
From Virtual Demonstration to Real-World
Manipulation Using LSTM and MDN

Rouhollah Rahmatizadeh, Pooya Abolghasemi,
Aman Behal, Ladislau Bölöni

Department of Computer Science
University of Central Florida, United States

rrahmati,pooya.abolghasemi,lboloni@cs.ucf.edu, abehal@ucf.edu

Abstract

Robots assisting the disabled or elderly must perform com-
plex manipulation tasks and must adapt to the home environ-
ment and preferences of their user. Learning from demonstra-
tion is a promising choice, that would allow the non-technical
user to teach the robot different tasks. However, collecting
demonstrations in the home environment of a disabled user
is time consuming, disruptive to the comfort of the user, and
presents safety challenges. It would be desirable to perform
the demonstrations in a virtual environment.
In this paper we describe a solution to the challenging prob-
lem of behavior transfer from virtual demonstration to a phys-
ical robot. The virtual demonstrations are used to train a deep
neural network based controller, which is using a Long Short
Term Memory (LSTM) recurrent neural network to generate
trajectories. The training process uses a Mixture Density Net-
work (MDN) to calculate an error signal suitable for the mul-
timodal nature of demonstrations. The controller learned in
the virtual environment is transferred to a physical robot (a
Rethink Robotics Baxter). An off-the-shelf vision component
is used to substitute for geometric knowledge available in the
simulation and an inverse kinematics module is used to allow
the Baxter to enact the trajectory.
Our experimental studies validate the three contributions of
the paper: (1) the controller learned from virtual demonstra-
tions can be used to successfully perform the manipulation
tasks on a physical robot, (2) the LSTM+MDN architectural
choice outperforms other choices, such as the use of feedfor-
ward networks and mean-squared error based training signals
and (3) allowing imperfect demonstrations in the training set
also allows the controller to learn how to correct its manipu-
lation mistakes.

Introduction

Assistive robotics, whether in the form of wheelchair
mounted robotic arms or mobile robots with manipulators,
promises to improve the independence and quality of life
of the disabled and the elderly. Such robots can help users
to perform Activities of Daily Living (ADLs) such as self-
feeding, dressing, grooming, personal hygiene and leisure
activities. Almost all ADLs involve some type of object
manipulation. While most current systems rely on remote

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

control, there are ongoing research efforts to make assis-
tive robots more autonomous (Endres, Trinkle, and Burgard
2013; Miller et al. 2012; Bollini, Barry, and Rus 2011). One
of the challenges of assistive robotics is the uniqueness of
every home and the need to adapt to the preferences and
disabilities of the user. As the user is a non-programmer,
learning from demonstration (LfD) is a promising way to
adapt the robot behavior to the specific environment, objects
and preferences. However, collecting large numbers of phys-
ical demonstrations from a disabled user is challenging. For
instance, the manipulated objects and the environment can
be fragile and the wheelchair-bound users might have dif-
ficulty recovering from a failed manipulation task such as a
dropped cup. Similar considerations hinder from-the-scratch
reinforcement learning performed in a home environment.

In this paper we propose an approach where the users
demonstrate the tasks to be performed in a virtual environ-
ment. This allows the safe collection of sufficient demon-
strations to train a deep neural network based robot con-
troller. The trained controller is then transferred to the phys-
ical robot. The general flow is illustrated in Figure 1.

In the remainder of this paper we discuss related work,
describe the approach in detail, and through an experimen-
tal study validate the three contributions outlined in the ab-
stract.

Related work

Virtual training to physical execution. The desirability of
transferring learning from a simulated robot to a physical
one had been recognized by many researchers. This need is
especially strong in the case of reinforcement learning-based
approaches, where the exploration phase can be very expen-
sive on a physical robot. Unfortunately, policies learned in
simulation do not work well when transferred naı̈vely to a
physical robot. First, no simulation can be perfect, thus the
physical robot will inevitably have a suboptimal policy leav-
ing to a slightly different state from the expected one. This
would be acceptable if the policy corrects the error, keep-
ing the difference bounded. In practice, it was found that
if a policy was learned from demonstrations, initially small
differences between the simulation and the real world tend
to grow larger and larger as the state diverges farther and
farther from the settings in which the demonstrations took
place – an aggravated version of the problem that led to the

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6524



Figure 1: The general flow of our approach. The demonstrations of the ADL manipulation tasks are collected in a virtual
environment. The collected trajectories are used to train the neural network controller.

development of algorithms such as DAgger (Ross, Gordon,
and Bagnell 2011).

A number of different approaches had been developed to
deal with this problem. One approach is to try to bring the
simulation closer to reality through learning. This approach
had been taken by Grounded Simulation Learning (Farchy
et al. 2013) and improved by Grounded Action Transforma-
tion (Hanna and Stone 2017) on the task of teaching a Nao
robot to walk faster.

Another approach for improving the virtual to physical
transfer is to increase the generality of the policy learned
in simulation through domain randomization (Tobin et al.
2017). (Christiano et al. 2016) note that the sequence of
states learned by the controller in simulation might be rea-
sonable even if the exact controls in the physical world
are different. Their approach computes what the next state
would be, and relies on learned deep inverse dynamics
model to decide on the actions to achieve the equivalent
real world state. (James, Davison, and Johns 2017) train a
CNN+LSTM controller to perform a multi-step task of pick-
ing up a cube and dropping it to a table. The training is
based on demonstrations acquired from a programmed op-
timal controller, with domain randomization in the form of
variation of environmental characteristics, lighting and tex-
tures.

Yet another possible approach is to learn an invariant fea-
ture space that can transfer information between the domains
through a sort of analogy making (Gupta et al. 2017).

In the work described in this paper, we took a different
approach. We had to accept that the simulation is nowhere
close to the physical environment, thus the robot will make
mistakes. Instead of domain randomization, we rely on the
natural imperfections of demonstrations done by (possibly
disabled) humans, but also on the ability of humans to cor-
rect the errors they made. Using this training data, we found
that the physical robot also learned to correct its mistakes.

Autonomous trajectory execution through Learning from
Demonstration (LfD). LfD extracts policies from exam-
ple state to action mappings (Argall et al. 2009) demon-
strated by a user. Successful LfD applications include au-
tonomous helicopter maneuvers (Abbeel, Coates, and Ng
2010), playing table tennis (Kober, Oztop, and Peters 2011;
Calinon et al. 2010), object manipulation (Pastor et al.
2009), and making coffee (Sung, Jin, and Saxena 2015).

The greatest challenge of LfD is generalization to un-
seen situations. One obvious way to mitigate this problem
is by acquiring a large number of demonstrations cover-
ing as many situations as possible. Some researchers pro-
posed cloud-based and crowdsourced data collection tech-
niques (Kehoe et al. 2013; Forbes et al. 2014; Crick et al.
2011), and some others proposed to use simulation envi-
ronments (Fang, Bartels, and Beetz 2016). Another direc-
tion is to use smaller number of demonstrations, but change
the learning model to generalize better. One possible tech-
nique is to hand-engineer task-specific features (Calinon,
Guenter, and Billard 2007; Calinon et al. 2009). Using deep
neural networks might help to eliminate the need to hand-
engineer features. For instance, (Levine et al. 2016) used
feed-forward neural networks to map a robot’s visual input
to control commands. The visual input is processed using
a convolutional neural network (CNN) to extract 2D fea-
ture points, then it is aggregated with the robot’s current
joint configuration, and fed into a feed-forward neural net-
work. The resulting neural network will predict the next joint
configuration of the robot. A similar neural network archi-
tecture is designed to address the grasping problem (Pinto
and Gupta 2016). In (Mayer et al. 2006), LSTMs are used
for a robot to learn to autonomously tie knots after a pre-
processing step to reduce the noise from the training data.

6525



Our approach

Collecting demonstrations in a virtual environment

To allow users to demonstrate their ADLs, we designed in
the Unity3D game engine a virtual environment modeling a
table with an attached shelf that can hold various objects,
and a simple two-finger gripper that can be opened and
closed to grasp and carry an object. The user can use the
mouse and keyboard to open/close the gripper, as well as to
move and rotate it, giving it 7 degrees of freedom. Unity3D
simulates the basic physics of the real world including grav-
ity, collisions between objects as well as friction, but there is
no guarantee that these will accurately match the real world.

We represent the state of the virtual environment as the
collection of the poses of the M movable objects q =
{o1 . . . oM}. The pose of an object is represented by the
vector containing the position and rotation quaternion with
respect to the origin o = [px, py, pz, rx, ry, rz, rw]. Dur-
ing each step of a demonstration, at time step t we record
the state of the environment qt and the pose of the end-
effector augmented with the open/close status of the gripper
et. Thus a full demonstration can be recorded as a list of
pairs d = {(q1, e1) . . . (qT , eT )}.

For our experiments we considered two manipulation
tasks that are regularly found as components of ADLs: pick
and place and pushing to a desired pose.

The pick and place task involves picking up a small box
located on top of the table, and placing it into a shelf above
the table. The robot needs to move the gripper from its initial
random position to a point close to the box, open the gripper,
position the fingers around the box, close the gripper, move
towards the shelf in an orientation where it will not collide
with the shelf, enter the shelf, and finally open the gripper
to release the box. This task is a clearly segmented multi-
step task, where the steps need to be executed in a particular
order. On the other hand, the execution of the task depends
very little on the details of the physics: as long as the box
can be picked up by the gripper, its weight or friction does
not matter.

The pushing to desired pose task involves moving and ro-
tating a box of size 10 × 7 × 7cm to a desired area only by
pushing it on the tabletop. In this task, the robot is not al-
lowed to grasp the object. The box is initially positioned in
a way that needs to be rotated by 90◦ to fit inside the desired
area which is 3cm wider than the box in each direction. The
robot starts from an initial gripper position, moves the grip-
per close to the box and pushes the box at specific points at
its sides to rotate and move it. If necessary, the gripper needs
to circle around the box to find the next contact point. This
task does not have a clearly sequenced set of steps. It is un-
clear how many times does the box needs to be pushed. Fur-
thermore, the completion of the task depends on the physics:
the weight of the box and the friction between the box and
table impacts the way the box moves in response to pushes.

The demonstrations were collected from a single user, in
the course of multiple sessions. In each session, the user per-
formed a series of demonstrations for each task. The quality
of demonstrations varied: in some of them, the user could
finish the task only after several tries. For instance, some-

Task Pick and
place

Push to
pose

Raw demonstrations 650 1614
Demonstrations after shift 3900 -
Low frequency demonstrations 31,200 12,912
Total no. of waypoints 645,198 369,477
Avg. demonstration waypoints 20.68 28.61

Table 1: The size of the datasets for the two studied tasks

times the grasp was unsuccessful, or the user dropped the
object in an incorrect position and had to pick it up again.
After finishing a demonstration, the user was immediately
presented with a new instance of the problem, with randomly
generated initial conditions. All the experiments had been
recorded in the trajectory representation format presented
above, at a recording frequency of 33Hz. However, we found
that the neural network controller can be trained more effi-
ciently if the trajectories are sampled at a lower rate, with a
rate of 4Hz to giving the best results.

To improve learning, we extended our training data by ex-
ploiting both the properties of the individual tasks and tra-
jectory recording technique. First, we noticed that in the pick
and place task the user can put the object to any location
on the shelf. Thus we were able to generate new synthetic
training data by shifting the existing demonstration trajecto-
ries parallel with the shelf. As the pushing to desired pose
task requires a specific coordinate and pose to succeed, this
approach is not possible for the second task.

The second observation was that by recording the demon-
stration at 33Hz but presenting the training trajectories at
only 4Hz, we have extra trajectory points. These trajectory
points can be used to generate multiple independent trajecto-
ries at a lower temporal resolution. The process of the trajec-
tory generation by frequency reduction is shown in Figure 2.
Table 1 describes the size of the final dataset.

Figure 2: Creating multiple trajectories from a demonstra-
tion recorded at a higher frequency.

The neural network based robot controller

The robot controller takes as input the pose of the objects
involved and the pose and open/close status of the grip-

6526



per at time t and outputs a prediction of the pose and the
open/closed status of the gripper at time t+1. During train-
ing, this prediction is used to generate the error signal. Dur-
ing the deployment of the trained network, the prediction
represents the desired pose of the end actuator which the
robot needs to achieve through its inverse kinematics cal-
culations. The controllers for the “pick and place” and the
“push to desired pose” tasks have the same network archi-
tecture but were trained on the specific tasks.

Our architecture uses an LSTM recurrent neural network
and relies on mixture density networks (MDNs) to predict
the probability density of the output. The error signal, in this
case, is based on the negative logarithm likelihood of the
next target waypoint given the probability density implied
by the MDN.

Let us now describe the intuitions that led to these
choices. The solution to both manipulation tasks contain
a series of individual movements which need to be exe-
cuted in a specific sequence. Although both tasks can be
solved in several different ways, the individual movements
in them cannot be randomly exchanged. In order to success-
fully solve the task, the robot needs to choose and commit
to a certain solution. While it is technically possible that
this commitment will be encoded in the environment out-
side the robot, we conjecture that a robot controller which
has a memory to store these commitments will perform bet-
ter. The requirement of a controller with a memory leads us
to the choice of recurrent neural networks, in particular, one
of the most widely used models, the LSTM (Hochreiter and
Schmidhuber 1997). We are using three LSTM layers with
50 nodes each as shown in Figure 3.

The second intuition applies to the choice of the output
layer and error signal. Both tasks allow multiple solutions.
For instance, for the push to pose task, the robot might need
to move the box in a diagonal direction. This can be achieved
by either (a) first pushing the shorter side of the box fol-
lowed by a push on the longer side or (b) the other way
around. However, by averaging these two solutions we reach
a solution where the gripper would try to push the corner of
the box, leading to an unpredictable result. This leads us to
conjecture that a multi-modal error function would perform
better than the unimodal MSE. The approach we chose is
based on Mixture Density Networks (MDN) (Bishop 1994)
which is to use the output of the network to predict the pa-
rameters of a mixture distribution. The output of the network
(which, in our case, is the next pose of the gripper), will be a
sample drawn from this distribution. Unlike the model with
MSE cost which is deterministic, this approach can model
stochastic behaviors to be executed by the robot. The prob-
ability density of the next waypoint can be modeled using a
linear combination of Gaussian kernel functions

p(y|x) =
m∑
i=1

αi(x)gi(y|x) (1)

where αi(x) is the mixing coefficient, gi(y|x) is a multi-
variate Gaussian, and m is the number of kernels. Note that
both the mixing coefficients and the Gaussian kernels are
conditioned on the complete history of the inputs till current

timestep x = {x1 . . . xt}. This is because the concatenation
of the output of all layers which is used to estimate the mix-
ing coefficients and Gaussian kernels is itself a function of
x. The Gaussian kernel is of the form

g(y|x) = 1

(2π)
c/2

σi(x)
exp

{
−‖y − μi(x)‖2

2σi(x)2

}
(2)

where the vector μi(x) is the center of ith kernel. We do not
calculate the full covariance matrices for each component,
since this form of Gaussian mixture model is general enough
to approximate any density function (McLachlan and Bas-
ford 1988).

The parameters of the Gaussian kernels μi(x), σi(x) and
mixing coefficients αi(x) are represented by the layer M in
Figure 3. To accomplish this, layer M needs to have one neu-
ron for each parameter. Thus layer M will have a width of
(c + 2) × m, containing c × m neurons for μi(x), m neu-
rons for σi(x), and another m neurons for αi(x). This layer
is fully connected to the concatenation of layers H1, H2 and
H3.

To satisfy the constraint
∑m

i=1 αi(x) = 1, the corre-
sponding neurons are passed through a softmax function.
The neurons corresponding to the variances σi(x) are passed
through an exponential function and the neurons corre-
sponding to the means μi(x) are used without any further
changes. Finally, we can define the error in terms of nega-
tive logarithm likelihood

EMDN = −ln

{
m∑
i=1

αi(x)gi(y|x)
}

(3)

The network is unrolled for 50 time steps. All the pa-
rameters are initialized uniformly between -0.08 to 0.08 fol-
lowing the recommendation by (Sutskever, Vinyals, and Le
2014). Stochastic gradient descent with mini-batches of size
10 is used to train the network. RMSProp with initial learn-
ing rate of 0.001 and decay of 0.99-0.999 (based on number
of examples) is used to divide the gradients by a running
average of their recent magnitude. In order to overcome the
exploding gradients problem, the gradients are clipped in the
range [-1, 1]. We use 80% of the data for training and keep
the remaining 20% for validation. We stop the training when
the validation error does not change for 20 epochs.

Transferring the controller to the physical robot

The last step of the process is to transfer the trained con-
troller to a physical robot (a Rethink Robotics Baxter). As
the controller provides only the next pose of the end effec-
tor, the controller had been augmented with an inverse kine-
matics module to calculate the trajectory in the Baxter robot
arms’ joint space.

Another challenge is that while in the virtual world we
had perfect knowledge of the pose of the effector and all the
objects in the environment, we needed to acquire this infor-
mation through sensing. As our controller architecture only
performs robot arm control, in order to supplant the miss-
ing vision component, we relied on a Microsoft Kinect sen-
sor and objects annotated with markers to track their pose.
One of the problems with this approach is that the robot

6527



Figure 3: The training and evaluation phase. During the training the LSTM network is unrolled for 50 time-steps. The gripper
pose and status (open/close) et and the pose of relevant objects qt at time-step t is used as input and output of the network to
calculate and backpropagate the error to update the weights. During the evaluation phase, the mixture density parameters are
used to form a mixture of Gaussians and draw a sample from it. The sample is used to control the robot arm.

arm might occlude the view of the sensor. The Kinect sensor
was placed close to the table to reduce the chance of occlu-
sion, however, occlusions may still occur if the robot’s arm is
placed between the object and the Kinect. Another challenge
is the fact that the waypoints generated by the controller are
relatively far away, leading to a jerky motion. To smooth the
robot’s movement we use interpolation in joint space to fill
in the gap between the current waypoint and the previous
one.

Finally, we found that the trajectory described by the con-
troller can not always be executed by the Baxter arm at the
same speed as in the virtual environment. Therefore, we use
a dynamic execution rate to wait between execution of each
waypoint. Concretely, the algorithm waits for 0.2sec and
checks if the difference between the current pose of the grip-
per and the predicted one is below a certain threshold. If yes,
it commands the robot to go to the next waypoint, otherwise
it waits in a loop until the end-effector reaches the desired
pose or timeout occurs which means that the end-effector
cannot reach that pose (either because the inverse kinematic
failed or a collision occurred).

Experimental study

In the following we describe a series of experiments and ob-
servations justifying the three claims we made in the abstract
of this paper.

The benefits of LSTM and MDN

Our network architecture uses LSTM layers and an MDN-
based error signal. These choices need to be validated, as
many researchers reported success on similar tasks with a
simpler network - without recurrent layers and using mean
squared error (MSE) as an error signal. For instance, (Levine
et al. 2016) use convolutional layers (for extracting poses

from images) followed by feedforward layers to give a uni-
modal prediction about the next waypoint in the trajectory.
As our controller is not end-to-end (in real world experi-
ments we are using an off-the-shelf solution for computer
vision), we can only compare our controller with the part
of the controller from (Levine et al. 2016) that follows the
convolutional layers used for image processing. In order to
be able to perform a rough comparison, we implemented a
feedforward network that closely matches that controller, but
replaces the convolutional layers with a direct position input.

With this, we have four choices for the controller struc-
ture:

FeedForward-MSE: 3 layers of fully connected feedfor-
ward network with 100 neurons in each layer and mean
squared error as the cost function.

LSTM-MSE: 3 layers of LSTM with 50 memory states in
each layer and mean squared error as the cost function.

FeedForward-MDN: Mixture density network containing
3 fully connected feedforward layers with 100 neurons in
each layer. The mixture contains 20 Gaussian kernels.

LSTM-MDN: Mixture density network containing 3 lay-
ers of LSTM with 50 memory states in each layer. The mix-
ture contains 20 Gaussian kernels.

The LSTM-MDN network is described in Figure 3, while
the architectures of the other approaches are shown in Fig-
ure 5. Each network had been separately trained for the pick
and place and the push to desired pose respectively, in effect
creating 8 different controllers. The resulting controllers had
been tested in the virtual environment by requiring the robot
to perform randomly generated tasks 20 times. If it can not
complete the task in a limited time (1 minute for the first task
and 2 minutes for the second one), we count the try as a fail-
ure and reset the position of the box. The numerical success
rates are shown in the following table:

6528



Figure 4: A sequence of images showing the autonomous execution of pick and place in simulation (first row), pick and place
in real world (second row), pushing in simulation (third row), and pushing in real world (fourth row). The robot is controlled
by a mixture density network with 3 layers of LSTM.

Controller Pick and place Push to pose

Feedfoward-MSE 0% 0%
LSTM-MSE 85% 0%
Feedforward-MDN 95% 15%
LSTM-MDN 100% 95%

The results allow us to derive several conclusions. Clearly,
the Feedforward-MSE combination does not work for this
particular set of problems and training data, failing to com-
plete either task even once. Another conclusion is that the
pick-and-place task is clearly the easier from the two, even
when tested in the virtual environment where physical mod-
eling errors don’t play a role. The presence of either LSTM
or MSE in the network provided enough improvement in the
controller to allow the finishing of the task in the majority of
situations, while the presence of both lead to 100% success
rate. On the other hand, the harder push to pose task requires
both components to have a reasonable success rate of 95%.

We conclude from these experiments that both adding
LSTM layers, and using an MDN output provide significant
benefits individually to the robot controller, and that these
two techniques can be combined for more individual bene-
fits.

Evaluating the transfer to the physical robot

To verify the ability of the controller trained in the virtual
world to perform in the physical one, we subjected both the
virtual and the physical robots to the same tasks. The se-
quence of images in the Figure 4 shows the controller acting
autonomously for the pick and place and pushing to pose

Figure 5: Alternative network architectures used in the
comparison study: Feedforward-MSE, LSTM-MSE and
Feedforward-MDN

tasks in the virtual and physical environments respectively.
We have found that indeed, in most cases, the physical robot
was successful in executing both tasks. This is not because
the virtual and physical worlds are highly similar. The size
of the gripper of the Baxter robot is different from the one
in the virtual world. The friction coefficients are very differ-
ent, and the physics simulation in the virtual world is also of
limited accuracy. Even the size and shape of the box used in

6529



the physical experiments is not an exact match of the ones in
the simulation, and the physical setup suffered from camera
calibration problems. Overall, the number of things that can
go wrong, is much higher in the physical world.

What we found remarkable is that, in fact, during the ex-
periments many things went wrong or changed from the
training data - however, the robot was often able to recover
from them. This shows how the model is robust in handling
deviation from what it has seen. The network contains dif-
ferent solutions for a case that can apply if others fail. For in-
stance, in the pushing task, to rotate the box, it tries to touch
the corner of the box and push it. If the box did not move
since the gripper passed it without a touch, it tries again but
this time from a point closer to the center of the box. This
gives the network some tolerance to slight variations in the
size of the box from the simulation to the real world.

To compare the success ratio in the virtual and physi-
cal world, we repeated the 20 experiments on the physi-
cal world, using the LSTM-MDN controller (the only one
that had significant success rate on the virtual robot on both
tasks). The success rates in the virtual and physical worlds
are compared as follows:

Environment Pick and place Push to pose

Virtual world 100% 95%
Physical world 80% 60%

The first conclusion we can draw from these values is that
the approach successfully demonstrated the ability to trans-
fer an unchanged controller trained in the virtual world to a
physical robot. As expected, the success rate was lower in
the physical world for both tasks. Some of the reasons be-
hind the lower success rate is obvious: for instance, in the
physical world there is an inevitable noise in the position
of the objects and the end effector. Some of the noise is a
consequence of limited sensor accuracy (such as the calibra-
tion of the Kinect sensor) and effector performance. Another
source of inaccuracy is due to the way in which we acquired
the positional information through a Kinect sensor: if during
the manipulation the robot arm occluded the view of the ob-
ject to the Kinect sensor, we temporarily lost the ability to
track the object.

Another reason for the lower performance in the physical
world is due to the differences in the size, shape, physical
attributes such as friction, etc. of the gripper and objects be-
tween the simulation and real world. As we discussed when
introducing the problems, the push-to-pose tasks is more de-
pendent of the physics (such as the friction between the ob-
ject and the table determines the way the object moves when
pushed). This creates a bigger difference between the vir-
tual and the physical environment compared to the pick and
place task, where after a successful grasp the robot is essen-
tially in control of the environment. Thus, the push to pose
task shows a stronger decrease in success rate when moving
to the physical world.

Imperfect demonstrations teach the robot how to
self-correct

The conventional wisdom in any learning from demonstra-
tion system is that the better the demonstrations, the better

the solution. For instance (James, Davison, and Johns 2017)
use a programmed controller in the virtual world. Our exper-
iments show that this is not always the case.

As the objective of our project was to develop methods
through which disabled users can demonstrate their pre-
ferred way to perform activities of daily living, in our experi-
ments demonstrators were done by imperfect human demon-
strators. The demonstrations contained errors such as failure
to grasp, bumping the arm into shelves, dropping the ob-
ject from the side of the shelf, overpushing, underpushing,
and accidentally rotating the pushed object. In all cases, the
demonstrator tried to correct the error by retrying, or through
compensatory actions. In some cases, the demonstrator did
not manage to complete the task. All these demonstrations,
even the failed ones, were included in the training data.

In the behavior of the trained robot, both in the virtual
and the physical ones show that the robot learned to correct
its mistakes. See, for instance, the experiments shown in the
video1 from about 2:30. This is an obvious performance im-
proving factor, especially in the physical world, where the
robot inevitably makes more errors. In fact, arguably, the
robot would rarely be able to complete a task without this
self-correcting behavior.

Conclusions and future work

In this paper we have developed a technique through which
a robotic arm can be taught to perform certain manipulation
tasks. We focused on two tasks that are frequently required
of robots that assist disabled users in activities of daily liv-
ing: pick and place and push to desired pose. As disabled
users can not generate large numbers of demonstrations on
physical robots, we designed an approach where the user
demonstrates the task in a virtual environment. These vir-
tual demonstrations are used to teach a deep neural network
based robot controller. Then, the controller is transferred
to the physical robot. We found that the best performance
was obtained using a network with LSTM layers and a mix-
ture density network based error signal. We also found that
having imperfect demonstrations, where users occasionally
make mistakes but correct them, allows the controller to cor-
rect the inevitable mistakes it makes when transferred to a
physical environment.

Our team is working to improve these results along sev-
eral directions. Multi-task learning might reduce the neces-
sary number of demonstrations as many features are likely
shared between tasks. We are extending the tasks to more
complex, multi-step tasks involving multiple objects. We
are working on acquiring demonstrations from multiple dis-
abled users, who only demonstrate each task only two or
three times. We are also extending the controller to an end-
to-end, vision-to-control model.
Acknowledgments: This work had been supported by the
National Science Foundation under Grant Number IIS-
1409823.

1https://youtu.be/9vYlIG2ozaM

6530



References

Abbeel, P.; Coates, A.; and Ng, A. Y. 2010. Autonomous
helicopter aerobatics through apprenticeship learning. Inter-
national Journal of Robotics Research 29(13):1608–1639.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Bishop, C. M. 1994. Mixture density networks. Technical
report, Aston University.
Bollini, M.; Barry, J.; and Rus, D. 2011. Bakebot: Baking
cookies with the PR2. In Proc. of the IROS PR2 workshop.
Calinon, S.; D’halluin, F.; Caldwell, D. G.; and Billard, A.
2009. Handling of multiple constraints and motion alterna-
tives in a robot programming by demonstration framework.
In Proc. of IEEE Int’l Conference on Humanoid Robots,
582–588.
Calinon, S.; D’halluin, F.; Sauser, E. L.; Caldwell, D. G.;
and Billard, A. G. 2010. Learning and reproduction of ges-
tures by imitation. IEEE Robotics & Automation Magazine
17(2):44–54.
Calinon, S.; Guenter, F.; and Billard, A. 2007. On learn-
ing, representing, and generalizing a task in a humanoid
robot. IEEE Transactions on Systems, Man, and Cybernetics
37(2):286–298.
Christiano, P.; Shah, Z.; Mordatch, I.; Schneider, J.; Black-
well, T.; Tobin, J.; Abbeel, P.; and Zaremba, W. 2016. Trans-
fer from simulation to real world through learning deep in-
verse dynamics model. arXiv preprint arXiv:1610.03518.
Crick, C.; Osentoski, S.; Jay, G.; and Jenkins, O. C. 2011.
Human and robot perception in large-scale learning from
demonstration. In Proc. of Int’l conference on Human-Robot
Interaction, 339–346. ACM.
Endres, F.; Trinkle, J.; and Burgard, W. 2013. Learning the
dynamics of doors for robotic manipulation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3543–3549.
Fang, Z.; Bartels, G.; and Beetz, M. 2016. Learning mod-
els for constraint-based motion parameterization from in-
teractive physics-based simulation. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
4005–4012.
Farchy, A.; Barrett, S.; MacAlpine, P.; and Stone, P. 2013.
Humanoid robots learning to walk faster: From the real
world to simulation and back. In Proc. of the Int’l Conf.
on Autonomous Agents and Multi-Agent Systems (AAMAS-
2013), 39–46.
Forbes, M.; Chung, M. J.-Y.; Cakmak, M.; and Rao, R. P.
2014. Robot programming by demonstration with crowd-
sourced action fixes. In Proc. of Second AAAI Conf. on Hu-
man Computation and Crowdsourcing.
Gupta, A.; Devin, C.; Liu, Y.; Abbeel, P.; and Levine,
S. 2017. Learning invariant feature spaces to trans-
fer skills with reinforcement learning. arXiv preprint
arXiv:1703.02949.

Hanna, J. P., and Stone, P. 2017. Grounded action transfor-
mation for robot learning in simulation. In Proc. of the 31st
AAAI Conf. on Artificial Intelligence, 3834–3840.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
James, S.; Davison, A. J.; and Johns, E. 2017. Transferring
end-to-end visuomotor control from simulation to real world
for a multi-stage task. arXiv preprint arXiv:1707.02267.
Kehoe, B.; Matsukawa, A.; Candido, S.; Kuffner, J.; and
Goldberg, K. 2013. Cloud-based robot grasping with the
Google object recognition engine. In IEEE International
Conference on Robotics and Automation (ICRA), 4263–
4270.
Kober, J.; Oztop, E.; and Peters, J. 2011. Reinforce-
ment learning to adjust robot movements to new situations.
In 2010 Robotics: Science and Systems Conference (RSS
2010), 33–40. MIT Press.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. Journal of Ma-
chine Learning Research 17(39):1–40.
Mayer, H.; Gomez, F.; Wierstra, D.; Nagy, I.; Knoll, A.; and
Schmidhuber, J. 2006. A system for robotic heart surgery
that learns to tie knots using recurrent neural networks. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 543–548.
McLachlan, G. J., and Basford, K. E. 1988. Mixture mod-
els. inference and applications to clustering. Statistics: Text-
books and Monographs, New York: Dekker 1.
Miller, S.; Van Den Berg, J.; Fritz, M.; Darrell, T.; Goldberg,
K.; and Abbeel, P. 2012. A geometric approach to robotic
laundry folding. The International Journal of Robotics Re-
search 31(2):249–267.
Pastor, P.; Hoffmann, H.; Asfour, T.; and Schaal, S. 2009.
Learning and generalization of motor skills by learning
from demonstration. In IEEE International Conference on
Robotics and Automation (ICRA), 763–768.
Pinto, L., and Gupta, A. 2016. Supersizing self-supervision:
Learning to grasp from 50k tries and 700 robot hours. In
IEEE International Conference on Robotics and Automation
(ICRA), 763–768.
Ross, S.; Gordon, G. J.; and Bagnell, D. 2011. A reduction
of imitation learning and structured prediction to no-regret
online learning. In Proc. of Int’l Conference on Artificial
Intelligence and Statistics (AISTATS), 6.
Sung, J.; Jin, S. H.; and Saxena, A. 2015. Robobarista:
Object part-based transfer of manipulation trajectories from
crowd-sourcing in 3d pointclouds. In International Sympo-
sium on Robotics Research (ISRR).
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems (NIPS), 3104–3112.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
arXiv preprint arXiv:1703.06907.

6531


