Fast Approximate Nearest Neighbor Search via k-Diverse Nearest Neighbor Graph
DOI:
https://doi.org/10.1609/aaai.v32i1.12138Keywords:
indexing, nearest neighbor searchAbstract
Approximate nearest neighbor search is a fundamental problem and has been studied for a few decades. Recently graph-based indexing methods have demonstrated their great efficiency, whose main idea is to construct neighborhood graph offline and perform a greedy search starting from some sampled points of the graph online. Most existing graph-based methods focus on either the precise k-nearest neighbor (k-NN) graph which has good exploitation ability, or the diverse graph which has good exploration ability. In this paper, we propose the k-diverse nearest neighbor (k-DNN) graph, which balances the precision and diversity of the graph, leading to good exploitation and exploration abilities simultaneously. We introduce an efficient indexing algorithm for the construction of the k-DNN graph inspired by a well-known diverse ranking algorithm in information retrieval (IR). Experimental results show that our method can outperform both state-of-the-art precise graph and diverse graph methods.