
RelNN: A Deep Neural Model for Relational Learning

Seyed Mehran Kazemi, David Poole
University of British Columbia

Vancouver, Canada
{smkazemi, poole}@cs.ubc.ca

Abstract

Statistical relational AI (StarAI) aims at reasoning and learn-
ing in noisy domains described in terms of objects and re-
lationships by combining probability with first-order logic.
With huge advances in deep learning in the current years,
combining deep networks with first-order logic has been the
focus of several recent studies. Many of the existing attempts,
however, only focus on relations and ignore object prop-
erties. The attempts that do consider object properties are
limited in terms of modelling power or scalability. In this
paper, we develop relational neural networks (RelNNs) by
adding hidden layers to relational logistic regression (the re-
lational counterpart of logistic regression). We learn latent
properties for objects both directly and through general rules.
Back-propagation is used for training these models. A modu-
lar, layer-wise architecture facilitates utilizing the techniques
developed within deep learning community to our architec-
ture. Initial experiments on eight tasks over three real-world
datasets show that RelNNs are promising models for rela-
tional learning.1

Introduction
Multi-relational data cannot be directly fed into traditional
machine learning approaches such as logistic regression,
SVMs, random forests, etc. Statistical relational AI (StarAI)
(De Raedt et al. 2016) aims at developing models that work
directly with relational data by capturing the interdepen-
dence among properties of the objects and the relationships
they are involved in.

In relational data, there are usually several classes of ob-
jects, each class has certain properties defined for its mem-
bers, and there are (various) relationships among the objects.
Many works on learning from relational data focus only on
predicting new relationships among objects given known re-
lationships, and ignore predicting object properties. For the
works that do consider predicting object properties, a recent
comparative study shows that none of them perform well and
that this problem is still only poorly understood (Kazemi et
al. 2017). In this paper, we focus (primarily) on predicting a
property of the objects in one class based on the rest of the
data (e.g., predicting the gender of people given the movies

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code: https://github.com/Mehran-k/RelNN

they like). This problem is challenging when the property
of each object in the class depends on a varying number
of other objects’ properties and relationships. In the StarAI
community, this problem is known as aggregation.

With numerous advances in learning deep networks for
many different applications, using deep neural approaches
for relational data has been the focus of several recent stud-
ies. In this paper, we develop a framework for learning first-
order deep neural models to learn from and reason with re-
lational data. Our model is developed through deepening
relational logistic regression (RLR) models (Kazemi et al.
2014), the directed analogue of Markov logic (Richardson
and Domingos 2006), by enabling them to learn latent object
properties both directly and through general rules, and con-
necting multiple RLR layers as a graph to produce relational
neural networks (RelNNs). Similar to (Niepert, Ahmed, and
Kutzkov 2016; Pham et al. 2017), we identify the relation-
ship between our model and convolutional neural networks
(ConvNets). Identifying this relationships allows RelNNs to
be understood and implemented using well-known ConvNet
primitives. Each training iteration of RelNNs is order of the
amount of data times the size of the RelNN, making RelNNs
highly scalable.

We evaluate RelNNs on three real-world datasets and
compare them to well-know relational learning algorithms.
We show how RelNNs address a relational learning issue
raised in (Poole et al. 2014) who showed that as the popu-
lation size increases, the probabilities of many variables go
to 0 or 1, making the model over-confident. Obtained re-
sults indicate that RelNNs are promising models for rela-
tional learning.

Relational Logistic Regression and Markov
Logic Networks

StarAI models aim at modelling the probabilities about re-
lations among objects. Before knowing anything about the
objects, these models treat them identically and apply tied
parameters to them. In order to describe these models, first
we need to introduce some definitions and terminologies.

A population is a finite set of objects. Logical variables
(logvars) start with lower-case letters, and constants denot-
ing objects start with upper-case letters. Associated with a
logvar x is a population Δx with |Δx| representing the cardi-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6367

nality of the population. A lower-case letter in bold refers to
a tuple of logvars. An upper-case letter in bold refers to a tu-
ple of constants. An atom is of the form S(t1, . . . , tk) where
S is a predicate symbol and each ti is a logvar or a constant.
We write a substitution as θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉}
where each xi is a different logvar and each ti is a log-
var or a constant in Δxi

. A grounding of an atom with
logvars {x1, . . . , xk} is a substitution θ = {〈x1, . . . , xk〉/
〈X1, . . . , Xk〉} mapping each of its logvars xi to an object
Xi ∈ Δxi . Given a set A of atoms, we denote by G(A) the
set of all possible groundings for the atoms in A. A literal
is an atom or its negation. A formula ϕ is a literal, a dis-
junction ϕ1 ∨ ϕ2 of formulas or a conjunction ϕ1 ∧ ϕ2 of
formulas. A conjunctive formula has no disjunctions. Ap-
plying a substitution θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉} on
a formula ϕ (written as ϕθ) replaces each xi in ϕ with ti.
A weighted formula (WF) is a tuple 〈ϕ,w〉 where ϕ is a
formula and w is a weight.

Let Q(x) be an atom whose probability depends on a set
A (not containing Q) of atoms (called the parents of Q), ψ be
a set of WFs containing only atoms from A, Î be a function
from groundings in G(A) to truth values, X be an assign-
ment of objects to x, and θ = {x/X}. Relational logistic
regression (RLR) (Kazemi et al. 2014) defines the proba-
bility of Q(X) given Î as follows:

Prob(Q(X) = True | Î) = sigmoid
(
sum

)
(1)

where,

sum =
∑

〈ϕ,w〉∈ψ

w ∗ η(ϕθ, Î) (2)

where η(ϕθ, Î) is the number of instances of ϕθ that are true
w.r.t. Î . Note that η(True, Î) = 1. Following (Kazemi et al.
2014), w.l.o.g we assume the formulae of all WFs for RLR
models are conjunctive.

Markov logic networks (MLNs) (Richardson and Domin-
gos 2006) use WFs to define a probability distribution over
ground atoms. As shown in (Poole et al. 2014), when all
groundings in G(A) are observed, an RLR model is identi-
cal to an MLN with corresponding WFs. We use RLR/MLN
when the two models are identical.

Example 1. Let Happy(x) be an atom which depends on
A = {Friend(x, y),Kind(y)}, and let Î be a function
from G(A) to truth values. Let an RLR/MLN model de-
fine the conditional probability of Happy using WFs in
Fig 1. According to this model: Prob(Happy(X) = True |
Î) = sigmoid(−4.5 + 1 ∗ η(Friend(y,X) ∧ Kind(y), Î)),
where η(Friend(y,X) ∧ Kind(y), Î) = #Y ∈ Δy s.t.
Friend(Y,X) ∧ Kind(Y) according to Î , corresponding to
the number of friends of X that are kind. When this count is
greater than or equal to 5, the probability of X being happy
is closer to one than zero; otherwise, the probability is closer
to zero than one. Therefore, the two WFs model “someone
is happy if they have at least 5 friends that are kind”.

Continuous atoms: The RLR model defined above only
works with Boolean or multi-valued parents. In order to

 Friend(y,x) Kind(y)

Happy(x)

Figure 1: An RLR model taken from (Kazemi et al. 2014).

allow for parents with continuous atoms, we use Fatemi,
Kazemi, and Poole (2016)’s proposal. If True and False
are associated with 1 and 0, ∧ in WFs can be substituted
with ∗. Then continuous atoms may be used in WFs. For
example if for some X ∈ Δx we have Î(R(X)) = 1,
Î(S(X)) = 0, and Î(T(X)) = 0.2, then 〈w,R(X) ∗ S(X)〉
evaluates to 0, 〈w,R(X) ∗ ¬S(X)〉 evaluates to w, and
〈w,R(X) ∗ ¬S(X) ∗ T(X)〉 evaluates to 0.2 ∗ w.

Relational Neural Networks
We encode RLR/MLN models with a layer-wise architecture
by designing relational counterparts of the linear layer (LL),
activation layer (AL), and error layer (EL) in neural net-
works. This enables building relational neural nets (RelNNs)
by connecting several relational LLs and relational ALs as
a graph. It also enables utilizing the back propagation algo-
rithm for training these models by adding a relational EL at
the end of the graph, feeding the data forward, calculating
the prediction errors, back propagating the derivatives with
respect to errors, and updating the parameters.

Let Ain and Aout represent two distinct sets of atoms,
and E represent an error function. Let Î be a function
from P(X) ∈ G(Ain) to values. Let Ô be a function from
Q(X) ∈ G(Aout) to values. Let DÔ be a function from
Q(X) ∈ G(Aout) to ∂E

∂Q(X) . Let DÎ be a function from
P(X) ∈ G(Ain) to ∂E

∂P(X) .

A layer is a generic box that given Î as input, outputs Ô
based on Î and its internal structure, and given DÔ, updates
its internal weights and outputs DÎ using the chain rule.

A relational linear unit for an atom Q(x) is iden-
tical to the linear part of RLR in Eq. (2). A rela-
tional LL (RLL) consists of t > 0 relational linear units
with the j-th unit having atom Qj(xj) and a set ψj =
{〈wj1, ϕj1〉 , 〈wj2, ϕj2〉 , . . . ,

〈
wjmj

, ϕjmj

〉} of mj WFs.
Ain for an RLL contains all atoms in ψjs and Aout con-
tains all Qj(xj)s. Î comes from input data or from the layers
directly connected to the RLL. For any Q(X) ∈ G(Aout),
Ô(Q(X)) is calculated using the linear part of Eq. (1) with
respect to Î and ψj . An RLL can be seen as general rules
with tied parameters applied to every object.

Example 2. Consider an RLL with Ain =
{Friend(x, y),Kind(y)}, Aout = {Happy(x)}, and
with the WFs in Example 1. Suppose there are 10 objects:
Δx = {X1, X2, . . . , X10}. Let Î be a function from
G(Ain) to values according to which X1, X2, . . . , X10

have 3, 0, . . . , and 7 friends that are kind respectively. Ô
for this RLL is a function from groundings in G(Aout)

6368

(a)

(b)

Figure 2: An RLR and a RelNN models for predicting the gender of users in a movie rating system with a layer-wise architecture.

to values as Ô(Happy(X1)) → −1.5, Ô(Happy(X2)) →
−4.5, . . . , Ô(Happy(X10)) → 2.5.

Consider the j-th relational linear unit. For each assign-
ment of objects Xju to xj, let θju = {xj/Xju}. The
derivative with respect to each weight wjk can be cal-
culated as

∑
Xju

η(ϕjkθju, Î) ∗ DÔ(Qj(Xju)). To show
how DÎ is calculated, for ease of exposition we assume
no predicate appears twice in a formula (i.e. no self-
joins). It is straight-forward to relax this assumption. Let
ϕ\P represent formula ϕ with any atom with predicate
P (or its negation) removed from it. For each assignment
of objects Xiv to the logvars xi of P, let θiv = {xi/
Xiv}. Then DÎ(P(Xiv)) =

∑
j

∑
Xju

∑mj

k=1,P∈ϕjk
wjk ∗

η(((ϕjk\P)θju)θiv, Î) ∗DÔ(Qj(Xju)).
The relational AL (RAL) and relational EL (REL) are sim-

ilar to their non-relational counterparts. RAL applies an ac-
tivation function A (e.g., sigmoid, tanh, or ReLU) to its
inputs and outputs the activations. REL compares the inputs
to target labels, finds the prediction errors based on an error
function E, and outputs the prediction errors made by the
model for each target object.

A relational neural network (RelNN) is a structure con-
taining several RLL and RALs connected to each other as a
graph. In our experiments, we consider the activation func-
tion to be the sigmoid function. During training, an REL is
also added at the end of the sequence. Fig 2 represents an
example of an RLR and a simple RelNN model for pre-
dicting the gender of users based on their age, occupation,
and the movies they like. We use boxes with solid lines
for RLLs and boxes with dashed lines for RALs. For the
first RLL, Ain = {Likes(u,m),Action(m),Drama(m)}
and all values in Î come from the observations. For this
RLL, Aout = {S1(u), S2(u)}. For the second RLL, Ain =

{Old(u),Teacher(u),H1(u),H2(u)} and Î for the first two
atoms comes from observations, and for the last two comes
from the layers directly connected to the RLL. Fig 3 shows
a more complicated RelNN structure for gender predicting
in PAKDD-15 competition.

Motivations for hidden layers
Motivation 1. Consider the model in Fig 2(a) and let nU

represent the number of action movies that user U likes. As
Poole et al. (2014) point out, if the probability of maleness
depends on nU , as nU increases the probability of male-
ness either goes to 0 or 1. This causes the model to become
over-confident of its predictions when there exists many rat-

ings and do a poor job, especially in terms of log loss.
This is, however, not the case for RelNNs. In the RelNN
model in Fig 2(b), the probability of maleness depends on
w5 ∗sigmoid(w0+w1nU). w1 controls the steepness of the
slope of the sigmoid, w0 moves the slope around, and w5

controls the importance of the slope in the final prediction.
With this model, as nU increases, the probability of male-
ness may converge to any number in the [0, 1] interval. Fur-
thermore, this model enables learning of the critical zones.

Motivation 2. Suppose the underlying truth for the models
in Fig 2 is that males correspond to users who like at least p
action movies such that each movie has less than q likes. A
typical RLR/MLN model cannot learn such a model because
first it needs to learn something about movies (i.e. having
less than q likes), combine it with being action and count
them. However, this can be done using a RelNN (the hidden
layer should contain a relational linear unit with atom H(m)
and WFs 〈w1, Likes(u,m)〉 and 〈w2,True〉). Thus, hidden
layers increase the modelling power by enabling the model
to learn generic rules and categorize the objects accordingly,
then treat objects in different categories differently.

Motivation 3. Kazemi et al. (2014) show how different
types of existing explicit aggregators can be represented us-
ing RLR. However, some of those cases (e.g., noisy-or and
mode = t) require two RLLs and two RALs, i.e. RelNNs.

Learning latent properties directly
Objects may contain latent properties that cannot be spec-
ified using general rules, but can be learned directly from
data during training. Such properties have proved effective
in many tasks (e.g., recommendation systems (Koren, Bell,
and Volinsky 2009)). These properties can be also viewed
as soft clustering the objects into different categories. We
call the latent properties specifically learned for each object
numeric latent properties and the general latent properties
learned through WFs in RLLs rule-based latent properties
to distinguish between the two. In the RelNN in Fig 3, for
instance, S1(i), S4(u) and S7(u) are the outputs of RALs
and so are rule-based latent properties whereas N2(b) and
N4(a) are numeric latent properties.

Consider the models in Fig 2 and let Latent(m) be a
numeric latent property of the movies whose value is to
be learned during training. One may initialize Latent(m)
with random values for each movie and add a WF
〈w, Likes(u,m) ∗ Latent(m)〉 to the first RLL. As men-
tioned before, during the back propagation phase, an RLL
provides the derivatives with respect to each of the inputs.

6369

Figure 3: RelNN structure for predicting the gender in PAKDD15 dataset.

This means for each grounding Latent(M), we will have
DÎ(Latent(M)). Therefore, these numeric latent values can
also be updated during learning using gradient descent.

From ConvNet Primitives to RelNNs
Niepert, Ahmed, and Kutzkov (2016) and Pham et al. (2017)
explain why their relational learning models for graphs can
be viewed as instances of ConvNet. We explain why RelNNs
can also be viewed as an instance of ConvNets. Compared to
prior work, we go into more details and provide more intu-
ition. Such a connection offers the benefit of understanding
and implementing RelNNs using ConvNet primitives.

The cells in input matrices of ConvNets (e.g., image pix-
els) have spatial correlation and spatial redundancy: cells
closer to each other are more dependent than cells farther
away. For instance if M represents an input channel of an
image, the dependence between M [i, j] and M [i+1, j +1]
may be much more than the dependence between M [i, j]
and M [i, j + 20]. To capture this type of dependency, con-
volution filters are usually small squared matrices. Convolu-
tion filters contain tied parameters so different regions of the
input matrices are treated identically.

For relational data, the dependencies in the input matrices
(the relationships) are different: the cells in the same row
or column (i.e. relationships of the same object) have higher
dependence than the cells in different rows and columns (i.e.
relationships of different objects). For instance for a matrix
L representing which users like which movies, the depen-
dence between L[i, j] and L[i+1, j+1] (different people and
movies) may be far less than the dependence between L[i, j]
and L[i, j+20] (same person and different movies). A priori,
all rows and columns of the input matrices are exchange-
able. Therefore, to adapt ConvNets for relational data, we
need vector-shaped filters that are invariant to row and col-
umn swapping and better capture the relational dependence
and the exchangeability assumption.

One way to modify ConvNets to be applicable to rela-
tional data is as follows. We consider relationships as inputs
to the network. We apply vector-shaped convolution filters
on the rows and columns of the relationship matrices. For
instance for gender prediction from movie ratings, a convo-

lution filter may be a vector with size equal to the number
of the movies. The values of these filters can be learned dur-
ing training (like ConvNet filters), or can be fixed in which
case they correspond to observed properties (e.g., a vector
representing which movies are action movies). Convolving
each filter with each matrix produces a vector. These vectors
go through an activation layer and are used as a filter in the
next layers. Besides convolving a filter with a matrix, one
can join two matrices and produce a new matrix for the next
layer. Joining two matrices R(x,m) and T (m, a) produces
a new matrix S(x, a) where for some X ∈ x and A ∈ a,
S(X,A) =

∑
M∈m R(X,M) ∗ T (M,A). The filters in the

next layers can be applied to either input matrices, or the
ones generated in previous layers. By constructing an archi-
tecture and training the network, the learned filters identify
low and high level features from the input matrices.

While these operations are modifications of ConvNet
operations, they all correspond to the operations in our
RLR/MLN perspective. Vector-shaped filters correspond to
including numeric latent properties in WFs. Fixed filters cor-
respond to including observed atoms with a single logvar
in WFs. Joining matrices corresponds to using two binary
atoms in a WF.

Example 3. Suppose we want to predict the gender of users
in a movie rating system based on the movies they like,
whether the movie is action or not, and whether the user
is old or not. Fig 4 shows one layer of a RelNN for this
problem in terms of ConvNet operations. The binary re-
lation Likes(u,m) is considered as the input. Three filters
have been applied to this matrix: one filter with fixed val-
ues corresponding to Action(m), one filter with fixed values
corresponding to Old(u), and one filter to be learned cor-
responding to a numeric latent property N(m). Note that
Action(m) and N(m) are row-shaped filters and Old(u) is
column-shaped. Convolving these filters with Likes(u,m)
and sending the resulting vectors through an activation layer
is equivalent to having an RLL with three relational linear
units: the first unit contains:

〈True, w0〉
〈Likes(u,m) ∗ Action(m), w1〉

6370

0.1
-0.1
0.9
-0.1
1.1

1 1 0 0
0 1 0 0
1 1 1 1
1 0 1 0
0 0 0 1

U
se

rs

Movies

Likes Matrix Filters

1 0 0 1
Action movies (fixed values)

0.2 -0.1 -0.3 1.1
Values to be learned

1
0
1
1
0

O
ld

 u
se

rs
 (f

ix
ed

 v
al

ue
s)

Applying Filters

1
0
2
1
1 3 2 2 1

Activation:

0.29
0.25
0.48
0.25
0.52

0.5
0.27
0.73
0.5
0.5 0.88 0.73 0.73 0.5

Assuming

 represents a vector
for all three vectors

Next Layer

Use the results of
previous layer as filters

for the next layer.

Figure 4: An example of a layer of a RelNN demonstrated with ConvNet operations.

and the other ones have Old(u) and N(m) instead of
Action(m) respectively. The obtained vectors after activa-
tion can be used as filters for the next layers, or for making
the final predictions.

Empirical Results
In our experiments, we tend to answer these questions: Q1:
how does RelNN’s performance compare to other well-
known relational learning algorithms, Q2: how numeric and
rule-based latent properties affect the performance of the
RelNNs, and Q3: how well RelNNs extrapolate to unseen
cases and address the population size issue pointed out in
(Poole et al. 2014) and discussed in Motivation 1.

Datasets: We use three real-world datasets in our experi-
ments. Our first dataset is the Movielens 1M dataset (Harper
and Konstan 2015) ignoring the actual ratings and only con-
sidering if a movie has been rated or not, and considering
only action and drama genres. Our second dataset is from
PAKDD15 gender prediction competition2 but we only con-
sidered the A, B, and C prefixes of the items and ignored
the D prefix because each D prefix is on average seen by
≈ 1.5 people. We also ignored the information within the
sequence of the items viewed by each user. Our third dataset
contains all Chinese and Mexican restaurants in Yelp dataset
challenge3 (ignoring the ones that have both Chinese and
Mexican foods), and the task is to predict if a restaurant is
Chinese or Mexican given the people who reviewed them,
and whether they have fast food and/or seafoods or not.

Learning algorithms and learning methodology: Tra-
ditional machine learning approaches are not directly ap-
plicable to our problems. Also due to the large size of the
datasets, some relational models do not scale to our prob-
lems. For instance, we tried Problog (De Raedt, Kimmig,
and Toivonen 2007), but the software crashed after running
for a few days even for simple models. The reason for scal-
ability issues with many existing models (e.g., MLNs and
Problog) is because they consider probabilistic (instead of
neural) units and do inference and learning using EM. It
took a day for an analogous EM-based implementation of
RelNNs to learn a model for a synthetic dataset with 100 re-
lations, whereas our current model (which is neural and uses
back propagation) took under an hour for a million relations.
We tried several baselines and only reported the ones that
performed best on our datasets. Kazemi et al. (2017) explain

2https://knowledgepit.fedcsis.org/contest/view.php?id=107
3https://www.yelp.com/dataset challenge

why each of the existing baselines for aggregation perform
poorly and why this problem is still poorly understood.

In our baselines, mean corresponds to always predicting
the mean of the training data. The matrix factorization cor-
responds to the best performing matrix factorization model
according to Kazemi et al. (2017)’s experiments: the relation
matrix is factorized into object latent properties using the
factorization technique in (Koren, Bell, and Volinsky 2009),
then, using Weka (Hall et al. 2009), a linear/logistic regres-
sion model is learned over the latent and observed proper-
ties of the target objects. We also tried several other variants
(including RESCAL’s algorithm (Nickel, Tresp, and Kriegel
2012)), but Kazemi et al. (2017)’s model was the best per-
forming. The RDN-Boost (Natarajan et al. 2012) model can
be viewed as an extension of random forests with ways
to aggregate over multiple observations, thus enabling ran-
dom forests to be applicable to relational data. The k-nearest
neighbors collaborative filtering model finds k objects with
observed labels that are similar to the target object in terms
of the relationships they participate in, creates a feature as
the weighted mean of the labels of the similar objects, and
feeds this label along with other features of the target ob-
ject to a classification/regression model. For MovieLens and
Yelp datasets, collaborative filtering produces one feature
and for PAKDD dataset, it produces three features, one for
each item prefix. We used cosine similarity function. The
value of k was set using cross validation. Similar to matrix
factorization, linear and logistic regression of Weka were
used for classification and regression.

For all RelNN and RLR/MLN models in our experiments,
we used fixed structures (i.e. fixed set of WFs and con-
nections among them) and learned the parameters using
back-propagation with multiple restarts. The structure of the
RelNN model for Movielens dataset is that of Fig 2(b) ex-
tended to include all ages and occupations with 2 numeric
latent properties, 3 RLLs and 3 RALs. The structure of the
RelNN model used for PAKDD15 and Yelp datasets is as
in Fig 3 and Fig 5 respectively. We leave the problem of
learning these structures automatically from data as future
work. The structure of the RLR/MLN models are similar
to the RelNN models but without hidden layers and nu-
meric latent properties. Back propagation for the RLR/MLN
case corresponds to the discriminative parameter learning of
(Huynh and Mooney 2008). To avoid numerical inconsis-
tencies when applying our models to PAKDD15 dataset, we
assumed there exist a male and a female in the training set
who have viewed all items. For all experiments, we split the
data into 80/20 percent train/test.

6371

Table 1: Performance of different learning algorithms based on accuracy, log loss, and MSE ± standard deviation on three
different tasks. NA means the method is not directly applicable to the prediction task/dataset. The best performing method is
shown in bold. For models where standard deviation was zero, we did not report it in the table.

Learning Algorithm

Task Measure Mean Matrix Factorization Collaborative Filtering RDN-Boost RLR/MLN RelNN

MovieLens Accuracy 0.7088 0.7550 ± 0.0073 0.7510 0.7234 0.7073 ± 0.0067 0.7902 ± 0.0051
Gender Log Loss 0.8706 0.7318 ± 0.0073 0.7360 0.8143 0.8441 ± 0.0255 0.6548 ± 0.0026

MSE 0.2065 0.1649 ± 0.0026 0.1675 0.1904 0.1987 ± 0.0067 0.1459 ± 0.0009

PAKDD Accuracy 0.7778 NA 0.8806 0.7778 0.8145 ± 0.0388 0.8853 ± 0.0002
Gender Log Loss 0.7641 NA 0.5135 0.8039 0.7224 ± 0.0548 0.5093 ± 0.0037

MSE 0.1728 NA 0.1026 0.1842 0.1522 ± 0.0185 0.1009 ± 0.0008

Yelp Accuracy 0.6168 0.6154 ± 0.0041 0.6712 0.6156 0.6168 ± 0.000 0.6927 ± 0.0077
Business Log Loss 0.9604 0.9394 ± 0.0033 0.8757 0.9458 0.9435 ± 0.0034 0.8531 ± 0.0090

Prediction MSE 0.2364 0.2300 ± 0.0012 0.2084 0.2316 0.2309 ± 0.0010 0.2023 ± 0.0024

MovieLens Age MSE 156.0507 104.5967 ± 0.9978 90.8742 NA 156.0507 ± 0.000 62.7000 ± 0.7812

Figure 5: RelNN structure used for Yelp dataset. N1(u) and N2(u) are numeric latent properties.

We imposed a Laplacian prior on all our parameters
(weights and numeric latent properties). For classification,
we further regularized our model predictions towards the
mean of the training set using a hyper-parameter λ as:
Prob = λ ∗ mean + (1 − λ) ∗ (ModelSignal). This reg-
ularization alleviates the over-confidence of the model and
avoids numerical inconsistencies arising when taking the
logs of the predictions. Note that this regularization corre-
sponds to adding an extra layer to the network. We reported
the accuracy indicating the percentage of correctly classi-
fied instances, the mean squared errors (MSE), and the log
loss. We conducted each experiment 10 times and reported
the mean and standard deviation.

Experiments: Our experiments include predicting the
gender for the Movielens and PAKDD15 datasets, predict-
ing the age for Movielens dataset, and predicting the type of
food for the Yelp restaurants dataset. Even though the age is
divided into 7 categories in the MovieLens dataset, we as-
sume it is a continuous variable to see how RelNNs perform
in predicting continuous variables. To make the categories
more realistic, for people in age category/interval [i, j], we
assume the age is (i+ j)/2, i.e. the mean of the interval. For
the first and last categories, we used 16 and 60 as the ages.

Table 1 compares RelNNs with other well-known rela-
tional learning algorithms as well as a baseline. It can be
viewed from the table how RelNNs outperform well-known
relational learning models in terms of all three performance

metrics. Note that all baselines use the same observed fea-
tures. Manual feature engineering from relations is very dif-
ficult, so the challenge for the models is to extract useful fea-
tures from relations. As explained in (Kazemi et al. 2017),
the problem with the baselines is with their lower modeling
power and inappropriate implicit assumptions, and not with
engineering features. The results in Table 1 answer Q1.

For Q2, we changed the number of hidden layers and nu-
meric latent properties in RelNN to see how they affect the
performance. The obtained results for predicting the gender
and age in the Movielens dataset can be viewed in Fig 6.
The results show that both hidden layers and numeric la-
tent properties (especially the first one of each) have a great
impact on the performance of the model. When hidden lay-
ers are added, as we conjectured in motivation 1, the log
loss and MSE improve substantially as the over-confidence
of the model decreases. Note that adding layers only adds
a constant number of parameters, but adding k numeric la-
tent properties adds k ∗ |Δm| parameters. In Fig 6, a RelNN
with 2 hidden layers and 1 numeric latent property has many
fewer parameters than a MLN/RLR with no hidden layers
and 2 numeric latent properties, but outperforms it.

For Q3, we conduct two experiments: 1- we train a RelNN
on a large population, and test it on a small population, and
2- we train a RelNN on a small population and test it on a
large population. The first experiment can be also seen as
how severely each model suffers from the cold start prob-

6372

0

1

2
#N

um
er

ic
 L

at
en

t P
ro

ps
.

0 1 2
#Hidden (Relational Linear) Layers

0.7073 0.0067
0.8441 0.0255
0.1987 0.0067

0.7345 0.0027
0.7792 0.0121
0.1797 0.0037

0.7534 0.0054
0.7727 0.0033
0.1771 0.0011

0.7701 0.0116
0.7417 0.0248
0.1670 0.0045

0.7890 0.0045
0.6636 0.0114
0.1478 0.0034

0.7873 0.0044
0.6597 0.0063
0.1473 0.0016

0.7863 0.0062
0.6619 0.0099
0.1475 0.0027

0.7902 0.0051
0.6548 0.0026
0.1459 0.0009

0.7776 0.0029
0.7285 0.0089
0.1638 0.0032

Accuracy stdev
Log Loss stdev
 MSE stdev

MSE stdev 156.0507 0.0000 70.8620 0.2901 63.9525 0.2828 15

0

1

2

0 1 2
#Hidden (Relational Linear) Layers

156.0507 0.0000 111.8861 0.1912 106.6505 0.0883

156.0507 0.0000 65.1189 0.3629 62.7000 0.7812

#N
um

er
ic

 L
at

en
t P

ro
ps

.

(b)

(a)

Figure 6: Predicting (a) gender and (b) age on MovieLens
using RelNNs with different number of numeric latent prop-
erties and hidden layers.

lem. The second experiment can be also seen as how well
these models extrapolate to larger populations. For the first
experiment, we trained two models for predicting the gender
of the users in the MovieLens dataset both containing one
numeric latent property, but one containing no hidden layers
and the other containing one hidden layer. We only gave the
first k ratings of the test users to the model and recorded the
log loss of the two models. We did this for different values
of k and plotted the results. Obtained results can be viewed
in Fig 7. Note that since in MovieLens dataset all users have
rated at least 20 movies, the model has not seen a case where
a user has rated less than 20 movies. That is, the model has
been trained on large population sizes (≥ 20). In this exper-
iment, the cases in Fig 7 where k < 20 correspond to small
populations (and cold start).

When k = 0 (i.e. we ignored all ratings of the test users),
both models had almost the same performance (logloss ≈
−0.9176)4. As soon as we add one rating for the test users,
the performance of RelNN substantially improves, but the
performance of the RLR/MLN model is not affected much.
According to the plot, the gap between the two models is
more when the test users have fewer ratings (i.e. unseen
cases), but it gets less and becomes steady as the number
of ratings increases and becomes closer to the number of
ratings in the train set.

For the second experiment, for each user in the train set
we kept only the first r ratings where 0 ≤ r ≤ 20 was gen-
erated randomly for each user. For the new dataset, we re-
peated the previous experiment and obtained the diagram in
Fig 8. It can be viewed in this diagram that the RLR/MLN
model works best when we keep the first 15 ratings of the
test users (i.e. k = 15), but for higher values of k, its perfor-
mance starts to deteriorate. The performance of the RelNN

4This is not shown in the diagram in Fig 7 as the x-axis of the
diagram is in log scale.

-1
-0.95

-0.9
-0.85

-0.8
-0.75

-0.7
-0.65

1 10 100 1000

M
SE

RLR

RelNN

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 10 100 1000

Lo
g

Lo
ss

#ratings per test user

RLR/MLN

RelNN

Figure 7: Results on predicting the gender when we only use
the first k (on the x-axis) ratings of the test users and use all
ratings in train set for learning.

0.74

0.76

0.78

0.8

0.82

0.84
0.86

0.88

1 10 100 1000

Lo
g

Lo
ss

#ratings per test user

RLR/MLN
RelNN

Figure 8: Results on predicting the gender when we only
use the first k (on the x-axis) ratings of the test users and use
0 ≤ r ≤ 20 ratings of each user (r is generated randomly
for each user) in the train set for learning.

model, on the other hand, improves even until k = 30. Af-
ter this point as k increases, the performance of both models
deteriorates, but the gap between the two models becomes
much more for larger values of k, as the RLR/MLN model
becomes over-confident. These results validate the hypothe-
sis in (Poole et al. 2014) that as the population size grows,
RLR/MLN becomes over-confident and predicts with prob-
abilities close to 0 and 1. The results also show how RelNNs
address this issue and validate our Motivation 1.

Related Work
Recently, there has been a great body of research on learn-
ing from relational data using tensor factorization. These
methods learn embeddings for each object and each rela-
tionship. The probability of two objects participating in a
relation is a simple function of the objects’ and relation’s
embeddings (e.g., the sum of the element-wise product of
the embeddings). Well-known tensor factorization works in-
clude (Nickel, Tresp, and Kriegel 2012; Bordes et al. 2013;
Socher et al. 2013; Neelakantan, Roth, and McCallum 2015;
Trouillon et al. 2016) with a recent survey in (Nguyen 2017).
Except RESCAL (Nickel, Tresp, and Kriegel 2012), all other
works along this line only focus on predicting new relations
from existing ones (cf. (Nickel et al. 2016) section X.A). As
described in (Kazemi et al. 2017), for aggregation problems
studied in this work, RESCAL’s proposal ends up memo-
rizing the training labels and does not generalize to unseen

6373

cases. The same issue exists for other tensor factorization
algorithms thus making them unsuitable for aggregation.

Besides tensor factorization models, several other rela-
tional learning models only focus on predicting relations
and ignore properties, or, relying on embeddings, suffer
from the same issues as tensor factorization algorithms.
Examples of these works include path-constrained random
walks (e.g., (Lao and Cohen 2010; Lao, Mitchell, and Cohen
2011)), and several hybrid approaches (e.g., (Das et al. 2017;
Rocktäschel and Riedel 2017; Yang, Yang, and Cohen 2017;
Wang, Shi, and Yeung 2017)).

Several works on predicting object properties based on
deep learning consider only a subset of relational data such
as set data (Zaheer et al. 2017) or graph data (Pham et al.
2017) (where there can be multiple relationships among ob-
jects, but all objects belong to the same class). Several works
on predicting object properties are based on recurrent neu-
ral networks (RNNs) (see e.g., (Uwents and Blockeel 2005;
Moore and Neville 2017)). Zaheer et al. (2017) show that
RNN based methods do not perform well for set data (a re-
stricted form of relational data) as RNN-based models con-
sider the input data to be a sequence and do not generalize
to unseen orders.

When a target variable depends on a population, the rule
combining (Kersting and De Raedt 2001; Natarajan et al.
2010) approaches learn a distribution D for the target given
only one object in the population, and then combine these
distributions using an explicit aggregator (e.g., mean or
noisy-OR). These models have three limitations compared
to RelNNs: 1- they correspond to only two (non-flexible)
layers, one for learning D and one for combining the pre-
dictions, 2- since D is learned separately for each object in
the population, the interdependence among these objects is
ignored, and 3- they rely on explicit aggregation function
rather than learning the aggregator from the data.

Predicate invention approaches (Kemp et al. 2006; Kok
and Domingos 2007) cluster the objects, their properties,
and relationships such that the values of the target(s) de-
pends on their clustering. Such a clustering can be imple-
mented as one layer of a RelNN. Since latent variables
in these works are probabilistic (rather than neural as in
RelNNs), these works typically result in expensive models
such that in practice clustering is limited to hard rather than
soft clusters, and they have been applied to small domains
with around 10k observations (which is far less than, say,
the 1M observations in our datasets).

There are also several other works for learning deep net-
works from relational data, but they are all limited in terms
of modelling power or scalability. The works in (Garcez,
Broda, and Gabbay 2012; França, Zaverucha, and Garcez
2014; Serafini and Garcez 2016), for instance, proposition-
alize the data and miss the chance to learn specifically about
objects. We show in our experiments that learning about ob-
jects substantially improves performance. Lodhi (2013) first
learns features from relational data then feeds it into a stan-
dard neural network, thus learning features and the model
independently. The same issue exists with methods such as
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) which first
learn embeddings for nodes regardless of the prediction task,

and then use the embeddings for making predictions. Šourek
et al. (2015)’s models are the closest proposals to RelNNs,
but RelNNs are more flexible in terms of adding new types
of layers in a modular way. These works are also limited in
one or more of the following ways: 1- the model is limited
to only one input relation, 2- the structure of the model is
highly dependent on the input data, 3- the model allows for
only one hidden layer, 4- the model cannot learn hidden ob-
ject properties through general rules, or 5- the model does
not scale to large domains.

Conclusion
In this paper, we developed a deep neural model for learning
from relational data. We showed that our model outperforms
several existing models on three relational learning bench-
marks. Our work can be advanced in several ways. The cur-
rent implementation of our model is a fresh non-parallelized
code. It could be speeded up by parallelization (e.g., by us-
ing TensorFlow (Abadi et al. 2016) as backbone), by compi-
lation relational operations to lower-level languages (similar
to (Kazemi and Poole 2016)), or by using advanced database
query operations. Learning the structure of the RelNN and
the WFs automatically from data (e.g., by extending the
structure learning algorithm in (Fatemi, Kazemi, and Poole
2016)), developing and adding relational versions of regular-
ization techniques such as (relational) dropout (Srivastava et
al. 2014; Kazemi et al. 2017) and batch normalization (Ioffe
and Szegedy 2015) are other directions for future research.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen,
Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin,
M.; et al. 2016. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In NIPS, 2787–2795.
Das, R.; Neelakantan, A.; Belanger, D.; and McCallum, A.
2017. Chains of reasoning over entities, relations, and text
using recurrent neural networks. EACL.
De Raedt, L.; Kersting, K.; Natarajan, S.; and Poole, D.
2016. Statistical relational artificial intelligence: Logic,
probability, and computation. Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning 10(2):1–189.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic prolog and its application in link discovery.
In IJCAI, volume 7.
Fatemi, B.; Kazemi, S. M.; and Poole, D. 2016. A learn-
ing algorithm for relational logistic regression: Preliminary
results. arXiv preprint arXiv:1606.08531.
França, M. V.; Zaverucha, G.; and Garcez, A. S. d. 2014.
Fast relational learning using bottom clause propositional-
ization with artificial neural networks. Machine learning
94(1):81–104.

6374

Garcez, A. S. d.; Broda, K.; and Gabbay, D. M. 2012.
Neural-symbolic learning systems: foundations and appli-
cations. Springer Science & Business Media.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The weka data mining software:
an update. ACM SIGKDD explorations newsletter 11(1).
Harper, M., and Konstan, J. 2015. The movielens datasets:
History and context. ACM TiiS 5(4):19.
Huynh, T. N., and Mooney, R. J. 2008. Discriminative struc-
ture and parameter learning for Markov logic networks. In
Proc. of the ICML.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.
Kazemi, S. M., and Poole, D. 2016. Knowledge compilation
for lifted probabilistic inference: Compiling to a low-level
language. In KR.
Kazemi, S. M.; Buchman, D.; Kersting, K.; Natarajan, S.;
and Poole, D. 2014. Relational logistic regression. In KR.
Kazemi, S. M.; Fatemi, B.; Kim, A.; Peng, Z.; Tora, M. R.;
Zeng, X.; Dirks, M.; and Poole, D. 2017. Comparing aggre-
gators for relational probabilistic models. UAI Workshop on
Statistical Relational AI.
Kemp, C.; Tenenbaum, J. B.; Griffiths, T. L.; Yamada, T.;
and Ueda, N. 2006. Learning systems of concepts with an
infinite relational model. In AAAI, volume 3, 5.
Kersting, K., and De Raedt, L. 2001. Adaptive bayesian
logic programs. In ICL, 104–117. Springer.
Kok, S., and Domingos, P. 2007. Statistical predicate inven-
tion. In ICML, 433–440. ACM.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factoriza-
tion techniques for recommender systems. Computer 42(8).
Lao, N., and Cohen, W. W. 2010. Relational retrieval using
a combination of path-constrained random walks. Machine
learning 81(1):53–67.
Lao, N.; Mitchell, T.; and Cohen, W. W. 2011. Random walk
inference and learning in a large scale knowledge base. In
EMNLP, 529–539.
Lodhi, H. 2013. Deep relational machines. In Neural Infor-
mation Processing, 212–219. Springer.
Moore, J., and Neville, J. 2017. Deep collective inference.
In AAAI, 2364–2372.
Natarajan, S.; Khot, T.; Lowd, D.; Tadepalli, P.; Kersting,
K.; and Shavlik, J. 2010. Exploiting causal independence in
markov logic networks: Combining undirected and directed
models. In Joint ECML and KDD, 434–450.
Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B.; and
Shavlik, J. 2012. Gradient-based boosting for statistical re-
lational learning: The relational dependency network case.
Machine Learning 86(1):25–56.
Neelakantan, A.; Roth, B.; and McCallum, A. 2015. Com-
positional vector space models for knowledge base infer-
ence. In 2015 aaai spring symposium series.

Nguyen, D. Q. 2017. An overview of embedding models
of entities and relationships for knowledge base completion.
arXiv preprint arXiv:1703.08098.
Nickel, M.; Murphy, K.; Tresp, V.; and Gabrilovich, E.
2016. A review of relational machine learning for knowl-
edge graphs. Proceedings of the IEEE 104(1):11–33.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2012. Factorizing
yago: scalable machine learning for linked data. In World
Wide Web, 271–280. ACM.
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In ICML.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proc. of the
20th ACM SIGKDD, 701–710.
Pham, T.; Tran, T.; Phung, D. Q.; and Venkatesh, S. 2017.
Column networks for collective classification. In AAAI,
2485–2491.
Poole, D.; Buchman, D.; Kazemi, S. M.; Kersting, K.; and
Natarajan, S. 2014. Population size extrapolation in rela-
tional probabilistic modelling. In SUM.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62:107–136.
Rocktäschel, T., and Riedel, S. 2017. End-to-end differen-
tiable proving. arXiv preprint arXiv:1705.11040.
Serafini, L., and Garcez, A. d. 2016. Logic tensor networks:
Deep learning and logical reasoning from data and knowl-
edge. arXiv preprint arXiv:1606.04422.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In NIPS, 926–934.
Šourek, G.; Aschenbrenner, V.; Železny, F.; and Kuželka, O.
2015. Lifted relational neural networks. In Proceedings of
the 2015th International Conference on Cognitive Computa-
tion: Integrating Neural and Symbolic Approaches-Volume
1583, 52–60. CEUR-WS. org.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. JMLR 15(1):1929–
1958.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In ICML, 2071–2080.
Uwents, W., and Blockeel, H. 2005. Classifying relational
data with neural networks. In ILP, 384–396. Springer.
Wang, H.; Shi, X.; and Yeung, D.-Y. 2017. Relational deep
learning: A deep latent variable model for link prediction. In
AAAI.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differen-
tiable learning of logical rules for knowledge base reason-
ing. arXiv preprint arXiv:1702.08367.
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.;
Salakhutdinov, R.; and Smola, A. 2017. Deep sets. arXiv
preprint arXiv:1703.06114.

6375

