
Risk-Sensitive Submodular Optimization

Bryan Wilder
Department of Computer Science

and Center for Artificial Intelligence in Society
University of Southern California

bwilder@usc.edu

Abstract

The conditional value at risk (CVaR) is a popular risk mea-
sure which enables risk-averse decision making under uncer-
tainty. We consider maximizing the CVaR of a continuous
submodular function, an extension of submodular set func-
tions to a continuous domain. One example application is al-
locating a continuous amount of energy to each sensor in a
network, with the goal of detecting intrusion or contamina-
tion. Previous work allows maximization of the CVaR of a
linear or concave function. Continuous submodularity repre-
sents a natural set of nonconcave functions with diminishing
returns, to which existing techniques do not apply. We give a
(1−1/e)-approximation algorithm for maximizing the CVaR
of a monotone continuous submodular function. This also
yields an algorithm for submodular set functions which pro-
duces a distribution over feasible sets with guaranteed CVaR.
Experimental results in two sensor placement domains con-
firm that our algorithm substantially outperforms competitive
baselines.

Introduction

Decision-making under uncertainty is an ubiquitous prob-
lem. Suppose we want to maximize a function F (x, y),
where x is a vector of decision variables and y a random
variable drawn from a distribution D. A natural approach
is to maximize Ey [F (x, y)], i.e., to maximize the expected
value of the chosen decision. However, decision makers are
often risk-averse: they would rather minimize the chance of
having a very low reward than focus purely on the average.
This is a rational behavior when failure can have large con-
sequences. For instance, if a corporation suffers a disastrous
loss, they may simply go out of business. Or in many cases,
low performance entails safety issues. For instance, if a sen-
sor network for water contamination detects problems in-
stantly in 80% cases, but fails entirely in 20%, the population
will inevitably be exposed to an unacceptable health risk. It
is much better to have a sensor network which always de-
tects contaminants, even if it requires somewhat more time
on average.

Hence, it is natural to move beyond average-case anal-
ysis and optimize a risk-aware objective function. One
widespread choice is the conditional value at risk (CVaR).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CVaR takes a tunable parameter α. Roughly, it measures the
performance of a decision in the worst α fraction of scenar-
ios. It is known that when the objective F is a concave func-
tion, then CVaR can be optimized via a concave program as
well. However, many natural objective functions are not con-
cave, and no general algorithms are known for nonconcave
functions. We focus on submodular functions. Submodular-
ity captures diminishing returns and appears in application
domains ranging from viral marketing (Kempe, Kleinberg,
and Tardos 2003), to machine learning (Kulesza and Taskar
2012), to auction theory (Vondrák 2008). We analyze sub-
modular functions in two settings:
Continuous: Continuous submodularity, which has lately
received increasing attention (Bach 2015; Bian et al. 2017;
Staib and Jegelka 2017) generalizes the notion of a sub-
modular set function to continuous domains. Many well-
known discrete problems (e.g., sensor placement, influence
maximization, or facility location) admit natural extensions
where resources are divided in a continuous manner. Con-
tinuous submodular functions have also been extensively
studied in economics as a model of diminishing returns
or strategic substitutes (Koçkesen, Ok, and Sethi 2000;
Sampson 2016). Our main result is a (1− 1

e)-approximation
algorithm for maximizing the CVaR of any monotone, con-
tinuous submodular function. No algorithm was previously
known for this problem.
Portfolio of discrete sets: Our results for continuous sub-
modular functions also transfer to set functions. We study
a setting where the algorithm can select a distribution over
feasible sets, which is of interest when the aim is to select a
portfolio of sets to hedge against risk (Ohsaka and Yoshida
2017). Similar settings have also been studied in robust sub-
modular optimization (Krause, Roper, and Golovin 2011;
Chen et al. 2017; Wilder 2017). We give a black-box reduc-
tion from the discrete portfolio problem to CVaR optimiza-
tion of continuous submodular functions, allowing us to ap-
ply our algorithm for the continuous problem. The state of
the art for the discrete portfolio setting is an algorithm by
Ohsaka and Yoshida (2017) for CVaR influence maximiza-
tion. Our results are stronger in two ways: (i) they apply to
any submodular function and (ii) give stronger approxima-
tion guarantee. Allowing the algorithm to select a convex
combination of sets is provably necessary: Maehara (2015)
proved that restricted to single sets, it is NP-hard to compute

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6451

any multiplicative approximation to the CVaR of a submod-
ular set function.

We experimentally evaluate our algorithm for sensor re-
source allocation, focusing on two domains: detecting con-
tagion or rumors in social networks, and detecting contami-
nation in water networks. In both cases, our algorithm sub-
stantially outperforms baselines.

Problem description

In this section, we formally define continuous submodularity
and the conditional value at risk. We first study the continu-
ous setting and then extend our results to discrete portfolio
optimization.

Continuous submodularity: Let X =
∏n

i=1 Xi be a
subset of Rn, where each Xi is a compact subset of R.
A twice-differentiable function F : X → R is diminish-
ing returns submodular (DR-submodular) if for all x ∈ X
and all i, j = 1...n, ∂2F (x)

∂xi∂xj
≤ 0 (Bian et al. 2017). Intu-

itively, the gradient of F only shrinks as x grows, just as the
marginal gains of a submodular set function only decrease
as items are added. Continuous submodular functions need
not be convex or concave (concavity requires that the Hes-
sian is negative semi-definite, not that the individual entries
are nonpositive). We consider monotone functions, where
F (x) ≤ F (y) ∀x � y (� denotes element-wise inequal-
ity). We assume that F lies in [0,M] for some constant M .
Without loss of generality, we assume F (0) = 0 (normal-
ization).

In our setting F is a function of both the decision vari-
ables x and a random parameter y. Specifically, we consider
functions F (x, y) where F (·, y) is continuous submodular
in x for each fixed y. We allow any DR-submodular F
which satisfies some standard smoothness conditions. First,
we assume that F is L1-Lipschitz for some constant L1

(for concreteness, with respect to the �2 norm1). Second,
we assume that F is twice differentiable with L2-Lipschitz
gradient. Third, we assume that F has bounded gradients,
||∇F ||2≤ G. Only the last condition is strictly necessary;
our approach can be extended to any F with bounded gradi-
ents via known techniques (Duchi, Bartlett, and Wainwright
2012).

Conditional value at risk: Intuitively, the CVaR mea-
sures performance in the α worst fraction of cases. First, we
define the value at risk at level α ∈ [0, 1]:

VaRα(x) = inf{τ ∈ R : Pry [F (x, y) ≤ τ] ≥ α}.
That is, VaRα(x) is the α-quantile of the random variable

F (x, y). CVaR is the expectation of F (x, y), conditioned on
it falling into this set of α-worst cases:

CVaRα(x) = E
y
[F (x, y)|F (x, y) ≤ VaRα(x)] .

1We use the �2 norm for concreteness. However, our arguments
easily generalize to any �p norm.

CVaR is a more popular risk measure than VaR both be-
cause it counts the impact of the entire α-tail of the dis-
tribution and because it has better mathematical properties
(Rockafellar and Uryasev 2000).

Optimization problem: We consider the problem of
maximizing CVaRα(x) over x belonging to some feasible
set P . We allow P to be any downward closed polytope.
A polytope is downward closed if there is a lower bound �
such that x 	 � ∀x ∈ P and for any y ∈ P , � � x � y
implies that x ∈ P . Without loss of generality, we assume
that P is entirely nonnegative with � = 0. Otherwise, we
can define the translated set P ′ = {x − � : x ∈ P}
and corresponding function F ′(x, y) = F (x − �, y). Let
d = maxx,y∈P ||x− y||2 be the diameter of P .

We want to solve the problem maxx∈P CVaRα(x). It is
important to note that CVaRα(x) need not be a smooth DR-
submodular function in x. However, we would like to lever-
age the nice properties of the underling F . Towards this
end, we note that the above problem can be rewritten in
a more useful form (Rockafellar and Uryasev 2000). Let
[t]+ = max(t, 0). Maximizing CVaRα(x) is equivalent to
solving

max
x∈P,τ∈[0,M]

τ − 1

α
E

[
[τ − F (x, y)]

+
]

(1)

where τ is an auxiliary parameter. For any fixed x, the
optimal value of τ is VaRα(x) (Rockafellar and Uryasev
2000). It is known that when F (·, y) is concave in x, this
is a concave optimization problem. However, little is known
when F may be nonconcave.

Related work

CVaR enjoys widespread popularity as a risk measure in
many domains, ranging from finance (Mansini, Ogryczak,
and Speranza 2007) to electricity production (Yau et al.
2011). More broadly, there is a burgeoning interest in meth-
ods which move beyond expected performance (Ermon et
al. 2011; Yin et al. 2011; Yu and Nikolova 2013; Hoy and
Nikolova 2015). Oftentimes, this concern is motivated by
safety-critical domains where an algorithm designer must be
able to minimize the risk of disastrous events, not just guar-
antee good results on average. Here, we survey the closest
related work, dealing with CVaR optimization.

Rockafellar and Uryasev (2000) introduced CVaR and
proposed a linear program for optimizing it. This linear pro-
gram only applies when utility is linear in the decision vari-
ables. Iyengar and Ma (2013) and Hong and Liu (2009)
present faster gradient-based algorithms for the linear case.
Here, we deal with nonlinear functions. The LP approach
can be extended via solving a general concave program
when the utilities are concave. Our main contribution is ex-
tending the range of optimizable functions to include non-
concave continuous submodular objectives. Another body of
work focuses on CVaR in reinforcement learning and MDPs
(Prashanth and Ghavamzadeh 2013; Tamar et al. 2015;
Chow et al. 2015). Lastly, (Ohsaka and Yoshida 2017) study
CVaR for discrete influence maximization; we contrast our

6452

results with theirs when we discuss the discrete portfolio set-
ting.

Preliminaries

We now review techniques for optimizing smooth contin-
uous submodular functions. These do not directly apply to
CVaR, but our solution builds on them. An important prop-
erty is that continuous submodular functions are concave
along nonnegative directions. Formally,

Definition 1. A function F (x) is up-concave if for any ξ ∈
[0, 1] and y ∈ P , F (x+ ξy) is concave in ξ.

All continuous submodular functions are up-concave
(Bian et al. 2017). Monotone up-concave algorithms are op-
timized via a modified Frank-Wolfe algorithm (Bian et al.
2017; Calinescu et al. 2011). Frank-Wolfe is a gradient-
based algorithm originally introduced to maximize concave
functions. Consider an objective F . Frank-Wolfe algorithms
start at an initial point x0 ∈ P and then generate a series
of feasible solutions x1...xK for some number of iterations
K. At each step k, the algorithm calculates the gradient at
the current point, ∇F (xk−1). It then takes a step towards
the point vk ∈ P which lies furthest in the direction of the
gradient. That is, vk is the solution to the linear optimiza-
tion problem argmaxv∈P〈v,∇F (xk−1)〉. In the standard
Frank-Wolfe algorithm for concave functions, the algorithm
then updates to a convex combination of xk−1 and vk by
setting xk = xk−1+γk

(
vk − xk−1

)
for some step size γk.

Note that some entries of xk may be smaller than the corre-
sponding entries of xk−1. This is necessary for optimality:
the algorithm may need to backtrack if it has made some
entry too large.

This update rule does not work for up-concave functions
because the objective is not concave along negative direc-
tions. Hence, the update for the modified Frank-Wolfe al-
gorithm is xk = xk−1 + γkv

k, which only increases each
coordinate. Because the algorithm is unable to backtrack, it
achieves a (1−1/e)-approximation instead of the global op-
timum which is achievable for fully concave functions. The
process is analogous to the greedy algorithm for submodular
set functions, which successively includes elements based
on their current marginal gain. The continuous Frank-Wolfe
algorithm instead successively increases entries in the solu-
tion vector based on the current gradient.

Algorithmic approach

We now introduce the RASCAL (Risk Averse Submodu-
lar optimization via Conditional vALue at risk) algorithm
for continuous submodular CVaR optimization. RASCAL
solves Problem 1, which is a function of both the decision
variables x and the auxiliary parameter τ . Roughly, τ should
be understood as a threshold maintained by the algorithm for
what constitutes a “bad” scenario: at each iteration, RAS-
CAL tries to increase F (x, y) for those scenarios y such that
F (x, y) ≤ τ .

Before describing the optimization algorithm more for-
mally, we deal with the challenge that the expectation in
Problem 1 cannot generally be evaluated in closed form. We

Algorithm 1 RASCAL

Require: K,u, s, LO
1: Y ← s samples i.i.d. from D
2: x0 ← 0, τ ← 0
3: for k = 1...K do
4: ∇̃ ← SMOOTHGRAD(xk−1, τ, u)

5: v ← LO(∇̃)
6: xk ← xk−1 + 1

Kv

7: τ ← SMOOTHTAU(xk−1, u)
8: end for
9: return xK

10:
11: function SMOOTHGRAD(x, τ , u)
12: Iy(τ) ← max(min(F (x,y)−τ

u , 1), 0) ∀y ∈ Y
13: return

∑
y∈Y Iy(τ)∇xF (x, y)

14: end function
15:
16: function SMOOTHTAU(x, u)
17: B = {F (x, y)|y ∈ Y} ∪ {F (x, y) + u|y ∈ Y}
18: Sort B in ascending order, obtaining B =

{b1...b|B|}.
19: i∗ = min{i = 1...|B|: g(bi) > αs}
20: A ← {y ∈ Y : bi∗−1 < F (x, y) < bi∗}
21: C ← {y ∈ Y : F (x, y) ≤ bi∗−1}
22: Return the τ which solves the linear equation

∑
y∈A

F (x, y)− τ

u
+ |C|= αs

23: end function

replace the expectation with the average of a set of sampled
scenarios. Suppose that we draw a set of samples y1...ys i.i.d
from D. Call the set of samples Y . Then we can estimate
E

[
[τ − F (x, y)]

+
]
≈ 1

s

∑
y∈Y [τ − F (x, y)]

+. With suffi-
ciently many samples, this approximation will be accurate
to any desired level of accuracy:

Lemma 1. Take s = O
(

nM2

ε2 log 1
δ log

L1

ε

)
samples and

let ĈVaRα be the empirical CVaR on the samples. Then,
|CVaRα(x)−ĈVaRα(x)|≤ ε

3 holds for all x ∈ P with prob-
ability at least 1− δ.

The proof is in the supplement. As a minor technicality,
we assume that F (x, yi) takes a distinct value for each x and
yi ∈ Y so that an exact α-quantile exists. This is without loss
of generality since we can always add an arbitrarily small
“tie breaker” value ri, using F (x, yi) + ri instead.

We can now formally introduce RASCAL (Algorithm
1). RASCAL maximizes the objective H(x, τ) = τ −
1
αs

∑
y∈Y [τ − F (x, y)]

+. Maximizing H is equivalent to
maximizing the sampled CVaR. RASCAL is a coordinate
ascend style algorithm. Each iteration first makes a Frank-
Wolfe style update to x (lines 4-6). This step assumes ac-
cess to a linear optimization oracle LO which maximizes
a given linear function over P . RASCAL then sets τ to its

6453

optimal value given the current x (line 7). This approach is
motivated by the unique properties of H . It can be shown
that H is jointly up-concave in the variable (x, τ). However,
H is not monotone in τ . Indeed, H is decreasing in τ for
τ > VaRα(x). The Frank-Wolfe algorithm relies crucially
on monotonicity; nonmonotonicity is much more difficult to
handle.

Instead, we exploit a unique form of structure in H .
Specifically, H is monotone in x, but only up-concave
(not fully concave). Conversely, while H is nonmonotone
in τ , we can easily solve the one-dimensional problem
maxτ∈[0,M] H(x, τ) for any fixed x (we explain how later).
Our approach makes use of both properties: the Frank-Wolfe
update leverages monotone up-concavity in x, while the up-
date to τ leverages easy solvability of the one-dimensional
subproblem.

In order to make this approach work, two ingredients are
necessary. First, we need access to the gradient of H in order
to implement the Frank-Wolfe update for x. Unfortunately,
H is not even differentiable everywhere. We instead present
a smoothed estimator SMOOTHGRAD which restores differ-
entiability at the cost of introducing a controlled amount of
bias. Second, we need to solve the one-dimensional prob-
lem of finding the optimal value of τ . We in fact introduce
a subroutine SMOOTHTAU which solves a smoothed version
of the optimal τ problem.
Smoothed gradient: We now calculate the gradient of
the objective with respect to x, ∇xH(x, τ). Essentially, H
counts the value of all scenarios y for which F (x, y) ≤ τ . If
F (x, y) �= τ ∀y ∈ Y then

∇xH(x, τ) =
1

αs

∑
y∈Y:F (x,y)≤τ

∇xF (x, y).

Unfortunately, if there is a y ∈ Y such that F (x, y) = τ ,
then H may not be differentiable at x. To see this, con-
sider the directional derivatives from two different direc-
tions. From a nonpositive direction, F (x, y) is always below
τ and hence will count towards the gradient. From a positive
direction, F (x, y) may lie above τ in which case its contri-
bution will be zero. Frank-Wolfe algorithms require differ-
entiability (in fact, they require a Lipschitz gradient). This
is not a minor technical point: if the gradient can radically
change over small regions, then gradient-based updates may
prove fruitless. Thus, RASCAL uses a smoothed gradient
estimate over the region from τ to τ + u for some small
u > 0:

SMOOTHGRAD(x, τ) =
1

u

∫ u

z=0

∇xH(x, τ + z)dz

The intuition is that we average over a small window of
τ values so that the contribution of a given scenario to the
gradient does not suddenly drop to 0 if x increases slightly.
Note that as we have sampled a finite set of s scenarios, the
set of points at which H is not differentiable has measure
0. Hence, the integral exists. We now show how to exactly
evaluate the integral (see Algorithm 1, lines 11-14 for pseu-
docode). We have

1

u

∫ u

z=0

∇xH(x, τ + z)dz

=
1

u

∫ u

z=0

∑
y∈Y

1 [F (x, y) ≤ τ + z]∇xF (x, y)dz

=
∑
y∈Y

∇xF (x, y)

∫ u

z=0

1

u
1 [F (x, y) ≤ τ + z] dz

where 1[·] is the indicator function. Now value of
the inner integral is just max(min(F (x,y)−τ

u , 1), 0). Call
this value Iy(τ). By the above, SMOOTHGRAD(x, τ) =∑

y∈Y Iy(τ)∇xF (x, y). This can be computed in time
O(s(T1 +T2)), where T1 is the time to evaluate F and T2 is
the time to differentiate it.
Finding the optimal τ : The update SMOOTHTAU sets τ to
its optimal value over a smoothed window of size u (in order
to match SMOOTHGRAD). Specifically, we find the τ min-
imizing 1

u

∫ u

z=0
H(x, τ)dz. Recall that for the unsmoothed

H , the optimal setting for τ is VaRα(x), i.e., the value such
that F takes value at most τ in an α-fraction of scenarios.
An analogous property holds for the smoothed version:

Lemma 2. Define g(τ) =
∑

y∈Y Iy(τ). (a) τ maximizes
1
u

∫ u

z=0
H(x, τ)dz if g(τ) = αs. (b) g is piecewise linear

and monotone decreasing.

In Lemma 2(a), the condition g(τ) = αs expresses that an
α-fraction of the scenarios weighted by Iy(τ) should have
F (x, y) ≤ τ . The key property for efficiently finding the
τ which satisfies this condition is given in Lemma 2(b): g is
piecewise linear and monotone decreasing in τ . This follows
since it is the sum of functions which share these properties
(the Iy). SMOOTHTAU (Algorithm 1, lines 16-23) uses these
properties as follows. The breakpoints of g are F (x, y) and
F (x, y) + u for each y ∈ Y (line 17). Let these breakpoints
B = {b1...b2s} be sorted in ascending order. We can find the
τ such that g(τ) = αs by first finding the interval such that
g(bi) ≤ αs ≤ g(bi+1) (line 19). Within this interval, g is
linear and hence we can solve exactly for the desired point
(lines 20-22). This process takes time O(sT1).

Theoretical analysis

We now prove that by taking appropriate choices for the
smoothing parameter u and the number of steps K, RAS-
CAL efficiently obtains a provably approximate solution.
Our main theoretical result is as follows:

Theorem 1. For any ε > 0, by taking u = ε

3(1+ 1
α)

, RAS-

CAL outputs a solution x ∈ P satisfying CVaRα(x) ≥
(1 − 1/e)OPT − ε with probability at least 1 − δ. There

are K = O
(

L2d
2

αε + L1Gd2

α2ε2

)
iterations, requiring O (sK)

total evaluations of F , O (sK) evaluations of ∇F , and K
calls to LO.

The rest of this section is devoted to proving Theorem
1. We start out by introducing a surrogate objective that we
consider for the sake of analysis. Let

6454

H̃(x, τ) =
1

u

∫ u

z=0

H(x, τ + z)dz.

This is the smoothed version of the objective, which
SMOOTHGRAD computes the gradient for. Let τ(x) =

maxτ H̃(x, τ) be the optimal setting for τ under x. Note
that this is with respect to the smoothed objective H̃ , so τ(x)

is not necessarily VaRα(x). We first show that H and H̃ are
close:

Lemma 3. |H̃(x, τ)−H(x, τ)|≤ u(1+ 1
α)

2 ∀x, τ
The main idea is to show that H is Lipschitz with respect

to τ , so we do not change the value of the function too much
by changing τ slightly. This lemma essentially bounds the
bias introduced by SMOOTHGRAD.

Now we turn to the main step: showing that the coordinate
ascent strategy makes an appropriate amount of progress to-
wards the optimum at each iteration. Note that at the end
of each iteration k, RASCAL sets τk ← τ(xk). This is
because SMOOTHTAU exactly computes the optimal set-
ting for τ with respect to the smoothed objective H̃ . Let
x̃∗ = maxx∈P H̃(x, τ(x)) be the point achieving the opti-
mal value of H̃ . Since RASCAL always sets τ to its optimal
value in SMOOTHTAU, the gap from optimality at the end of
iteration k is exactly

Δk := H̃(x̃∗, τ(x̃∗))− H̃(xk, τ(xk))

Our aim is to show that the gap Δk decreases by a factor
of (1−γk) at each iteration (up to a small amount of additive
loss). We start out by providing an upper bound on Δk in
terms of the current gradient.
Lemma 4. At each iteration k = 1...K,

H̃(x̃∗, τ(x̃∗))−H̃(xk, τ(xk))

≤ max
v∈P

〈∇xH̃(xk, τ(xk)),v〉.

The proof uses the underlying up-concavity of F com-
bined with the concavity-preserving properties of CVaR.
The intuition is that any concave function is upper bounded
by its linearization at a given point (though the bound
is weaker than for concave functions (Lacoste-Julien and
Jaggi 2015) because F is only up-concave). Lemma 4
gives us a benchmark to track progress: it suffices to
show that the improvement in iteration k is at least
γk maxv∈P〈∇xH̃(xk, τ(xk)),vk〉 since this implies that
we make up at least a γk fraction of the current gap from
optimality.

We now express the actual improvement that is made. At
iteration k, the Frank-Wolfe update moves from xk−1 to
xk−1 + γkv

k. Integrating over the transition between these
two points gives

H̃(xk, τ(xk))− H̃(xk−1, τ(xk−1)) = (2)∫ 1

ξ=0

〈∇xH̃(xk−1 + ξγkv, τ(x
k−1 + ξγkv)), γkv〉dξ.

What we would like is for the gradient to stay relatively
constant as we move from xk−1 to xk−1+γkv

k. This is be-
cause we chose vk to lie in the direction of ∇xH̃ at the start-
ing point xk−1. If the gradient changes very sharply along
the way, then we may not not actually improve the objective
value very much.

There are two obstacles to showing that the gradient is
smooth enough. The first is that the value of τ in Equation 2
may change with ξ. We can deal with this as follows. Note
that that since vk is nonnegative, xk−1 + ξγkv

k 	 xk−1

holds for all ξ ∈ [0, 1]. It is easy to see that τ(x) is monotone
increasing in x. Thus, τ(xk−1+ξγkv) ≥ τ(xk). By looking
at the expression for ∇xH̃(x, τ), we can see if that if we
increase the value of τ , then the gradient can only increase
because more scenarios can contribute. Formally,

Lemma 5. If x2 	 x1, ∇xH̃(x2, τ(x2)) 	
∇xH̃(x2, τ(x1)).

Applying Lemma 5 to Equation 2 gives

H̃(xk, τ(xk))− H̃(xk−1, τ(xk−1))

≥
∫ 1

ξ=0

〈∇xH̃(xk−1 + ξγkv, τ(x
k−1)), γkv〉dξ

The second obstacle is that ∇xH̃ might change sharply
as we vary x from xk−1 to xk−1 + γkv

k. However, this is
exactly what SMOOTHGRAD is designed to avoid. Formally,
the gradient of H̃ is Lipschitz:
Lemma 6. If ∀y ∈ Y , F (·, y) is L1-Lipschitz and
∇xF (·, y) is L2 Lipschitz with ||∇xF ||2≤ G, then ∇xH̃
is 1

α

(
L2 +

L1G
u

)−Lipschitz.
This gives us the tools to finish the proof. Let C =

1
α

(
L2 +

L1G
u

)
be the Lipschitz constant of ∇xH̃ . The

Cauchy-Shwartz inequality and Lemma 6 yield

〈∇xH̃(xk−1 + ξγkv, τ(x
k−1)),v〉

≥ 〈∇xH̃(xk−1, τ(xk−1)),v〉 − ξγkC||v||22
and hence

H̃(xk, τ(xk))− H̃(xk−1, τ(xk−1))

≥ γk

∫ 1

0

〈∇xH̃(xk−1, τ(xk−1)),v〉 − ξγkC||v||22dξ

= γk〈∇xH̃(xk−1, τ(xk−1)),v〉 − γ2
kC||v||22

2

≥ γkΔ
k−1 − γ2

kCd2

2

and by rearranging we obtain

Δk ≤ (1− γk)Δ
k−1 − γ2

kCd2

2
.

This is exactly what we wanted to show: the gap shrinks
by a factor (1 − γk) each iteration, up to a small amount of
additive loss. From here, the proof proceeds by fairly stan-
dard arguments which may be found in the supplement.

6455

Discrete portfolio optimization

We may also want to optimize the CVaR of a submodular
set function, as opposed to the continuous functions that
we have dealt with so far. We study the portfolio optimiza-
tion problem (Ohsaka and Yoshida 2017) where the decision
maker may select any distribution over feasible sets. Equiv-
alently, they select a decision which is a convex combination
of feasible decisions but which is not guaranteed to lie in the
original feasible set itself (Chen et al. 2017). This is a natural
setting for CVaR optimization because the decision maker
essentially hedges their bets between multiple options.

Formally, we are given a collection of submodular set
functions f(·, y) on a ground set X , where y is a random
variable. There is a collection of feasible sets I. For in-
stance, I could be all size-k subsets. In general, our algo-
rithm works when I is any matroid. The algorithm selects a
distribution q over the sets in I. The objective is to maximize
CVaRα

(∑
S∈I qSf(S, y)

)
.

We provide a black-box reduction from this problem
to the continuous submodular CVaR optimization problem
considered earlier. Since RASCAL solves the continuous
problem, we immediately obtain efficient algorithms for a
range of portfolio problems. Formally,
Theorem 2. Given access to an α-approximation algorithm
for the continuous CVaR problem, there is an algorithm
which obtains value at least αOPT −ε for the discrete port-
folio CVaR problem.

A proof is deferred to the supplement. The main idea is
to translate from the discrete to continuous settings via the
multilinear extension (Calinescu et al. 2011). The multilin-
ear extension F of a submodular set function f is a continu-
ous function defined on the hypercube [0, 1]|X| which agrees
with f at the vertices. We apply the promised continuous
CVaR algorithm to the multilinear extensions F (·, y) and
then use known rounding techniques (Chekuri, Vondrak, and
Zenklusen 2010) to convert the fractional solution to a dis-
tribution over integral points which preserves the fractional
solution’s CVaR value. However, some additional technical
steps are needed to make this strategy work (e.g., we need to
maintain multiple copies of the decision variables to get the
optimal approximation ratio).

We note that this result strengthens that of Ohsaka and
Yoshida (2017) in two respects. First, their result applies
only to influence maximization, while ours applies to any
submodular function. Second, they obtain the additive ap-
proximation OPT − 1

e when the objective values are
rescaled by n (the total number of nodes in the graph for
influence maximization) to the interval [0, 1]. Hence, their
bound does not apply when OPT ≤ 1

en, which is very
possible since CVaR counts worst-case outcomes. We have
only an arbitrarily small ε of additive loss, which allows for
stronger guarantees when OPT is small.

Experiments

We show experimental results for the sensor resource allo-
cation problem, where the goal is to use a limited sensing
budget to quickly detect a contagion spreading through a
network (Leskovec et al. 2007; Soma and Yoshida 2015;

Bian et al. 2017). We are given a graph G = (V,E) with
|V |= n. A contagion starts at a random node y and spreads
over time according to a given stochastic process. Let tv be
the time at which the contagion reaches each node v. tv is a
random variable which depends on both the source node y
and the stochastic contagion process. The vector t collects
tv for all v ∈ V . We assume that tv < ∞ ∀v ∈ V (every
node is eventually reached). If this does not hold, we can cut
the process off after some large time horizon. Let t∞ be the
maximum possible value of tv .

The decision maker has a budget B (e.g., energy) to spend
on sensing resources. xv represents the amount of energy al-
located to the sensor at node v. When contagion reaches v at
time tv , the sensor detects with probability 1−(1−p)xv and
otherwise fails. Essentially, investing an extra unit of energy
in sensor v buys an extra chance to detect the contagion with
probability p. Fix a vector of times t, and order the nodes
v1...vn so that tv1

≤ tv2
≤ ... ≤ tvn

. The objective F for
source y is expected amount of detection time that is saved
by the sensor placements:

F (x, t) = t∞ −
n∑

i=1

tvi
(1− (1− p)xi)

∏
j<i

(1− p)xj

where the summation counts the probability that sen-
sor i succeeds but all j < i fail. Is is known that F is
DR-submodular (Bian et al. 2017). Previous work maxi-
mizes Et [F (x, t)], the expected utility over the random
source node and diffusion process. Here, we consider instead
CVaRα(x), where the scenarios are all possible time vectors
t. Essentially, we want to perform well when the contagion
starts in hard to detect portions of the network or spreads in
an unlikely way. We take the CVaR with respect to t but not
the success or failure of the sensors because no algorithm
can successfully detect contagion when almost all sensors
fail and the source and diffusion pattern are worst-case.
Domains: We consider two sensing domains. In both, the
source node is uniformly random. First, contagion spread-
ing according to the continuous time independent cascade
model (CTIC). This models applications like detecting news
or a disease in a social network. The CTIC is variant of the
independent cascade model proposed by Gomez-Rodriguez
et al. (2012) which better reflects the temporal dynamics of
real-world social processes. Each edge (u, v) has propaga-
tion time ρu,v drawn from an exponential distribution with
mean λ. The contagion starts at y (ty = 0). Letting δ(v) be
v’s neighbors, tv = minu∈δ(v) tu + ρu,v . That is, tv is the
first time contagion spreads from a neighbor to v.

We show experiments on several networks. First,
netscience2: a collaboration network of network science re-
searchers with 1461 nodes. Second, euroroad: a network of
European cities and roads between them, with 1,174 nodes.
Third, synthetic Watts-Strogatz networks (parameters k = 2,
p = 0.1). These allow us to test our algorithm on a similar
graphs as n grows. For all networks, λ = 5, p = 0.01, and
we simulate 1000 scenarios (random source nodes and prop-
agation times).

2http://www-personal.umich.edu/ mejn/netdata/

6456

0 50 100 150 200 250

B

0

5

10

15

C
V
aR

a
RASCAL

FW

Degree

0 100 200 300 400 500 600

B

0

20

40

60

80

C
V
aR

b
RASCAL

FW

Degree

0 5 10 15

CVaR

0.0

0.2

0.4

0.6

0.8

D
en
si
ty

c
RASCAL

FW

Degree

0 5000 10000

n

0

500

1000

1500

2000

C
V
aR

d RASCAL

FW

Degree

Figure 1: Results for the continuous time independent cascade model. (a) netscience as B varies (b) euroroad as B varies (d)
histogram of values for netscience with B = 0.1n. (d) Watts-Strogatz networks as n varies

0.0 0.2 0.4 0.6 0.8 1.0

α

0

10

20

30

C
V
aR

a RASCAL

FW

Degree

5 10 20 30

B

0.0

2.5

5.0

7.5

10.0
C
V
aR

b RASCAL

FW

Degree

Figure 2: Results for BWSN

RASCAL

0.000

0.025

0.050

0.075
FW

0.0

0.2

0.4

0.6

0.8

1.0
degree

0.00

0.02

0.04

0.06

0.08

0.10

Figure 3: Example allocations for BWSN

Second, we consider detecting contamination in a water
network via the Battle of Water Sensor Networks (BWSN).
BWSM (Ostfeld et al. 2008) simulates the spread of con-
tamination through a 126-node water network consisting of
junctions, tanks, pumps, and the links between them. The
network is a real water distribution network from an anony-
mous location, and the t values are provided by EPANET, a
highly realistic water distribution simulator designed by the
U.S. Environmental Protection Agency. We use p = 0.001
and simulate 1000 random scenarios (source node and t val-
ues).
Baselines: No previous work directly addresses our setting.
We consider two competitive baselines. First, FW, which
uses the Frank-Wolfe algorithm of Bian et al. (2017) to max-
imize the expected reward. Maximizing expected value is
default approach to decision making under uncertainty. Sec-
ond, degree, a heuristic for producing risk-averse solutions.
Specifically, degree allocates one unit of budget to each of
the B nodes with highest degree. This disperses the budget
throughout the network, hedging against unlikely outcomes.
Results for CTIC: Figure 1 shows results under the CTIC.
Figures 1(a) and 1(b) show the CVaR of each algorithm on
the netscience and euroroad networks as the budget B varies
on the x axis. RASCAL substantially outperforms both FW
and Degree. This indicates that maximizing expected value
is not a sufficient proxy for risk-aversion under uncertainty.
In fact, FW obtains zero value for many values of B, indi-
cating that its sensor selection is useless in the 10% worst
cases. Degree often performs better than FW, indicating
some benefit to heuristically hedging against possible conta-
gion sources. However, RASCAL’s principled optimization
still results in much higher performance. Figure 1(c) shows
a histogram of each algorithm’s value across the different
scenarios on netscience. RASCAL’s reward distribution is
tightly concentrated, which is desirable from the perspective
of risk aversion. By contrast, FW and degree have more bi-
modal distributions, with the potential for both very low and
high reward. Lastly, Figure 1(d) shows the CVaR obtained

by each algorithm for Watts-Strogatz networks as the net-
work size n grows on the x axis. RASCAL again obtains
much higher value across the board. RASCAL scales easily
to 10,000 nodes, running in under 1 minute.
Results for BWSN: We now examine our second do-
main, water network sensor management. Figure 2 shows
the CVaR obtained by each algorithm. Figure 2(a) shows α
on the x axis, varying the decision maker’s degree of risk
aversion. Throughout, B = 10. RASCAL substantially out-
performs FW and degree until α = 0.6, at which point FW
becomes competitive. However, for α ≤ 0.4, both FW and
degree obtain zero value. This indicates that even when the
decision maker is not severely risk averse (e.g., preferring
to focus on the worst 50% of scenarios), they can substan-
tially benefit from using our principled approach to optimiz-
ing CVaR. It is natural to ask whether the baselines are com-
petitive when there are more resources available, allowing
them to cover a larger portion of the network. Figure 2(b)
shows the results as the budget B is varied on the x axis
with α = 0.1. FW and degree still obtain a CVaR of zero
even when the budget is tripled to B = 30. By contrast,
RASCAL’s value steadily grows as it makes productive use
of the additional resources.

Lastly, Figure 3 shows an example of the allocation pro-
duced by each algorithm for B = 10, α = 0.1. RASCAL
disperses its resources throughout the network. It places
some resources on central nodes, but also spends a portion
of the budget on outlying parts of the network where conta-
gions will not be detected by centrally placed sensors. On
the other hand, FW concentrates is entire budget on one
central node. Degree, by design, disperses its budget more
widely. However, it spends the budget largely on central
nodes, instead of balancing between central and outlying
nodes like RASCAL. We conclude that RASCAL success-
fully balances different scenarios to find risk-averse solu-
tions.

Acknowledgments: Wilder was supported by a NSF
Graduate Fellowship.

6457

References

Bach, F. 2015. Submodular functions: from discrete to con-
tinous domains. arXiv preprint arXiv:1511.00394.
Bian, A. A.; Mirzasoleiman, B.; Buhmann, J. M.; and
Krause, A. 2017. Guaranteed non-convex optimization:
Submodular maximization over continuous domains. In AIS-
TATS.
Calinescu, G.; Chekuri, C.; Pál, M.; and Vondrák, J. 2011.
Maximizing a monotone submodular function subject to a
matroid constraint. SIAM J. Comput. 40(6):1740–1766.
Chekuri, C.; Vondrak, J.; and Zenklusen, R. 2010. Dependent
randomized rounding via exchange properties of combinato-
rial structures. In FOCS.
Chen, R.; Lucier, B.; Singer, Y.; and Syrgkanis, V. 2017.
Robust optimization for non-convex objectives. In NIPS.
Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015.
Risk-sensitive and robust decision-making: a CVaR opti-
mization approach. In NIPS, 1522–1530.
Duchi, J. C.; Bartlett, P. L.; and Wainwright, M. J. 2012.
Randomized smoothing for stochastic optimization. SIAM
Journal on Optimization 22(2):674–701.
Ermon, S.; Conrad, J.; Gomes, C. P.; and Selman, B. 2011.
Risk-sensitive policies for sustainable renewable resource al-
location. In IJCAI, 1942–1948.
Gomez-Rodriguez, M.; Leskovec, J.; and Krause, A. 2012.
Inferring networks of diffusion and influence. ACM Transac-
tions on Knowledge Discovery from Data (TKDD) 5(4):21.
Hong, L. J., and Liu, G. 2009. Simulating sensitivities of
conditional value at risk. Manag. Sci 55(2):281–293.
Hoy, D., and Nikolova, E. 2015. Approximately optimal
risk-averse routing policies via adaptive discretization. In
AAAI.
Iyengar, G., and Ma, A. K. C. 2013. Fast gradient descent
method for mean-CVaR optimization. Annals of Operations
Research 205(1):203–212.
Kempe, D.; Kleinberg, J.; and Tardos, É. 2003. Maximizing
the spread of influence through a social network. In KDD.
Koçkesen, L.; Ok, E. A.; and Sethi, R. 2000. The strategic
advantage of negatively interdependent preferences. Journal
of Economic Theory 92(2):274–299.
Krause, A.; Roper, A.; and Golovin, D. 2011. Randomized
sensing in adversarial environments. In IJCAI.
Kulesza, A., and Taskar, B. 2012. Determinantal point pro-
cesses for machine learning. Foundations and Trends in Ma-
chine Learning 5(2–3):123–286.
Lacoste-Julien, S., and Jaggi, M. 2015. On the global linear
convergence of Frank-Wolfe optimization variants. In NIPS.
Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; Van-
Briesen, J.; and Glance, N. 2007. Cost-effective outbreak
detection in networks. In KDD, 420–429.
Maehara, T. 2015. Risk averse submodular utility maximiza-
tion. Operations Research Letters 43(5):526–529.
Mansini, R.; Ogryczak, W.; and Speranza, M. G. 2007. Con-
ditional value at risk and related linear programming mod-

els for portfolio optimization. Annals of operations research
152(1):227–256.
Ohsaka, N., and Yoshida, Y. 2017. Portfolio optimization for
influence spread. In WWW, 977–985.
Ostfeld, A.; Uber, J. G.; Salomons, E.; Berry, J. W.; Hart,
W. E.; Phillips, C. A.; Watson, J.-P.; et al. 2008. The battle
of the water sensor networks (BWSN). J. Water Resour. Plan.
Manag. 134(6):556–568.
Prashanth, L., and Ghavamzadeh, M. 2013. Actor-critic al-
gorithms for risk-sensitive MDPs. In NIPS, 252–260.
Rockafellar, R. T., and Uryasev, S. 2000. Optimization of
conditional value-at-risk. Journal of risk 2:21–42.
Sampson, T. 2016. Assignment reversals: Trade, skill allo-
cation and wage inequality. J. Econ. Theory 163:365–409.
Soma, T., and Yoshida, Y. 2015. A generalization of submod-
ular cover via the diminishing return property on the integer
lattice. In NIPS, 847–855.
Staib, M., and Jegelka, S. 2017. Robust budget allocation
via continuous submodular functions. In ICML.
Tamar, A.; Chow, Y.; Ghavamzadeh, M.; and Mannor, S.
2015. Policy gradient for coherent risk measures. In NIPS.
Vondrák, J. 2008. Optimal approximation for the submodular
welfare problem in the value oracle model. In STOC, 67–74.
Wilder, B. 2017. Equilibrium computation and robust opti-
mization in zero sum games with submodular structure. In
AAAI.
Yau, S.; Kwon, R. H.; Rogers, J. S.; and Wu, D. 2011. Fi-
nancial and operational decisions in the electricity sector. Int
J Prod Econ 134(1):67–77.
Yin, Z.; Jain, M.; Tambe, M.; and Ordónez, F. 2011. Risk-
averse strategies for security games with execution and ob-
servational uncertainty. In AAAI.
Yu, J. Y., and Nikolova, E. 2013. Sample complexity of
risk-averse bandit-arm selection. In IJCAI, 2576–2582.

6458

