, h, η),
where c is the last hidden state of the context encoder, h is
the last hidden state of the word encoder run on the golden
response and η is a Gaussian noise sampled from N (0, 1).
For dialogue modeling, the true posterior distribution should
be complex and multimodal rather than a simple Gaussian,
so we use neural networks to appropriately generating such
complex distribution. A sample is drawn from this distribu-
tion, then this sample is given as input to the decoder RNN,
which then computes the output probabilities of the words
in the next utterance. In the testing phase, we have only the
context information and latent variables are generated with
z2 = G(c, η). We use GAN to close the divergence between
z1 and z2. fφ(c, h) defines an aggregated distribution of z1
given a dialogue context as follows:

qφ(z1|c) =
∫
h

qφ(z1|c, h, η)pd(h)dh (3)

pd(h) is the real distribution of the response. G(c, η) also
defines a distribution pθ(z2|c). We apply an adversarial net-
work on top of them to match the distribution qφ(z1|c) and
pφ(z2|c). The discriminator is implemented as a feedfor-
ward neural network conditioned on the dialogue context c,
judging whether a latent variable comes from qφ(z1|c) or
not. The objective function is:

L(G) = min
D

max
φ,G

Eh,ηD(fφ(c, h) + η)− EηD(G(c, η))
(4)

Here we use the WGAN objective (details can be found
in the supplementary material) to replace the original log-
likelihood. We update both the z1 generator G and the z2
generator fφ(c, h) to prevent the overfitting of z2 generator.
It also functions as a regularizer to force fφ(c, h) to extract
information from both c and h.When optimizing with L(G),
we first train the discriminator D for several steps then train
the z2 generator to receive stable gradient information from
the discriminator.

Experiment
Datasets and Baseline
We conduct our experiments on the multi-turn dialogue
datasets Switchboard (Godfrey and Holliman 1997). This
dataset is randomly separated into training/validation/test
sets with the ratio of 10:1:1. We compare our approach with
two baseline methods, including HRED (Serban et al. 2016)
and VHRED (Serban et al. 2017).

Implementation Details
For every model, the word embeddings are initialized with
the Word2Vec embeddings trained on the Google News Cor-
pus1. The vocabulary set is defined as the most frequent
20,000 words on every corpus, the left words are mapped
to an unknown token. The batch size is set to 128, truncated
backpropagation and gradient clipping are used. To decide

1https://code.google.com/archive/p/word2vec/

Table 1: Evaluation results
Model Greedy Average Extrema BLEU-1
HRED 0.482 0.343 0.290 0.254
VHRED 0.502 0.358 0.335 0.267
D-GAN 0.537 0.372 0.461 0.286

the stopping point, we first train an independent GRU lan-
guage model on the training corpus, then apply it to test the
perplexity of the decoded responses. The weight clipping
threshold ε for the discriminator training in GAN is set as
0.01.

Experimental results
In our experiments, the results are evaluated using e
embedding-based (Liu et al. 2016) metrics and BLEU-1
score. We summarize the experiment results in Table 1.
Compared to previous methods, our approaches achieve bet-
ter results on the experimental dataset.

Conclusion
In this paper, we proposed a novel variant GAN framework
to improve the performance of dialogue generation. Experi-
ments showed that our method achieves better results.
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