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Abstract

We consider sequential decision making problems under un-
certainty, in which a user has a general idea of the task to
achieve, and gives advice to an agent in charge of comput-
ing an optimal policy. Many different notions of advice have
been proposed in somewhat different settings, especially in
the field of inverse reinforcement learning and for resolution
of Markov Decision Problems with Imprecise Rewards.
Two key questions are whether the advice required by a spe-
cific method is natural for the user to give, and how much
advice is needed for the agent to compute a good policy, as
evaluated by the user. We give a unified view of a number of
proposals made in the literature, and propose a new notion of
advice, which corresponds to a user telling why she would
take a given action in a given state. For all these notions, we
discuss their naturalness for a user and the integration of ad-
vice. We then report on an experimental study of the amount
of advice needed for the agent to compute a good policy. Our
study shows in particular that continual interaction between
the user and the agent is worthwhile, and sheds light on the
pros and cons of each type of advice.

Introduction
We consider sequential decision making under uncertainty,
by an autonomous agent solving tasks on behalf of a user.
Such situations arise naturally in practice, for instance, GPS
navigation devices compute optimal routes for the driver. We
are especially interested in applications where the agent has
information about the dynamics of the task to achieve, but
lacks information about the precise goal, or preferences, of
the user. In the case of a GPS, this corresponds to the device
having all information about the roads and traffic (dynamics)
and some information about the goal (starting place and des-
tination), but lacking information about whether the driver
wants to, e.g., avoid going though such place, or keep close
to others (like rest areas when driving with young kids). We
refer the reader to Azaria et al. (2016) for more examples.

We assume that the task to be solved is modelled as a
Markov Decision Problem (MDP), thus taking into account
uncertainty in the outcome of actions at execution time. In
that setting, natural solutions are policies rather than plans.
In the GPS example, this means that the device computes a
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contingent plan taking into account, not only the intended,
optimal path to destination, but also alternative paths (be-
cause of, e.g., unforeseen traffic jams, blocked roads, etc.).

It is well-known that the optimal policy for a given MDP
is highly dependent on the precise reward function. How-
ever, it is typically difficult for a user to give precise numeri-
cal values for rewarding states or transitions between states.
Hence many authors have studied MDPs with Imprecise Re-
ward functions, that is, with a set of candidate reward func-
tions rather than a single one. Approaches encompass in-
verse reinforcement learning and learning from demonstra-
tions, preference-based reinforcement learning, ordinal re-
ward MDPs, minimax regret policies, etc. (see related work).

At the heart of most approaches is some notion of infor-
mation communicated by the user to the agent: demonstrated
(portions of) trajectories, preferences between trajectories,
etc. Such information can be obtained by observing the user,
or by actively querying her whenever more information is
needed for solving the task. Orthogonally, the information
can consist of (near-)optimal actions to take at given states,
to information about the real reward function, etc.

We are interested in what information is given by the user
to the agent, which we call advice. We give a unified view
of the most important notions in the literature, focusing on
notions which, we argue, are natural for a user to give. We
introduce a new, natural notion, formalising a user giving the
action to take in a given state and telling what outcome made
her choose this action. We extend known algorithms for in-
corporating such advice in the computation of a minimax
regret policy. We finally report on an experimental study on
random MDPs with different structures, in which we com-
pare the various notions with different interaction scenarios.

Related Work
It has long been observed that a drawback of MDPs, as a
framework for modelling sequential decision making tasks,
is that a numerical reward function must be defined, and that
the optimal policies are quite sensitive to its precise values.
A typical setting where this is problematic is in medical de-
cision support, where one would need to give a numerical
cost to the death of a patient, implying possible tradeoffs
with many other being cured of a simple cold, for instance.
The point is that under very reasonable postulates, there is
indeed a numerical reward function which captures exactly
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the task which the user has in mind (Weng 2012), but that it
is not realistic to expect the user to know it.

To cope with this, a first line of approaches considers or-
dinal (Weng 2012), or preference-based MDPs (Fürnkranz
et al. 2012), in which rewards or trajectories are ordered
but have no numerical values. This results in MDPs with
several nondominated policies. For choosing one, methods
have been proposed that ask the user the minimum amount
of additional information about how rewards compare and
can be traded off with each other, either in an offline plan-
ning (Weng and Zanuttini 2013) or in a reinforcement learn-
ing setting (Busa-Fekete et al. 2013). This information is
typically obtained as answers to queries asked to the user.

Another group of approaches consists of considering the
problem as one of inverse reinforcement learning (Ng and
Russell 2000). In this setting, the dynamics of the problem
is known to the agent but the reward function is considered
as an unknown, the value of which (or enough information
about this value) can be discovered by the agent by ob-
serving optimal or near-optimal policies. Some approaches,
called model-based, aim at estimating the underlying reward
function first and then deducing an optimal policy, while
other, called direct or model-free, aim at computing an op-
timal policy directly from the demonstrations. We refer the
reader to (Piot, Geist, and Pietquin 2013) for a recent survey.

Finally, another (closely related) group of approaches
takes a decision-theoretic point of view, and defines an Im-
precise Reward MDP (IRMDP) to be a set of MDPs, all
with a different reward function, hence modelling uncer-
tainty about the real one. Different solution concepts can be
given, but the one most studied is minimax regret (Bell 1982;
Xu and Mannor 2009; Regan and Boutilier 2009). With this
view, ignorance of the real reward function is directly coped
with, and an optimal policy is one which copes best with
it: in the case of minimax regret, which is most robust to
adversaries choosing the real reward function. This line of
work also studies methods for reducing the uncertainty using
queries to the user, as far as needed for reducing regret (Re-
gan and Boutilier 2009; 2011; Alizadeh, Chevaleyre, and
Zucker 2015; Ahmed et al. 2017). In this paper, we heav-
ily build on this view and these techniques.

Preliminaries
A Markov Decision Problem, or MDP (Puterman 2005), is
a tuple 〈S,A, T,R, γ〉, where: S,A are finite sets of states
and actions; T : S × A × S′ → [0, 1] is a transition func-
tion, with T (s, a, s′) the probability that when action a is
taken in state s, the system evolves to state s′; R : S → R

is the reward function, with R(s) the immediate reward (or
penalty, if negative) obtained when the current state is s; and
γ ∈ [0, 1[ is the discount factor.1

Write Δ(X) for the set of all probability distributions
over a set X . The transition function T is made of one
probability distribution for each state s and action a, written
Ts,a ∈ Δ(S). A (stationary) deterministic policy is a func-
tion π : S → A, which for each state s prescribes an action a
to take, and more generally a (stationary) stochastic policy is

1Our study can be easily generalised to R : S ×A× S → R

a function π̃ : S → Δ(A); we write π̃(s, a) for π̃(s)(a), that
is, for the probability that a is chosen in state s according to
π̃. We write fα

π̃ for the occupation frequency of π̃ wrt an
initial distribution α on S: fα

π̃ (s, a) = E(
∑∞

t=0 γ
tPr(St =

s,At = a)), where expectation is taken over trajectories de-
fined by S0 ∼ α, At ∼ π̃(St), and St+1 ∼ TSt,At

.
In this paper, we define the quality of policies respective

to the infinite horizon discounted criterion: the value of π̃
at a state s is defined to be the expectation of cumulative
discounted rewards obtained when following π̃ starting in s:

V π̃(s) = E(
∞∑

t=0

γtR(St))

where St is a random variable on S for t = 0, 1, . . . , and ex-
pectation is taken over trajectories defined by S0 = s,At ∼
π̃(St), St+1 ∼ TSt,At . The quality function is given by

Qπ̃(s, a) = R(s) + γ
∑

s′∈S

T (s, a, s′)V π̃(s′)

It is well-known that an MDP M always has an optimal de-
terministic, stationary policy π which maximises V π(s) at
all states s. We denote by π∗

M such a policy, by V ∗
M : S → R

its value function, and by Q∗
M : S ×A → R its Q-function.

Imprecise Reward MDPs We adopt the setting of Impre-
cise Reward MDPs (IRMDPs). Formally, an IRMDP (Regan
and Boutilier 2009) is defined to be a tuple 〈S,A, T, R̃, γ〉,
where S,A, T, γ are as for an MDP, and R̃ is a (possibly infi-
nite) set of reward functions on S; R̃ models the uncertainty
about the real reward function which would precisely define
the task at hand. To avoid confusion, we use notation M̃ for
IRMDPs, keeping M for (standard) MDPs.

We are interested in the case when R̃ is given as a poly-
tope. Precisely, writing S = {s1, . . . , sn} for the set of
states, we assume that R̃ is the set of all solutions of a linear
system of the form C ·�r ≥ �d, where C is a k×n-matrix, �d is
a k-dimensional column vector, and �r is the column vector
(R(s1), . . . , R(sn))

T . We call such IRMDPs linear.
The restriction to linear IRMDPs is very common in

the literature (Regan and Boutilier 2009; 2010; Weng and
Zanuttini 2013; Alizadeh, Chevaleyre, and Zucker 2015;
Ahmed et al. 2017). It is indeed very natural; in particular, it
encompasses all cases where the modeller of the task speci-
fies an interval instead of a precise value for some R(s)’s.

Solving IRMDPs Xu and Mannor (2009) and Regan and
Boutilier (2009) propose to assess the value of a stochastic
policy for an IRMDP using max regret (MR). The intuition
is that a good policy should not bet too much on one of the
reward functions, and should rather try to minimise its regret
if an adversary chooses the actual one.

Definition 1 (max regret) Let M̃ = 〈S,A, T, R̃, γ〉 be an
IRMDP, π̃ be a stochastic policy, and α be a distribution on
S. For R ∈ R̃, the regret of π̃ wrt M̃ and R is defined by
ρα
M̃
(π̃, R) = max

g∈Fα

(R · g−R ·fα
π̃ ), where Fα is the set of all
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minπ̃,ρ ρ

s.t. R · gR −R · f ≤ ρ (∀〈gR, R〉 ∈ R̃)
γET f + α = 0

maxQ,V,I,r α · V − r · f
s.t. Qa = ra + γPaV (∀a ∈ A)

V ≥ Qa (∀a ∈ A)
V ≤ (1− Ia)Ma +Qa (∀a ∈ A)
Cr ≤ d∑
a
Ia = 1

Ia ∈ {0, 1}
Ma ∈ M� −M⊥

a

Figure 1: Master problem (top) and subproblem (bottom) for
M̃ = 〈S,A, T, R̃, γ〉 with R̃ given by C · �r ≥ �d.

valid action occupation frequencies for M̃ wrt α. The max
regret of π̃ is defined by MRα

M̃
(π̃) = maxR∈R̃ ρα

M̃
(π̃, R).2

When unambiguous, we simply write ρ(π̃, R), MR(π̃).
A policy π̃∗ is said to be MMR-optimal (for M̃ ) if its max
regret is minimum: MRα

M̃
(π̃∗) = minπ̃∈(Δ(A))S MRα

M̃
(π̃).

Several algorithms have been proposed for computing an
MMR-optimal policy (Regan and Boutilier 2009; da Silva
and Costa 2011; Alizadeh, Chevaleyre, and Lévy 2016), ei-
ther exactly or approximately. Among these, we will build
on Regan and Boutilier’s approach (2009). Given an IR-
MDP M̃ = 〈S,A, T, R̃, γ〉 with R̃ given by a linear system
C · �r ≥ �d, the idea is to use Bender’s Decomposition (Ben-
ders 1962). A master problem computes a policy which min-
imises the maximal regret with respect to the reward func-
tions in a finite subset R̃ of R̃. Given such a candidate pol-
icy π̃, a subproblem searches for a reward function R ∈ R̃
which maximises the regret of π̃, R is added to R̃, and the
process repeats until a fix-point is reached.

It turns out that the master problem can be formulated as a
linear program over variables f(s, a) ∈ [0, 1] (s ∈ S, a ∈ A,
representing the occupation frequency of an MMR policy)
and ρ (representing the min max regret). Figure 1 (top) gives
this program. The first constraint occurs once per couple
〈gR, R〉 which has been found by the subproblem so far,
where R is a regret maximising reward function as found
by the subproblem, and gR is the occupation frequency of
the corresponding adversary policy. The second constraint
ensures that f is a valid occupation frequency (for α). A
solution policy can be retrieved from f through π̃(s, a) =
f(s, a)/

∑
a′ f(s, a′). Now, the subproblem can be formu-

lated as a mixed 0/1 linear program as shown on Figure 1
(bottom). There, f is the occupation of the current MMR so-
lution π̃ found by the master problem, r is a vector of real-
valued variables representing a reward function for which
ρ(π̃, r) is maximal, Q, V are vectors of real-valued variables

2It is easy to see that R · fα
π̃ is equal to

∑

s

α(s)V π̃(s).

representing the quality function and value function of a de-
terministic policy πg maximising r · g− r · f (with g the oc-
cupation function of πg wrt α) or, equivalently, α ·V − r · f ,
and I consists of 0/1 variables such that Ia(s) is 1 iff πg(s)
is a (cf. Regan and Boutilier (2009) for more details).

Max Regret under Advice
We consider agents who know the dynamics (S,A, T, γ) of
the target MDP, but know a set R̃ instead of the reward func-
tion R. However, we consider situations where there is a pre-
cise task to be solved, as formalised by a precise numerical
reward function R. This function must be understood as the
one in the user’s mind, but we insist that we do not assume
that the user knows it precisely. Note that, under reasonable
postulates, there is necessarily such a function which models
the user’s preferences (Weng 2011, Theorem 2).

We call advice context a tuple 〈S,A, T, R̃, γ, R〉, where
〈S,A, T, R̃, γ〉 is an IRMDP and R ∈ R̃ is a reward function
over S: 〈S,A, T, R̃, γ〉 is the information available to the
agent, and the MDP M = 〈S,A, T,R, γ〉 is the target task.

Advice In general, by advice we formalise the hints a user
can give to the agent about the target reward function. Hence
we view a piece of advice as a predicate on reward functions.

A natural manner for a user to give advice about the pre-
cise task at hand, is to point at decisions which she would
take in specific states. This is the point of view taken by
learning from demonstrations (Maclin and Shavlik 1996;
Judah et al. 2010; Azaria et al. 2016; Cederborg et al. 2015).
Importantly, giving such advice does not require the user
to know anything about the components of the target task.
Rather, the agent can simply run its MMR policy (for M̃ )
until the user says “here, you should have done that”.

Definition 2 (action advice) Let 〈S,A, T, R̃, γ, R〉 be an
advice context, write π∗ for an optimal policy for M =
〈S,A, T,R, γ〉, and π̃∗ for an MMR policy for M̃ =

〈S,A, T, R̃, γ〉. An action advice is a pair (s, a) ∈ S × A
satisfying QM

π∗(s, a) ≥ QM
π∗(s, π̃∗(s)).

We emphasise that in Definition 2, the Q-values are all
evaluated in the target model M and assuming that the pol-
icy executed after them is the target policy π∗. Hence the
advice indeed makes sense, in that it does not require the
user to know the agent’s model.

Another natural type of advice is about the optimal action
in a given state, still according to the user’s point of view.
Definition 3 (optimal action advice) Let 〈S,A, T,R, γ〉
be an MDP, and π∗ be an optimal policy for it. An optimal
action advice is a pair (s, a) ∈ S ×A satisfying a = π∗(s).

Again, such advice does not require the user to know the
agent’s model. From the point of view of the agent, the in-
formative content of such advice is
∀a′ ∈ A,

∑

s′∈S

T (s, a, s′)V M
π∗ (s′) ≥

∑

s′∈S

T (s, a′, s′)V M
π∗ (s′)

Because the inequality is large, such advice may be non-
informative, which is reminiscent of the fact that the ba-
sic inverse reinforcement learning problem is ill-posed (Ng
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and Russell 2000). However, contrary to (nonoptimal) ac-
tion advice, such advice does not require the user to know
the agent’s policy. Dually, nonoptimal action advice requires
this, but does not require her to know the optimal action in
the target MDP. Hence it makes sense for complex tasks for
which the optimal action is not clear to the user.

Action advice is a direct notion of advice. However, in
many natural situations we can expect a human user to con-
sider such decisions with a precise outcome in mind. For
instance, when deciding to play or not to play a lottery, we
can expect a user to focus on the outcomes of winning the
jackpot, of not winning anything, but less likely to take into
account the probability of second-rank gains or the proba-
bility of being hit by a car when walking for buying a ticket.

For that reason, we introduce new notions of advice, in
which the user specifies a successor s′ ∈ T (s, a) of (s, a) in
addition to the action advice (s, a). This is obviously always
at least as demanding to her as giving only an advice (s, a),
but it is natural in many situations, as we argue below.

In general, (optimal) successor advice will consist of a
triple (s, a, s′) with (s, a) an (optimal) action advice and
T (s, a, s′) 
= 0. A natural choice for s′ is a most probable
outcome (s′ ∈ argmaxs′′ T (s, a, s

′′)), but on the one hand,
this is noninformative to the agent (it knows T and hence
can compute s′ from (s, a)), and even so, this fails to cap-
ture natural situations: for instance, if a lottery is such that
the user has 1 % chance to win 101 and 99 % chances to win
0, with a cost of 1 in all cases, then the optimal policy is to
play, but this is not supported by the most plausible outcome.

Given that we take expected utility as the criterion for de-
cision making, a more natural choice is the successor s′ of
s, a which maximises T (s, a, s′)V π∗

M (s′), that is, which is
both likely enough and rewarding enough for supporting the
decision. Considering the lottery example again, the agent
would learn 1%× (V π∗

M (win)−1) > 99%× (V π∗
M (lose)−

1), which is indeed informative (this is closely related to von
Neumann’s elicitation of the value of winning vs losing).

However, this notion has the drawback of being sensi-
tive to affine transformations of the reward function, while
the decision process itself is not. For instance, if the re-
ward function in the lottery example is modified by adding
101 to R(s) for all s, which does not change the opti-
mal policies, then the previous inequality would become
1%× (V M

π∗ (win)−1) = 2.01 < 99%× (V M
π∗ (lose)−1) =

99, hence the advice would be with successor lose instead of
win while the decision problem is the same. Hence at least,
giving such advice requires the user and the agent to refer to
a common, absolute numerical scale.

To fix this, we add an extra term to the inequality, which
acts as a normalisation term while not requiring more insight
of the user into the ramifications of her decision.

Definition 4 (gain-risk successor advice) Let M =
〈S,A, T,R, γ〉 be an MDP, π∗ be an optimal policy for
it, and write V = min

s∈S
V π∗
M (s). An (optimal) gain-risk

successor advice is a triple (s, a, s′) ∈ S ×A× S such that
(s, a) is an (optimal) action advice and satisfying

s′ ∈ argmax
s′′

(
T (s, a, s′′)V M

π∗ (s′′) + (1− T (s, a, s′′))V
)

This criterion is similar to maximal weighted utility, and
requires exactly the same effort for the user to give advice.
It is in the interpretation of the advice by the agent that nor-
malisation occurs. Intuitively, a gain-risk successor advice
formalises the user saying “in that state, I would choose such
action, expecting to reach such state, while aware of the risk
to reach such other unwanted state”.

Example 5 Consider a user who wants to go from City A
to City B. There are two roads, X and Y, and one can easily
switch road. Assume a GPS chooses X because it is shorter.
Assume the user wants to take Y because she likes contem-
plating the canyon from there, but it may rain and the canyon
would not be visible. An action advice would be ”from A take
Y”, and would make the GPS take Y then switch to X asap.
A gain-risk successor advice would be ”from A take Y, with
the aim of reaching a state where the canyon can be con-
templated”. The GPS would then consider taking Y until the
canyon, then switch to X. Indeed, from the advice and the
probability of rain, the GPS would infer information about
the value of contemplating the canyon according to the user.

Example 6 As another example, consider a lottery with 1/4
chance to win 100 and 1/2 chance to win 10. The hope (when
playing) is to get 100, since this is probable enough and
more rewarding. But if the first reward were 15, one would
mainly hope to get 10 (which now contributes 10× 1/2 = 5
to the expected value, vs 3.75), while still having ”play the
lottery” as the optimal action, so that action advice would
be poorly informative. Indeed, it can be seen that the suc-
cessor s′ indirectly provides information about the rewards,
which is then useful for computing actions in other states.

Computing MMR Policies with Advice
In the setting of IRMDPs, once the agent has received an
advice A of any type, all the information which it has is that
the target reward function R is in the imprecise set R̃ and is
such that the MDP 〈S,A, T,R, γ〉 satisfies the advice. Write
R̃ ⊕A for the set of all such reward functions, and M̃ ⊕A
for the IRMDP 〈S,A, T, R̃⊕A, γ〉. From M̃ ⊕A, the agent
can compute a new MMR policy. In an iterative setting, as
we consider in our experiments, the agent can display this
new policy to the user, who can give new action advice, etc.

Definition 7 (min max regret with advice) Let
M̃ = 〈S,A, T, R̃, γ〉 be an IRMDP, and let A be an advice
for M̃ . A policy π̃ : S → Δ(A) is said to be MMR-optimal
knowing A if it satisfies π̃ ∈ argmin

π̃′∈Δ(A)S
MRM̃⊕A

α (π̃′).

There is no reason in general for R̃⊕A to be a polytope.
Still, we now give efficient ways to compute MMR-optimal
policies with respect to R̃⊕A.

It is easy to modify Regan and Boutilier’s ap-
proach (2009) to take optimal action advice into account.
Precisely, referring to Figure 1, and keeping in mind that
Ia(s) is a variable which is true if and only if the adversary
policy πg computed by the subproblem satisfies πg(s) = a,
it is easily seen that an optimal action advice (s, a) can be
integrated to the subproblem through the additional linear
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constraint Ia(s) = 1 (or , equivalently, Qa(s) ≥ Qa′(s)
(∀a′ ∈ A)). Similarly, a (nonoptimal) action advice can be
integrated by adding the constraint Qa(s) ≥ Qπ̃∗(s)(s).

The modification is more involved for gain-risk succes-
sor advice (s, a, s′), for which we need to refer to V inside
the subproblem. For this, we use an extra (real-valued) vari-
able V , meant to hold this value, and |S| extra 0/1 variables,
written M(s), encoding the state s at which V is minimum.

Definition 8 (subproblem for gain-risk successors) Let
M̃ = 〈S,A, T, R̃, γ〉 be an IRMDP, let A = (s, a, s′) be
a (optimal) gain-risk successor advice for it, and write
R for min

R∈R̃
min
s∈S

R(s). The subproblem for M̃ with advice

A is defined to be the subproblem of Figure 1 augmented
with the constraint for the (optimal) action advice (s, a),
variables V and M(s) (s ∈ S), and the constraints:

(1) T (s, a, s′) · V (s′) + (1− T (s, a, s′))V
≥ T (s, a, s′′) · V (s′′) + (1− T (s, a, s′′))V (∀s′′)
(2) V ≤ V (s′′) (∀s′′)
(3)

∑
s′′∈S

M(s′′) = 1

(4) M(s′′) ∈ {0, 1} (∀s′′)
(5) V ≥ M(s′′)V (s′′) + (1−M(s′′)) 1

1−γR (∀s′′)

Constraints (2) and (5) realise a standard trick for forcing
V = mins′′ V (s′′) in any optimal solution, so that it is easily
seen that this program is correct.

Proposition 9 Let M̃ = 〈S,A, T, R̃, γ〉 be an IRMDP, let
A = (s, a, s′) be a gain-risk successor advice for it, and
let π̃ be a policy (as computed by the master problem). The
optimal solutions of the subproblem for M̃ and π̃ with advice
A are exactly at those reward functions R which satisfy A.

Experimental Results
We now report on experiments on synthetic MDPs, aimed at
evaluating advice along the following dimensions:

• the kind of advice given to the user, optimal action advice
vs optimal gain-risk successor advice,

• the kind of interactions between the user and the agent,
one-shot interaction vs iterative interaction (see below),

• for iterative interaction, the impact of the number of inter-
action steps on the quality of the agent’s policy,

• for iterative interaction, the impact of the method used for
selecting the advice (see below).

Scenarios of Interaction We distinguish two types of sce-
narios. In the first one, which we call one-shot interaction,
the agent equipped with an IRMDP first shows its MMR-
optimal policy π̃∗ to the user, the user computes all pieces
of advice (either optimal actions or optimal gain-risk suc-
cessors) A1,A2, . . . ,Ak relative to this policy, and commu-
nicates them all to the agent. No further interaction occurs,
and the agent computes an MMR-optimal policy knowing

A1,A2, . . . ,Ak as in Definition 7. On plots, we refer to this
policy by “OptAction-all” (resp. “GainRisk-all”).

In the second scenario, which we call iterative interaction,
the agent again shows its MMR-optimal policy to the user,
but the user selects a single piece of advice A1 and gives it to
the agent. The agent then computes an MMR-optimal policy
π̃∗
1 knowing A1 and shows it to the user, who selects a piece

of advice A2 relative to this new policy, gives it to the agent,
and so on. We plot the quality of policies π̃∗

1 , π̃
∗
2 , . . . , π̃

∗
i ,

etc., as a function of i, where the ith iteration corresponds to
an MMR-optimal policy knowing A1,A2, . . . ,Ai. On the
one hand, we expect advice to be more informative in this
iterative scenario, but on the other hand, a number of itera-
tions is required before the agent gets as much advice in this
scenario as it got with one-shot interaction, where all advice
is given to it at the first step.

Finally, we studied different methods for the user to select
a single piece of advice at each iteration. We report results
for two methods proposed by Regan and Boutilier (2009):
“Halve Largest Gap” (HLG) and “Current Solution” (CS).

Formally, given R̃, HLG selects the state s for which the
“gap” δ(s) = max

R∈R̃
R(s)−min

R∈R̃
R(s) is maximal. Regan and

Boutilier (2009) then ask the user a “bound query” of the
form “is R(s) ≥ b ?”, where b is the midpoint of the gap.
We adapt it to our setting by giving the optimal (action or
successor) advice at s.

Now, CS can be seen as a weighted version of HLG. Intu-
itively, this accounts for the fact that being uncertain about
s is not so serious if s has little influence on the value and
on the regret of our current best policy. Precisely, CS selects
the state s for which the quantity

max{
∑

a∈A

f(s, a)δ(s),
∑

a∈A

g(s, a)δ(s)}

is maximal, where f(s, a) (resp. g(s, a)) is the occupation
measure of s, a according to the MMR-optimal policy π̃∗ of
M̃ , as shown by the agent to the user (resp. according to the
policy incurring the maximal regret to π̃∗).

We wish to emphasise than CS and HLG were not de-
signed to cope with advice contexts as we investigate in this
paper, in the sense that they were designed for reducing max-
imum regret (Regan and Boutilier 2009), without the advice
referring to any target, concrete reward function whatsoever.
Those methods however proved efficient in our context.

All in all, combining optimal action and optimal gain-risk
successor advice, on the one hand, with HLG or CS, on the
other hand, gives four different iterative interaction scenar-
ios, each of which we analyse along the number of iterations.
On plots, the scenarios are referred to by “OptAction-cs”,
“OptAction-hlg”, “GainRisk-cs”, and “GainRisk-hlg”.

Finally, for all experiments we plot the quality of the
MMR-optimal policy, computed without any advice. For the
first experiments, we also plot the curves for the iterative
scenario and bound queries (“mmr-cs” and “mmr-hlg”).

We also want to mention that we ran experiments with
a number of other definitions of advice (e.g., most proba-
ble successor, optimal one under various criteria) and with
a number of other selection methods for a single piece of
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advice (e.g., restricting to advice on a most probable trajec-
tory, to advice on a state as “close” as possible to a state
with unknown reward, etc.). However, some combinations
gave results quite uniformly worse than the methods listed
above, and most of them gave similar results, which is why
we stick to a few, previously investigated, methods.

Evaluation of Policies Our aim is to measure the qual-
ity of policies computed with advice of a certain type, se-
lected with a certain method. For this, given that we con-
sider advice meant to give information about the target re-
ward function R (or about the optimal, target policy), our
essential measure is the regret of the computed policies π̃∗

i
with respect to R (Definition 1). To stick to natural scenarios
(like GPS navigation devices), we computed the regret with
a singleton distribution for α, at a so-called “starting state”,
hence measuring the regret of the policy for a specific task.
We refer to this measure by “Regret in the user MDP”.

As a reference, for the first experiments we also measure
the maximum regret of the computed policy π̃∗

i with respect
to the set of rewards R̃ ⊕ A1 ⊕ · · · ⊕ Ak, to which we re-
fer by “Regret in the agent MDP”; there, to be consistent
with Regan and Boutilier’s work, we use a uniform distribu-
tion over all states for α. We however want to mention that
results are essentially the same with a uniform or singleton
distributions, as confirmed by our preliminary experiments.

Regret in the agent MDP hence measures the extent to
which the advice helps reducing the agent’s uncertainty,
while regret in the user MDP measures the extent to which it
helped the agent to correctly identify the target reward func-
tion. This may be significantly different as soon as the target
function is far from the “middle” of the set R̃.

Generic MDPs We first ran experiments on generic
MDPs, randomly generated using the same procedure as Re-
gan and Boutilier (2009). Precisely, we generated random
MDPs with 20 to 50 states and with 2 to 4 different actions
available at each state. The transition function was gener-
ated by drawing, for each pair (s, a), log(|S| × |A|) reach-
able states, and the probability of each was generated from a
Gaussian. To model a generic goal-based task, we generated
the target reward function by choosing a goal state g uni-
formly at random as well as a value R(g) drawn uniformly
from [750, 1000]. Now, to consider important levels of im-
preciseness, we built a set U (“unknowns”) consisting of 2/3
of the states drawn at random; each of them got the same re-
ward, drawn from [−600,+600], in the target R, and R̃ was
defined to be Πs∈U [−1000,+1000] (the agent only knows
that for each s ∈ U , R(s) is between -1000 and +1000). The
reward for all other states was fixed to 0 in both R and R̃.

We emphasise that with such settings, the agent is not
even sure in general that g is the goal of the problem, since
according to its uncertainty about R, it may be the case that
some other state (in U ) has a higher reward.

We ran 50 simulations with different settings, each one
for 10 iterations in iterative scenarios. The results, averaged
over all simulations, are depicted on Figures 2, 3, and 4.
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Figure 2: Average regret in agent IRMDP (Generic).
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Figure 3: Average regret in user MDP (Generic).

Figure 2 (evaluation in agent MDP) clearly confirms that
CS and HLG with bound queries are efficient methods for
reducing the global uncertainty of the agent, a task they
were designed for, while our advice, which is targetted at
a specific reward function, performs badly (even worse than
MMR without advice). The situation is reversed on Figure 3
(evaluation in user MDP), which shows that the target pol-
icy can be approached very quickly with advice dedicated to
this task. However, in these dynamic scenarios, all methods
using HLG or CS, and optimal action or gain-risk successor
advice, essentially perform the same, despite the fact that
they do not a priori have the same informative content.

The situation is different when we consider one-shot in-
teraction. Figure 4 clearly shows that optimal action advice
is useful (compared to the baseline MMR), but that optimal
gain-risk successor advice is much more so.

Finally, Figure 4 also shows that iterative interaction is
worthwhile: on average, less that 10 iterative communica-
tions of advice led to better results than one-shot interaction
with optimal action advice, despite the fact that one-shot in-
teraction provided no less that 8 to 24 pieces of advice at
once, with an average of 17.

Grid MDPs We next generated random MDPs simulating
a grid world in which an agent must go from one square
to another one. Such “grid MDPs” are per design much
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Figure 4: Average regret in user MDP (Generic).
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Figure 5: Average regret in user model (Grid).

more regular than generic MDPs, and allow us to observe
the utility of advice in environments were a policy can eas-
ily “come back” and “correct a mistake” (said otherwise, in
which there are few or no dead-ends).

We considered grids of size 5 × 5 to 7 × 7 with one ac-
tion per direction, including diagonals (plus “stay”). We also
added a low probability for each action to fail (lead to a state
adjacent to the intended destination). We drew one state g as
the goal, and a set U of 10 to 15 other states as states with
unknown reward. The reward R(g) for the goal was drawn
from [80, 100], and that for states in U from [35, 50]. All
other states got a reward of 50. The IRMDP was defined by
R̃ = Πs∈U [0, 200]. By this setting, we wanted to investi-
gate whether the notions of advice would behave the same
in environments where all states are rewarding.

Fig. 5 shows the results, averaged over 10 runs. Here,
the iterative approaches perform still much better than for
generic MDPs, as compared to one-shot interaction. This
can be explained by little advice being available in one-shot
interaction (between 2 and 16, with an average of 8). Indeed,
since such MDPs are quite regular, min-max regret policies
tend to perform rather well (to be close to most “good” poli-
cies), hence being subject to not so much advice. On the
other hand, we can see that there is essentially no differ-
ence between GainRisk-all and OptAction-all. This can be
explained by the fact that optimal actions have a clearly de-

Figure 6: Diamond MDP: actions a0 (left), a1, a2 (right).
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Figure 7: Average regret in user model (Diamond).

fined “preferred” successor, namely, the next step towards
the goal, which is the most probable successor at the same
time (otherwise, one of the other 8 actions would be better).
Hence successor advice adds no significant information.

Diamond MDPs We finally designed a family of prob-
lems for which the reward of a few states suffices to generate
a lot of uncertainty about the optimal policy. The construc-
tion is illustrated on Figure 6. Action a0 has probability 0.5
to reach each child, a1, probability 0.3 to reach the left child
and reaches a parent otherwise, and a2 is dual. We generated
R by letting R(s) = 0|∀s ∈ S \ ({g}⋃U) and drawing
R(g), R(s)(∀s ∈ U) from [600, 1000], [−600, 600], resp.,
where U denotes the middle horizontal line. The agent only
knows that states in U have a reward in [−1000, 1000].
Hence each of the 2n shortest trajectories from s0 to g goes
through one unknown-reward state, which makes this family
a test case different from the previous ones.

Figure 7 shows the result. Iterative approaches perform
badly, which we explain by the fact that CS and HLG
have difficulties finding advice outside of the current trajec-
tory. On the other hand, optimal gain-risk successors advice
perform very well in one-shot interaction, like on generic
MDPs. Here, clearly, the direction aimed at by the user,
rather than the action alone, really helps the agent to learn.
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Conclusion and future work
We have considered a generic notion of advice for Markov
Decision Problems, allowing a user to give information to an
agent about the reward function of the task at hand, and of
minimax regret policies knowing advice. We have proposed
a new type of advice and shown how to take it into account
when computing minimax regret policies. We have shown
its usefulness in some scenarios, through experiments. More
generally, our experiments shed light on the pros and cons
of various interaction scenarios and types of advice.

A short-term perspective of this work is to generalise it
to a formal model of interaction with a user who has an Im-
precise Reward MDP just as the agent. This is natural but
leads to difficulties, in particular because the value function
of a policy is not well-defined for Imprecise Reward MDPs.
Another perspective is to generalise our study to MDP with
imprecision on the transition function.
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Hüllermeier, E. 2013. Preference-based evolutionary direct
policy search. In ICRA Workshop on Autonomous Learning.
Cederborg, T.; Grover, I.; Isbell, C. L.; and Thomaz, A. L.
2015. Policy shaping with human teachers. In Proc. 24th
International Joint Conference on Artificial Intelligence (IJ-
CAI 2015), 3366–3372.
da Silva, V. F., and Costa, A. H. R. 2011. A geometric
approach to find nondominated policies to imprecise reward
MDPs. In Proc. 8th International Conference on Computing
& Communication Technologies-Research, Innovation, and
Vision for the Future (IEEE RIVF 2011), 439–454.
Fürnkranz, J.; Hüllermeier, E.; Cheng, W.; and Park, S.-H.
2012. Preference-based reinforcement learning: a formal
framework and a policy iteration algorithm. Machine learn-
ing 89(1-2):123–156.

Judah, K.; Roy, S.; Fern, A.; and Dietterich, T. G. 2010.
Reinforcement learning via practice and critique advice. In
Proc. 24th AAAI Conference on Artificial Intelligence (AAAI
2010), 481–486.
Maclin, R., and Shavlik, J. W. 1996. Creating advice-taking
reinforcement learners. Machine Learning 22(1-3):251–
281.
Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse
reinforcement learning. In Proc. 17th Interantional Confer-
ence on Machine Learning (ICML 2000), 663–670.
Piot, B.; Geist, M.; and Pietquin, O. 2013. Learning from
demonstrations: Is it worth estimating a reward function?
In Proc. 1st Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases (ECML/PKDD
2013, 17–32.
Puterman, M. 2005. Markov decision processes: discrete
stochastic dynamic programming. Wiley series in probabil-
ity and statistics. Wiley-Interscience.
Regan, K., and Boutilier, C. 2009. Regret-based reward elic-
itation for Markov decision processes. In Proc. 25th Con-
ference on Uncertainty in Artificial Intelligence (UAI 2009),
444–451.
Regan, K., and Boutilier, C. 2010. Robust policy compu-
tation in reward-uncertain MDPs using nondominated poli-
cies. In Proc. 24th AAAI Conference on Artificial Intelli-
gence (AAAI 2010), 1127–1133.
Regan, K., and Boutilier, C. 2011. Robust online opti-
mization of reward-uncertain MDPs. In Proc. 22nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2011), 2165.
Weng, P., and Zanuttini, B. 2013. Interactive value iteration
for Markov decision processes with unknown rewards. In
Proc. 23rd International Joint Conference on Artificial In-
telligence (IJCAI 2013), 2415–2421.
Weng, P. 2011. Markov decision processes with ordinal re-
wards: reference point-based preferences. In Proc. 21st In-
ternational Conference on International Conference on Au-
tomated Planning and Scheduling (ICAPS 2011), 282–289.
Weng, P. 2012. Ordinal decision models for Markov de-
cision processes. In Proc. 20th European Conference on
Artificial Intelligence (ECAI 2012), 828–833.
Xu, H., and Mannor, S. 2009. Parametric regret in uncertain
Markov decision processes. In Proc. 48th International Joint
Conference on Decision and Control (IEEE CDC 2009),
3606–3613.

6326


