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Abstract

In this work, we study the runtime distribution of satisficing
planning in ensembles of random planning problems and in
multiple runs of a randomized heuristic search on a single
planning instance. Using common heuristic functions (such
as FF) and six benchmark problem domains from the IPC,
we find a heavy-tailed behavior, similar to that found in CSP
and SAT. We investigate two notions of constrainedness, of-
ten used in the modeling of planning problems, and show
that the heavy-tailed behavior tends to appear in relatively
relaxed problems, where the required effort is, on average,
low. Finally, we show that as with randomized restarts in
CSP and SAT solving, recent search enhancements that in-
corporate randomness in the search process can help mitigate
the effect of the heavy tail.

1 Introduction

The study of runtime distributions of several computational
problems (most notably CSP and SAT) found heavy-tailed
behavior for both ensembles of random problems and mul-
tiple runs of a randomized backtracking search on a single
problem (Gomes 2003). This behavior accounted for the
phenomenon of exceptionally hard problems (ehps) that ap-
pear as outliers in ensembles of easy problems and helped
inspire search enhancements such as randomized restarts
and algorithm portfolios (Gomes 2003).

In domain-dependent satisficing heuristic search, recent
works found a connection between problem difficulty and
problem constrainedness on ensembles of random problems
(Cohen and Beck 2017b) and discovered the existence of ex-
ceptionally hard instances (Cohen and Beck 2017a). These
results suggest that a heavy-tailed behavior, similar to the
one observed for CSPs and SATs, might be observed for sat-
isficing planning.

In this work, we focus on the heavy-tailed behavior in
domain-independent satisficing planning and make the fol-
lowing contributions:

1. We show that fat- and heavy-tailed behavior can be ob-
served on ensembles of random planning problems across
different domains and heuristic functions.
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2. We present a variant of greedy best-first search that in-
troduces a limited amount of randomization in the search
procedure and show that heavy-tailed behavior can be ob-
served in multiple runs of the randomized search proce-
dure on a single problem.

3. We demonstrate how different notions of constrainedness
that are commonly used in the modeling of planning prob-
lems can lead to a fat- or heavy-tailed distribution of
search effort.

4. We show that recent methods of non-greedy random ex-
ploration can help mitigate the heavy-tailed behavior in a
similar manner to randomized restarts in CSPs.

2 Background

The study of full runtime distributions of algorithms over
a problem set, rather than just the median or the mean, of-
ten provides useful information that can contribute to the
design of better algorithms. Previous work found exception-
ally hard instances in many kinds of computational problems
(e.g., Gent and Walsh, 1994), that were attributed to a fat-
or heavy-tailed behavior on ensembles of random problems
in the easy region of the phase transition (Gomes, Selman,
and Crato 1997). This behavior does not appear in ensem-
bles of highly constrained instances, for which the median
search effort is very high and all instances are uniformly
hard. However, as we relax the problems, we move to a
statistical regime in which the median effort is low, and the
hardest instances are exceptionally hard. The runtime dis-
tribution in this regime is characterized by a fat- or heavy-
tailed behavior, i.e., a slow decay of the tail of the survival
function.

Later, Gomes et al. (2005) showed that heavy-tailed be-
havior can also be found in the runtime distribution of a ran-
domized search procedure on a single instance, suggesting
that the ehps can be easily solved by minor changes in the
search procedure such as randomization. This result has mo-
tivated much work on eliminating the heavy-tailed behavior
using randomized restarts, portfolios, etc. (Gomes 2003).

2.1 Fat- and Heavy-Tailed Distributions

The tail of a distribution is the very large (small) values of
the distribution that determines the shape of its right (left)
side (Verzani 2014). Fat- and heavy-tailed distributions have
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Figure 1: Heavy and non-heavy tailed behavior.

a long tail containing a considerable concentration of mass.
Fat-tailedness can be determined based on the kurtosis of
the distribution defined as κ = μ4

μ2
2

, where μ2 and μ4 are the
second and fourth moments, respectively.

Since moments are very sensitive to the most extreme
points in the sample’s tails and many heavy-tailed distribu-
tions do not even have asymptotically finite moments, we
use the L-kurtosis measure. L-kurtosis, denoted as τ4, is
based on the L-moments (Hosking 1990) and can be thought
of as a measure similar to kurtosis that gives less weight
to the extreme tails of the distribution, and is less sensi-
tive to small sampling biases (for a detailed discussion of
L-moments and specifically L-kurtosis see Hosking, 1990).
τ4 is in the range (− 1

4 , 1) and the normal distribution has
τ4 = 0.1226. Distributions with higher value are called lep-
tokurtic and are considered to be fat-tailed.

Heavy-tailed distributions are considered “heavier” than
fat-tailed distributions, and all the moments of a heavy-
tailed distribution are infinite above some order (Gomes et
al. 2000). A random variable X with distribution function
F (x) is considered heavy-tailed if it has a Pareto-like decay
of its tail above some threshold xl (Resnick 2007), i.e., there
exists some xl>0, c>0, α>0 such that

1− F (x) = P [X > x] = cx−α, x > xl.

An approximately linear behavior over several orders of
magnitude in the log-log plot of 1− F (x) (i.e., the survival
function) is a clear sign of heavy-tailed behavior with the
slope providing an estimate of the stability index α (Gomes
et al. 2000). In addition to the visual check, we can estimate
α using the Hill estimator (Hill 1975) or by fitting a gen-
eralized Pareto distribution (GPD) model to the peaks over
threshold (POT) using maximum likelihood (Smith 1987).
If 1 < α < 2, X has infinite variance and if 0 < α ≤ 1,
X has both infinite mean and variance (Gomes et al. 2005).
Due to the limitations of the Hill estimator (see Embrechts,
Mikosch, and Klüppelberg, 1997), we use the POT method.

To demonstrate the difference between a heavy and a non-
heavy tailed behavior, we use the example from Gomes et
al. (2000). Figure 1 shows the log-log plot of 1 − F (x) vs.
x for a normally distributed random variable with a mean
of 2 and two possible values for the standard deviation. It

also shows a random variable that represent the number of
steps it takes for a symmetric random walk on a line to get
back to its starting point. The normal distributions exhibit a
fast-decay behavior, while the random walk exhibits a clear
heavy-tailed behavior indicated by the approximately linear
behavior on the log-log plot. The L-Kurtosis of both Normal
random variables is τ4 ≈ 0.12, while the random walk has
τ4 ≈ 0.92 and α ≈ 0.63.

From a practical point of view, the performance of a
search algorithm on problem ensembles (or a repeated ran-
domized search on a single problem) that exhibits either a
fat- or a heavy-tailed behavior can benefit from randomiza-
tion and restarts, with the heavier the tail, the greater the
potential for a dramatic speed-up (Gomes 2003).

2.2 Randomized Search Algorithms

When analyzing the runtime distribution over an ensemble
of problems, large variability (such as the one observed for
ehps) can be either due to the variability among the instances
in the ensemble or of the search algorithm itself. In order
to isolate the latter, Gomes et al. (2000) studied the run-
time distribution of multiple runs of a randomized algorithm
over the same instance. A fat- or heavy-tailed behavior in
the runtime distribution means that there is a low (but non-
negligible) probability of very long runs and suggests that
using randomized restarts can dramatically reduce the vari-
ability and potentially eliminate the heavy tail.

Gomes et al. (2000) proposed a method for adding ran-
domization to complete, systematic, backtrack search algo-
rithms such as DPLL. Traditionally, these algorithms con-
struct a solution incrementally, and at each step a heuristic
is used to decide how the partial solution will be extended
(e.g., by assigning a value to a variable). Eventually, either
a solution is found, or the algorithm backtracks to an ear-
lier partial solution. If several decisions are deemed equally
good, the algorithm typically applies some predefined rule
to decide which decision to make. An easy way of introduc-
ing some randomization is to randomize the tie-breaking be-
tween decisions that are equally good, however, randomized
tie-breaking might not be sufficient in many cases. There-
fore, Gomes et al. (2000) introduced H , a “heuristic equiv-
alence” parameter, that expands the set of decisions deemed
equally good. Given this modification, each run of the algo-
rithm on a specific instance will differ in the order of deci-
sions, and potentially in the runtime.

2.3 Constrainedness of Problems

Different works on combinatorial search used different no-
tions of constrainedness. In the analysis of random 3-
SAT problems, Mitchell, Selman and Levesque (1992) used
clause-to-variable ratio. For random CSPs, Smith and Dyer
used the tightness of the constraint graph (1996). In random
heuristic search problems, Cohen and Beck (2017b) used the
density of edges in transition graph.

For structured benchmark domains, domain-specific pa-
rameters can be used. Examples of such parameters are the
percent of pre-assigned colors in the quasigroup completion
problem (Gomes et al. 2000) or the probability of a blocked
cell in Grid Navigation problem (Cohen and Beck 2017a).
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Gent et. al. (1996) suggested a unified definition of con-
strainedness that is based on the expected number of feasible
solutions, however it is not easy to calculate this number for
a planning problem (Cohen and Beck 2017a).

3 Analytical Framework

In this section we describe the analytical framework we use
to investigate heavy-tailed behavior in planning. We first de-
scribe two notions of constrainedness of planning problems
that we can manipulate in order to observe the different sta-
tistical regimes. Then, we propose a method to randomize a
deterministic planning algorithm in order to analyze the run-
time distribution on a single problem instance. Finally, we
describe the benchmark problems we use.

3.1 Constrainedness of Planning Problems

A systematic study of fat- and heavy-tailed behaviors in sat-
isficing planning involves analyzing the runtime distribution
of instances of different constrainedness. In planning prob-
lems, there are various parameters that can effect the con-
strainedness of the problem (i.e., the expected number of
feasible solutions). We describe two types of parameters that
are often used to model planning problems.

Resource Constrainedness When planning with consum-
able resource, i.e., resources that cannot be replenished,
resource constrainedness is the amount by which the ini-
tial resource supply exceeds the minimum need (Hoffmann
et al. 2007; Gerevini, Saetti, and Serina 2008). The re-
source constrainedness can be measured by a parameter
C ≥ 1, namely the maximum number by which we can
divide the resource supply without rendering the task un-
solvable (Nakhost, Hoffmann, and Mueller 2012). Nakhost
et al. studied the performance of state-of-the-art domain-
independent planners as a function of C. To do so, they
introduced an extended benchmark suite with three bench-
mark domains: NoMystery, TPP, Rovers.

Goal Constrainedness The definition of a goal condition
in a planning problem can also be used to control the con-
strainedness of a problem. Consider a goal condition gi, we
use Gi to denote the induced set of goal states (i.e., states
that satisfy the goal condition). We consider gj to be a re-
laxation of gi if Gi ⊆ Gj , meaning that every state that
satisfies gi will satisfy gj . For example, if gi is the conjuc-
tion of a set of propositions P and gj is the conjuction of
a set of propositions P ′ such that P ′ ⊆ P , we consider gj
to be a relaxation of gi. There are, however, more nuanced
relaxations that are not based on dropping goal propositions
and we provide an example in our experiments.

3.2 Randomized Heuristic Search

In order to analyze the runtime distribution on a single in-
stance, we need to introduce a limited amount of randomiza-
tion into the search. In greedy best-first search (GBFS), the
heuristic function determines the order of expansions. How-
ever, most commonly used heuristics are deterministic and
so re-running the same instance will yield the same h-values
for all states (notable exceptions are heuristics that are based

on a random sample of the state space, e.g., Haslum et al.,
2007). Although random tie-breaking can provide some ran-
domness, in many domains it may not be sufficient.

We therefore present a general, parameterized method to
randomize a heuristic function, and use it in our empirical
analysis. Given a heuristic function h(x) and a parameter
p ≥ 0, that represents the extent of randomization, we con-
sider hΔp(x) to be an p-randomized version of h if for all
states s: hΔp(s) = h(s) + Δh

p where Δh
p is a random num-

ber in the range [−p·h(s), p·h(s)]. When used with deferred
heuristic evaluation (Helmert 2006), we randomize the order
in which the successors of a node are generated.

This method is similar to the one proposed by Gomes et.
al. (2000) for backtracking search, as it randomly orders
nodes that are within 100·p percent of their h-values, and
does not effect the completeness of the search algorithm.

3.3 Benchmark Problems

To study the effect of resource constrainedness we use the
benchmark domains used in Nakhost et. al. (2012): No-
Mystery, Rovers, and TPP. To study the effect of goal con-
strainedness we use the domains Maintenance, Parking, and
Freecell. Following is a brief description of each domain.

• NoMystery is based on the domain used in IPC’11. The
goal is to transport packages between locations, using a
set of trucks with a limited amount of fuel.

• Rovers is based on the domain from IPC’02, without the
“recharge” operator (to make the resource consumable).
The goal in this domain is to take a number of rock sam-
ples and images and transfer them to a lander.

• TPP was used in IPC’06. An agent is required to buy a set
of items that are being sold at different prices in different
markets. The limited resource is money, which is required
for buying the items and for driving between markets.

• Maintenance was used in IPC’14. Mechanics work each
day at one airport. Each plane visits some airports on
given days. The goal is to schedule the mechanics’ vis-
its to the airports such that each plane will be maintained
once.

• Parking (IPC’11, IPC’14) involves parking cars at N curbs
where cars can be doubled-parked but not tripled-parked.
The problem is to find a plan that moves from one config-
uration of cars to another by moving cars between curbs.

• Freecell (IPC’00, IPC’02) involves moving cards from
initial configuration to a suit-sorted collection of stacks
using the available free cells.

4 Empirical Analysis of Heavy-tailed

Behavior in Satisficing Planning

In this section we present an empirical analysis of the run-
time distribution of the benchmark problems for different
levels of constrainedness. We use GBFS and configure the
planner not to re-open nodes. The heuristic function being
used is FF with deferred heuristic evaluation. Experiments
with standard heuristic evaluation yielded similar results and
are omitted due to space.
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(a) NoMystery: 1000 random instances with
FF.
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(b) NoMystery: 1000 randomized search runs
on a single instance with FF.
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(c) NoMystery: 1000 randomized search runs
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(d) NoMystery: Fitting a GPD model with
α ≈ 0.82 to the tail of C = 3.
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(e) NoMystery: Stabilized vs. erratic behavior
of the mean over increasing number of runs.
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Figure 2: Empirical results for resource constrainedness.

We start with a thorough analysis of the first domain (No-
Mystery) and present summarized results for the rest.

4.1 Resource Constrainedness

NoMystery Figure 2a shows the search effort distribution
for 1000 random instances for different values of C, using
hFF (Hoffmann and Nebel 2001). For C=1, the tail decays
much faster than the more relaxed problems. For C=2 we
see a clear heavy-tailed behavior (a near-linear behavior over
a several orders of magnitude). Although the problems in
C=2 are, on average, much easier, the hardest instances are
significantly harder than the median, compared to C=1.

More interesting is the search effort distribution of a ran-
domized search algorithm on one instance. We used the me-
dian instance from the ensemble C=1, and created relaxed
instances by increasing C. Figure 2b shows the search effort
distribution of 1000 runs of a randomized search with hFF

Δ0.05
on the same instance for different values of C. The results
clearly show a transition from a statistical regime in which
the problem is very constrained and the tail decays quickly
(C=1) to a regime in which the problem is more relaxed
and the tail decays much more slowly. For C=3.0, we see
a clear heavy-tailed behavior with extremely long runs that
are even longer than the longest run for C=1. The τ4 values
support this observation as C=1 has a lower τ4 than the nor-
mal distribution indicating a very thin tail. As we increase C
the τ4 value increases, reaching 0.91 for C=4. As we relax
the problem further we start see a decline in the heavy-tailed
behavior and the corresponding smaller τ4 value.

To estimate the stability index α of the tail, we fit a GPD
model to the peaks over threshold using the maximum likeli-

hood method (Carmona 2014). For C=3 we used a tail that
corresponds to the largest 20% samples (chosen based on a
visual inspection, see Figure 2b). We estimated α ≈ 0.82,
and the quality of the fit is presented in Figure 2d. The esti-
mated value suggests that the underlying distribution has an
infinite mean and variance (0 ≤ α ≤ 1).

Figure 2e shows the mean effort (normalized to a 0-1
scale) over an increasing number of runs for different values
of C. When C=1, the mean stabilizes after a small num-
ber of samples (similar to the normal distribution). As we
increase C, the mean takes longer to stabilize and still ex-
hibits a large variance. When we move to the heavy-tailed
regime, the mean does not stabilize with increasing sample
size. This pattern is consistent with the erratic behavior of
the mean, observed by Gomes et al. (2000) in CSPs. As we
increase C further, problems gradually become universally
easy and the mean starts to stabilize again (not presented).

To demonstrate that this phenomenon is not unique to
hFF , we also analyzed the runtime distribution using the
landmark count heuristic (Richter, Helmert, and Westphal
2008), the landmark cut heuristic (Helmert and Domshlak
2009), and the causal graph heuristic (Helmert 2004), all
with p=0.1. We present the result for landmark count (Fig-
ure 2c), and provide the τ4 values for each C in Table 1. For
all heuristics, we found a transition to a heavy-tailed regime
as we relax the problem, however, the heavy-tailed regime
occurred at a higher C value compared to hFF (for landmark
count at C=5.0, compared to C=4.0 for FF). This result is
also consistent with CSPs, where the effect of using a less
informative heuristic is that the heavy-tailed behavior shifts
to a less constrained region (Gomes et al. 2005).
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Domain C/λ τ4 Domain C/λ τ4

NoMyst
(lmcut)

1.0 0.02

TPP

1.0 0.17
2.0 0.42 1.5 0.58
3.0 0.68 1.6 0.60
4.0 0.85 1.8 0.43

NoMyst
(CG)

1.0 0.06

Freecell

1.0 0.41
2.0 0.37 2.0 0.73
3.0 0.57 2.5 0.71
4.0 0.70 3.0 0.45

Table 1: Summarized results for other domains.

Rovers We performed similar analysis for the Rover do-
main and found heavy-tailed behavior for both 1000 random
instances and 1000 runs of a randomized search (hFF

Δ0.05) on
the median instance. Figure 2f shows the runtime distribu-
tion on a single instance. We can see that when C=1 we
see a non-heavy tailed behavior, with kurtosis that is smaller
than the normal distribution. As we increase C we see a
fat-tailed behavior and finally a clear heavy-tailed behavior
when C=5 and C=6, with α ≈ 0.62.

TPP For the TPP domain, as the problem generator is no
longer available we only analyzed the runtime distribution
of randomized search on single instances. Again, we ob-
serve a heavy-tailed behavior as we increase C. We omit the
detailed results and provide the τ4 values in Table 1.

4.2 Goal Constrainedness

Maintenance We analyze the effect of the goal con-
strainedness by relaxing the goal of having all n airplanes
checked by a mechanic. We start by using a simple, however
a bit artificial, relaxation of the goal by requiring that only a
chosen subset of λ airplanes be checked (|λ|≤n). We con-
sider a problem with 8 days and 25 planes, and analyze the
runtime distribution for different λ sets. Figure 3a shows the
runtime distribution of 1000 random instances and exhibits
similar patterns to before. Figure 3b shows the distribution
for a randomized search with hFF

Δ0.1 on one instance. Again,
we used the median instance of the more constrained ensem-
ble (|λ|=25), however this time we had to manually create
relaxed variants by picking a random subset of planes (we

repeated the process several time and observed similar pat-
terns). As we relax the problem we observe a fatter tail, and
a truncated heavy-tail behavior (linear behavior in the log-
log plot that is truncated). We observe increasing τ4 from
0.17 (near-normal value) to 0.77. We estimated α ≈ 0.51,
however the last few points diverged due to the truncated
behavior.

We also analyze an alternative relaxation, of a more com-
binatorial nature: at least λ airplanes will be checked, but
we do not decide which ones. Figure 3c shows the results for
different λ values. Again, we see a fat- and heavy-tail behav-
ior, but the tails are much fatter (τ4 significantly higher), and
we can observe a clear heavy-tailed behavior with α ≈ 0.92.

Parking We analyzed the effect of the goal constrained-
ness by allowing each car to park in more than one location.
We extended the problem to support more than one goal
configuration and create random instances of different goal
constrainedness by introducing a parameter λ to control the
number of allowed locations for a car. The runtime distribu-
tion on ensembles of random problems shows a heavy-tailed
behavior as we increased λ, and is omitted due to space.
Again we use the median instance and analyze the runtime
distribution on a single instance for different λ values. The
results (Figure 4) do not exhibit a Pareto-like heavy-tailed
behavior, however they exhibit a clear fat-tailed behavior.
For the more constrained instances (λ=1, 1.5), the τ4 indi-
cates a tail behavior that is similar to the normal distribution.
For the more relaxed problems, we observe a very fat-tailed
behavior and the corresponding high τ4 values.

Freecell Originally, each card with face value i has to
placed on top of a card with face value i − 1 in each stack.
We define a parameter λ that controls the number of cards
that each card can be placed on top of, in each stack and ma-
nipulated existing instances from IPC’02 to create instances
of different constrainedness. We omit the detailed results
due to space but report the τ4 values of 1000 runs of a ran-
domized search with hFF

Δ0.05 on one instance in Table 1. We
found a clear heavy tailed behavior when λ=2.0, where the
hardest instances (approximately 2%) were not solved in the
60 minutes time limit (we omitted them from the τ4 calcula-
tion and so the reported value is smaller than the real one).

100

10−1

10−2

10−3

101 102 103 104 105

Expanded Nodes

1 
− 

CD
F 

(S
ur

viv
al)

λ value (τ4)
25 ( 0.14 )
20 ( 0.32 )
17 ( 0.51 )
15 ( 0.62 )
13 ( 0.77 )
12 ( 0.77 )
10 ( 0.82 )
8 ( 0.54 )

(a) Search effort distribution for 1000 random
instances.

100

10−1

10−2

10−3

101 102 103 104

Expanded Nodes

1 
− 

CD
F 

(S
ur

viv
al) λ value (τ4)

25 ( 0.17 )
20 ( 0.42 )
17 ( 0.54 )
15 ( 0.77 )
10 ( 0.76 )

(b) 1000 runs of a randomized search on a sin-
gle instance with FF.

100

10−1

10−2

10−3

101 102 103 104 105 106

Expanded Nodes

1 
− 

CD
F 

(S
ur

viv
al) λ value (τ4)

23 ( 0.06 )
22 ( 0.41 )
20 ( 0.57 )
17 ( 0.75 )
15 ( 0.78 )
13 ( 0.84 )

(c) 1000 runs of a randomized search on a sin-
gle instance with alternative relaxation.

Figure 3: Empirical results for the Maintenance domain.
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5 The Impact of Randomized Exploration

In combinatorial search, the discovery of fat- and heavy-
tailed behavior has inspired “boosted” search methods that
employ randomized restarts in order to eliminate the heavy-
tailed behavior, achieving significant speedups on hard real-
world problems (Gomes, Selman, and Kautz 1998).

In satisficing planning, several works have suggested in-
corporating non-greedy random exploration, in which the
search allocates limited time to expand nodes with non-
minimal h-values. Two recent approaches are ε-GBFS
(Valenzano et al. 2014) and Type-GBFS (Xie et al. 2014).

ε-GBFS expands a node selected uniformly at random
from the open list with probability ε and the minimal h-value
node with probability 1−ε. Empirical analysis showed that
for ε values between 0.05 to 0.5, the number of domains for
which the coverage increased was significantly higher than
the number of domains for which the coverage decreased.

Type-GBFS utilizes type systems of heuristic search
(Lelis, Zilles, and Holte 2013) to perform exploration. It
maintains an additional queue that performs type-based ex-
ploration using a two level type bucket structure: first it
picks a bucket b uniformly from all the buckets, then it
picks a node n uniformly from all the nodes in b (Xie et
al. 2014). Empirical analysis showed that Type-GBFS sig-
nificantly outperforms standard GBFS, solving almost 200
more problems out of 2112.

In this section we examine the effect of these methods
on the heavy tail phenomenon. Given the principled use of
randomized restarts to escape heavy-tailed behavior in other
combinatorial problems, an obvious question is whether the
benefits of the random exploration approaches are higher in

heavy-tailed regimes. Again, we start with a detailed anal-
ysis of the NoMystery domain and provide summarized re-
sults for the other domains.

NoMystery Figure 5 compares the effort distribution on
a single instance for hFF

Δ0.05 in a standard GBFS to an ε-
GBFS with ε=0.2 and ε=0.5 (dotted and dashed lines, re-
spectively). The results show an interesting pattern: for the
more relaxed problems, that exhibited fat- or heavy-tailed
behavior, ε-GBFS significantly reduces this behavior. Ta-
ble 2 shows the τ4 values for each C value for GBFS and
ε-GBFS with ε=0.2 and ε=0.5. For C>2, ε-GBFS exhibits
thinner tails for both values of ε. Note that for C=1 we
see fatter tails and harder extreme instances as we increase
ε. Furthermore, as Figure 5 shows, the thinner tails come
at the cost of increased effort for the median case. Still,
the most extreme cases are avoided, consistent with the in-
creased coverage of this method.

Figure 6 compares the runtime distribution of a random-
ized FF heuristic in a standard GBFS (solid lines) to a type-
GBFS (dashed lines). To directly address the impact of a
non-greedy exploration, we use a simple type system that
uses the h-values of the same heuristic rather then a more
sophisticated one that uses new information. While the ex-
act numerical results are different from ε-GBFS, the results
show similar trends. The measured τ4 values in Table 2 are
also close to the ones observed for ε-GBFS with ε = 0.5.

Figure 7 shows the behavior of the mean search effort over
increasing number of samples. Consistent with eliminating
the heavy-tailed behavior, we no longer observe the erratic
behavior in Figure 2e. Instead, the mean stabilizes quickly
for all C.
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Figure 4: Parking: 1000 runs of a
randomized search on a single instance.

C GBFS ε=.2 ε=.5 Type

1.0 0.03 0.16 0.25 0.17
2.0 0.53 0.42 0.32 0.35
3.0 0.82 0.68 0.55 0.58
4.0 0.91 0.67 0.62 0.60
5.0 0.51 0.37 0.35 0.31

Table 2: NoMystery: The effect of ε-
GBFS and Type-GBFS on τ4.

domain C/λ GBFS ε=.2 Type

Rovers 4.0 0.78 0.62 0.54
TPP 1.6 0.51 0.37 0.31

Maint. 15 0.78 0.47 0.31
Parking 5.0 0.88 0.73 0.66
Freecell 2.0 0.73 0.43 0.43

Table 3: The effect of ε-GBFS and Type-
GBFS on τ4 for different domains.
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Figure 5: NoMystery: GBFS (solid) vs.
ε-GBFS (ε=0.2: dotted, ε=0.5: dashed).
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Figure 6: NoMystery: GBFS (solid) vs.
Type-GBFS (dashed).
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Figure 7: NoMystery: Stable behavior of
the mean when using Type-GBFS.
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Figure 8: Rovers: GBFS (solid) vs.
Type-GBFS (dashed).
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Figure 9: Parking: GBFS (solid) vs.
Type-GBFS (dashed).
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Figure 10: Maintenance: GBFS (solid)
vs. Type-GBFS (dashed).

Rovers, TPP, Parking, Maintenance, Freecell Empiri-
cal analysis of these domains yielded similar trends. Fig-
ures 8, 9, and 10 compare standard GBFS with Type-GBFS
for the domains Rovers, Parking, and Maintenance respec-
tively. Table 3 shows the τ4 values for one heavy-tailed
constrainedness value for each domain for standard GBFS,
Type-GBFS and ε-GBFS with ε = 0.2. Notice that for the
Maintenance domain, we also observe a significant improve-
ment for the most constrained problems. Also, for the most
relaxed problems in Parking, the random exploration makes
the problems uniformly harder.

Our results show a clear pattern: incorporating elements
of random exploration in the search helps to reduce and even
eliminate the heavy tailed behavior. As previous works at-
tributed the success of these methods to their ability to es-
cape local minima (Valenzano et al. 2014; Xie et al. 2014),
an obvious hypothesis is that relaxed problems tend to have
few, but very large, local minima.

6 Discussion

The empirical results suggest that a heavy-tailed behavior
can be observed for different planning problems, using dif-
ferent heuristic functions. This work provides a deeper un-
derstanding of the empirical difficulty of planning problems
and accounts for the previously discovered ehps. We also
provide evidence that the use of random exploration in the
search procedure addresses the heavy-tailed behavior, in a
manner similar to the randomized restarts in CSPs.

Heavy-tailed behavior has been shown not to be inherent
to backtracking search in general, but rather to depend on the
efficiency of the search procedure as well as on the level of
constrainedness of the problem (Gomes et al. 2005). In the
context of planning, uninformative heuristics will not exhibit
a heavy-tailed behavior, even as we relax the problems.

However, similar to combinatorial search, we find that,
in practice, heavy-tailed behavior can be observed for many
problems using common heuristics. Specifically, resource
constrained problems seem to exhibit such behavior when
solved with a heuristic that is based on ignoring the delete
effects. For highly constrained problems, most paths do not
lead to a solution due to lack of resources. As we relax the
problems, we can usually find a solution easily, however one
mistake can still lead to the need to exhaust a region of the
state space that has no solution, resulting in an extremely
long run. We also show that heavy-tailed behavior can be

observed as we relax highly constrained problems by intro-
ducing more goal states. In the relatively goal-relaxed prob-
lems, while most paths will lead to a goal state, one heuristic
mistake can lead the search into a region with no solution,
e.g., when achieving one goal proposition has a delete effect
(that the heuristic does not account for) that prevents us from
achieving another.

In combinatorial search, heavy-tailed behavior has been
shown to be correlated with an exponential distribution of
depths of the subtrees with no solutions (Gomes et al. 2005).
In satisficing planning, local minima (i.e., regions of the
state space that have no solution; Wilt and Ruml, 2014) have
been shown to have a negative effect on the search effort
(e.g., Xie, Müller, and Holte, 2015), and the results in Sec-
tion 5 lead us to hypothesize that the instances in the heavy-
tailed regimes will exhibit a small number of very large local
minima. Investigating the correlation between the observed
heavy-tailed behavior and the distribution of the sizes of lo-
cal minima is a future direction of our research.

7 Conclusion

We performed an empirical analysis of the runtime distribu-
tion on ensembles of random planning problems and multi-
ple runs of a randomized search procedure on a single plan-
ning problem. We considered two notions of constrained-
ness in planning problems and showed that relaxed problems
often exhibit fat- or heavy-tailed behavior.

Our empirical analysis provides evidence that the previ-
ous results on the existence of exceptionally hard problems
(Cohen and Beck 2017a) and the success of randomized ex-
ploration (Valenzano et al. 2014; Xie et al. 2014) are due to a
fat- or heavy-tailed behavior. Our results also connect plan-
ning to a body of literature on other computational problems
for which similar results have been obtained.

We expect our results to help in the design of more in-
formed planning algorithms that specifically address heavy-
tailed behavior. Furthermore, our results suggest that algo-
rithm benchmarking should consider instances from across
the constrainedness range and sample multiple random in-
stances at each level of constrainedness.
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