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Abstract

We study load scheduling of simple temporal networks
(STNs) under dynamic pricing of resources. We are given
a set of processes and a set of simple temporal constraints
between their execution times, i.e., an STN. Each pro-
cess uses a certain amount of resource for execution. The
unit price of the resource is a function of time, f(t). The
goal is to find a schedule of a given STN that trades
off makespan minimization against cost minimization
within a user-specified suboptimality bound. We pro-
vide a polynomial-time algorithm for solving the load
scheduling problem when f(t) is piecewise constant.
This has important applications in many real-world do-
mains including the smart home and smart grid domains.
We then study the dependency of the unit price of the
resource on time as well as the total demand at that
time. This leads to a further characterization of tractable,
NP-hard, and conjectured tractable cases.

Introduction and Problem Formulation

Efficient algorithms for temporal reasoning are critical for
a large number of real-world applications, including au-
tonomous space exploration (Knight et al. 2001), domestic
activity management, and job scheduling on servers (Ji, He,
and Cheng 2007). Many formalisms have been proposed
and are currently used for reasoning with metric time and
resources (Smith and Cheng 1993; Kumar 2003; Muscettola
2004). Simple Temporal Networks (STNs) (Dechter, Meiri,
and Pearl 1991) are popularly used for efficiently reasoning
about difference constraints in scheduling problems.

Formally, An STN S is defined by a directed graph 〈X , E〉,
where X = {X0, X1, . . . , XN} is the set of nodes repre-
senting events and E is the set of directed edges between
them representing simple temporal constraints. A sched-
ule τ for S is a function that maps each node to a time
instant at which the corresponding event should be exe-
cuted. For any schedule τ , τ(X0) is set to 0 by conven-
tion to establish a frame of reference. Each directed edge
eij = 〈Xi, Xj〉 ∈ E is annotated with a pair of real numbers
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[LB(eij), UB(eij)], representing the simple temporal con-
straint LB(eij) ≤ τ(Xj)− τ(Xi) ≤ UB(eij). A schedule
is said to be consistent if and only if it satisfies all constraints
given by the edges in E . Let Γ(S) be the set of all consistent
schedules of S.

Although their expressiveness is limited compared to
other formalisms, STNs are widely used as they can be
solved in polynomial time using shortest path computa-
tions on their distance graph representations. In the distance
graph representation, the constraint Xj − Xi ≤ ρ is rep-
resented as an edge from Xi to Xj annotated with ρ. The
absence of negative cost cycles in the distance graph char-
acterizes the consistency of the temporal constraints in the
STN (Dechter, Meiri, and Pearl 1991). Since the distance
graph can have negative cost edges, shortest paths in the
distance graph are calculated using the common Bellman-
Ford algorithm. Improved algorithms for solving STNs have
been developed by several authors (Xu and Choueiry 2003;
Planken, de Weerdt, and van der Krogt 2008).

In this paper, we use the STN framework to study impor-
tant classes of load scheduling problems that involve metric
temporal constraints as well as costs of resources. Problems
that can be studied in this framework include those that arise
in the smart home (Qayyum et al. 2015) and smart grid do-
mains (Sianaki, Hussain, and Tabesh 2010) as well as in high
performance computing (HPC) (Yang et al. 2013) and job
shop scheduling (Xiong, Sadeh, and Sycara 1992). Although
the STN framework can be extended to reason about the re-
source requirements of events (Kumar 2003), in this paper,
for simplicity of exposition, we reason about the resource
requirements of non-preemptible processes represented by a
pair of events that determine their starting and ending points.

Let PS = {P1, P2, . . . , PK} be a set of processes in the
STN S. We represent each Pi ∈ PS as a pair of events,
namely Xs

Pi
∈ X for its starting time point and Xe

Pi
∈ X

for its ending time point. An edge ẽPi
= 〈Xs

Pi
, Xe

Pi
〉 ∈ E

is annotated with the bounds [LB(ẽPi), UB(ẽPi)] where
UB(ẽPi) = LB(ẽPi) ≥ 0. This edge represents the fixed
duration of the process Pi.1 Of course, E can also contain

1It is easy to extend our framework to processes having flexible
durations; see (Nattaf, Artigues, and Lopez 2017) for richer models.
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simple temporal constraints between the starting and end-
ing time points of different processes. Each process Pi uses
resources for execution. While these resources could be of
different types, we focus on a single resource that resembles
electrical energy, henceforth simply referred to as “energy”.
The energy consumption model could be of two different
kinds: (model A) the process Pi consumes energy at a rate
of wi watts during its execution, or (model B) the process Pi

demands its entire energy requirement Wi at the beginning
of its execution, where Wi = wi · [τ(Xe

Pi
)− τ(Xs

Pi
)].

In this paper, we focus on the latter case, i.e., model B, for
two reasons. First, model B is relevant for modern application
domains. For example, in smart home and smart grid domains
that require efficient use of renewable energy such as solar en-
ergy, demanding the entire energy requirement of a process at
the beginning of its execution is beneficial for both consumers
and energy providers. Given that renewable energy may not
be consistently available, this mechanism benefits consumers
since sufficient energy is guaranteed to be available to them
for an entire process to complete. This mechanism also helps
energy providers develop better demand responses in order to:
(a) store energy more economically, and (b) avoid overload
and power failures (U.S. Department of Energy 2006). Sec-
ond, model B is better suited for a simpler explanation of the
algorithmic techniques developed in this paper. As discussed
later, we demonstrate that the same techniques can also be ex-
tended to other energy consumption models, including model
A.

In a dynamic resource pricing model, unit prices are ex-
pected to change frequently to reflect changes in the balance
between supply and demand (Borenstein 2005). Let f(t) be
the unit price of energy at time t. Given a consistent sched-
ule τ ∈ Γ(S), its cost is given by the expression C(τ) =
∑K

i=1 f(τ(X
s
Pi
)) ·Wi. An optimal schedule is a consistent

schedule τ∗ ∈ Γ(S) such that ∀τ ∈ Γ(S) : C(τ∗) ≤ C(τ).
The goal in the load scheduling problem is to find a consis-
tent schedule of a given STN that trades off makespan min-
imization against cost minimization within a user-specified
suboptimality bound.

While f(t) could be any function in general, it is piecewise
constant in many real-world domains, including water and
power supply and market prices of various goods. Figure 1,
borrowed from the Southern California Edison’s summer rate
plan TOU-D-A as of August 2017 (Southern California Edi-
son 2017), shows the plot of a real-world dynamic pricing
of electrical energy. In this paper, we provide a polynomial-
time algorithm for solving the load scheduling problem when
f(t) is piecewise constant. This has important applications
in many real-world domains including the smart home and
smart grid domains. For example, our polynomial-time al-
gorithm is applicable to optimizing appliance scheduling in
smart homes (Qayyum et al. 2015) and optimizing opera-
tions in smart home area networks to save power on a larger

However, for the combinatorial problem studied in this paper, the
lower bound on the duration of a process is also provably its optimal
value, because longer durations require more resources. Therefore,
for simplicity of exposition, we do not consider flexible durations
explicitly.
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Figure 1: Shows a function f(t) that models a real-world
dynamic pricing of electricity (electrical energy).

scale (Zhao et al. 2013). We also study the dependency of the
unit price of energy on time as well as the total demand at
that time. This dependency on the total demand could either
encourage or penalize “buying in bulk” based on the bal-
ance of supply and demand. An analysis of this dependency
leads to a further characterization of tractable, NP-hard, and
conjectured tractable cases.

Tractable Case: Piecewise Constant f(t)
In this section, we present two polynomial-time proce-
dures: Algorithm 1 and Algorithm 2. Algorithm 1 finds the
optimal cost schedule for the load scheduling problem on
STNs under a piecewise constant f(t). Algorithm 2 uses Al-
gorithm 1 in a quasi binary search procedure to trade off
makespan minimization against cost minimization within a
user-specified suboptimality bound γ. Algorithm 1 is based
on a reduction to the maxflow problem on bipartite graphs
and is therefore very efficient (Goldberg and Tarjan 1988).
We note that the methods presented in (Morris et al. 2004)
are not applicable here since f(t) is not necessarily convex.
We also note that the algorithm presented in (Kumar 2004) is
not directly applicable here either, since the problem here is
one of minimization instead of maximization. Moreover, the
issue of makespan is not considered in that paper. Nonethe-
less, some of the basic combinatorial arguments presented
in (Kumar 2004) are adapted here.

We choose a running example from appliance scheduling
in smart homes to demonstrate the working of our algorithms.
The running example is explained in Figure 2. Although
this running example is not completely realistic if we use
model B, we note once again that the intention is to provide a
simpler explanation of Algorithm 1 and to show the general
relevance of maxflow-based techniques to loading scheduling,
energy minimization, and computational sustainability. In
the Discussion section, we comment on how, with a few
additional insights, the same combinatorial arguments are
applicable even if we use model A.

Notation

In this paper, we use the notation illustrated in Figure 3.
We first identify L landmarks on the time axis, L =
{�1, �2, . . . , �L}, where f(t) is discontinuous. We then divide
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X0

Heater starts Heater ends

Cooker starts Cooker ends

Dishwasher starts

Dishwasher ends

[0,+∞]

[30,30]

[690,1050]

[0,+∞
] [60,60]

[1080,1380]

[420,900]

[90,90]

[0,600]

[0,∞]

X0 Xc Xh Xd

X0 0 1020 900 1380
Xc -660 0 -90 600
Xh -420 600 0 690
Xd -1080 -60 -180 0

Figure 2: The left-hand side shows the STN that models an example application instance in the smart home domain. Each node
represents an event. Each directed edge represents a simple temporal constraint specified using a lower and an upper bound.
The bounds in the temporal constraints are in minutes. X0 represents the beginning of the day, i.e., 12:00am. Each appliance
requests and uses a certain amount of energy to work: the cooker uses 0.2kWh, the heater uses 1.3kWh, and the dishwasher uses
0.5kWh. The right-hand side shows the pairwise shortest path distances between the starting time points of all processes and X0

in the distance graph of the STN. Each entry in the matrix represents the distance from the node in its row index to the node
in its column index. Xc, Xh, and Xd are shorthand for the starting time points of the cooker, the heater, and the dishwasher,
respectively.

f(t)

t
�1 �2 �3 �4I1 =

(−∞, �1]
I2 =
(�1, �2] I3 =

(�2, �3]

I4 =
(�3, �4]

I5 =
(�4,+∞)

Figure 3: Illustrates the notation for landmarks and intervals
in a piecewise constant function.

the time axis into (L+1) intervals, I = {I1, I2, . . . , I(L+1)},
defined as follows: I1 = (−∞, �1], Ik = (�(k−1), �k] for
2 ≤ k ≤ L, and I(L+1) = (�L,+∞). The infimum
and supremum of an interval (a, b] are defined as follows:
inf{(a, b]} = a and sup{(a, b]} = b. For technical reasons,
we set �0 to −∞ and �(L+1) to +∞.

Algorithm for Cost Minimization

In this subsection, we provide a polynomial-time algorithm
for finding the optimal schedule τ∗ that is of minimum cost
in a load scheduling problem on STNs.

Overview: We first introduce the idea of activating a pro-
cess Pi in an interval Ij . Next, we prove that if activating a set
of process-interval tuples leads to a conflict, then there exists
a minimal conflict between some two of them. Therefore, the
core minimal conflicts are only binary in nature and can be
enumerated easily. Moreover, they can also be represented
graphically as directed edges between nodes that correspond
to process-interval tuples. In such a node-weighted “conflict
graph”, we show that the maximum weighted independent set
corresponds to an optimal solution. Finally, we show that the
conflict graph is a partially ordered set (POSET) on which
the maximum weighted independent set can be computed
efficiently in polynomial time using a maxflow algorithm on

a bipartite graph.
Algorithm 1 provides the pseudocode of this algorithm;

and the arguments for its correctness are presented below. We
begin with the following well-known theorem about STNs
and their distance graph representations (constructed in lines
2-7).

Theorem 1. For a given STN S, Γ(S) 	= Ø if and only if
the distance graph D(S) does not contain any negative cost
cycles. Furthermore, if D(S) does not contain any negative
cost cycles, a consistent schedule of minimum makespan
τm ∈ Γ(S) is given by τm(Xi) = −d(Xi, X0).

Proof. see (Dechter, Meiri, and Pearl 1991).

Now, we first define the notion of the activation of a pro-
cess Pi in an interval Ij . We then define the notions of a
conflict and a minimal conflict.

Definition 2. A process Pi is said to be activated in the
interval Ij under a schedule τ if and only if τ(Xs

Pi
) ∈ Ij .

For brevity, we also refer to this as the activation of the tuple
〈Pi, Ij〉 under τ .

Definition 3. A set {〈Pi1 , Ij1〉, 〈Pi2 , Ij2〉, . . . , 〈PiM , IjM 〉}
of tuples constitutes a conflict if and only if there is no con-
sistent τ under which all of the tuples can be activated.

Definition 4. A set {〈Pi1 , Ij1〉, 〈Pi2 , Ij2〉, . . . , 〈PiM , IjM 〉}
of tuples constitutes a minimal conflict if and only if it con-
stitutes a conflict and no proper subset of it constitutes a
conflict.

Lemma 5. A set {〈Pi1 , Ij1〉, 〈Pi2 , Ij2〉, . . . , 〈PiM , IjM 〉} of
tuples can be activated simultaneously if no subset of it con-
stitutes a minimal conflict.

Proof. By the definition of a conflict, a set of tuples can be
simultaneously activated if and only if there is no subset
of it that constitutes a conflict. Furthermore, every conflict
has a minimal conflict, and therefore, a set of tuples can be
simultaneously activated if and only if there is no subset of it
that constitutes a minimal conflict.
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Algorithm 1: Shows a maxflow-based polynomial-time procedure for solving the load scheduling problem on STNs for
the minimization of cost under a piecewise constant f(t).

1 Function SOLVE-STN-LOAD-SCHEDULING
Input: An STN S = 〈X , E〉, where X = {X0, X1, . . . , XN} is the set of events and E is the set of simple temporal

constraints between them;
Input: A set of processes PS = {P1, P2, . . . , PK} with the starting time point Xs

Pi
and ending time point Xe

Pi
of

each Pi included in X ;
Input: A piecewise constant f(t) that models the dynamic unit price of energy;
Output: A consistent schedule τ∗ ∈ Γ(S) that is of minimum cost;

2 • Construct the distance graph D(S) on the nodes of S as follows:
3 for each edge e = 〈Xi, Xj〉 ∈ E do
4 Add the edge 〈Xi, Xj〉 annotated with UB(e) to D(S);
5 Add the edge 〈Xj , Xi〉 annotated with −LB(e) to D(S);
6 Compute the shortest path in D(S) between every pair of nodes;
7 Let d(Xi, Xj) be the length of the shortest path from Xi to Xj in D(S);
8 • Name landmarks and intervals for f(t):
9 Let the landmarks and intervals of f(t) be L = {�1, �2, . . . , �L} and I = {I1, I2, . . . , IL+1}, respectively;

10 • Construct a POSET Λ as follows:
11 Let the elements of Λ be λ〈Pi,Ij〉 for all Pi ∈ PS and for all Ij ∈ I;
12 Let λ〈Pu,Ia〉 
 λ〈Pv,Ib〉 if and only if �b + d(Xs

Pv
, Xs

Pu
)− �(a−1) ≤ 0;

13 • Construct a node-weighted directed acyclic graph GΛ as follows:
14 Construct Y to be the set of nodes {y〈Pi,Ij〉} of GΛ that are in one-to-one correspondence with

{λ〈Pi,Ij〉 : d(X0, X
s
Pi
)− �(j−1) > 0 and �j + d(Xs

Pi
, X0) ≥ 0};

15 Construct a directed edge from y〈Pv,Ib〉 to y〈Pu,Ia〉 if and only if λ〈Pu,Ia〉 
 λ〈Pv,Ib〉;
16 Let the weight on node y〈Pi,Ij〉 be cij = [

∑
i′ maxj′ Wi′ · f(�j′)]−Wi · f(�j) + 1;

17 • Compute the maximum weighted independent set QGΛ
of GΛ as follows:

18 Construct a bipartite graph B = 〈Y, Y ′, E〉, where the nodes {y′〈Pi,Ij〉} in Y ′ are in one-to-one correspondence
with the nodes {y〈Pi,Ij〉} in Y ;

19 Construct a directed edge from y〈Pu,Ia〉 to y′〈Pv,Ib〉 in B if and only if GΛ has a directed edge from y〈Pu,Ia〉 to
y〈Pv,Ib〉;

20 Use the polynomial-time maxflow-based algorithm in (Goldberg and Tarjan 1988) to compute the maximum
weighted independent set QB of B;

21 QGΛ
= {y〈Pi,Ij〉 : (y〈Pi,Ij〉 ∈ QB) ∧ (y′〈Pi,Ij〉 ∈ QB)};

22 • Construct a modified distance graph D′(S) on the nodes of S as follows:
23 Add all edges in D(S) to D′(S);
24 for each y〈Pi,Ij〉 ∈ QGΛ

do

25 Add the edge 〈X0, X
s
Pi
〉 annotated with �j to D′(S);

26 Add the edge 〈Xs
Pi
, X0〉 annotated with −�(j−1) to D′(S);

27 • Compute and return the final schedule τ∗ as follows:
28 Compute the shortest path in D′(S) from Xs

Pi
to X0 for each Pi ∈ PS ;

29 Let d′(Xi, Xj) be the length of the shortest path from Xi to Xj in D′(S);
30 for each Pi ∈ PS do
31 Let τ∗(Xs

Pi
) = −d′(Xs

Pi
, X0);

32 return τ∗;

Our motivation for introducing Definitions 3 and 4, and
proving Lemma 5 is to show that the sizes of all minimal
conflicts are upper-bounded by a small constant, i.e., 2.

Theorem 6. The size of a minimal conflict is ≤ 2.

Proof. Suppose we try to simultaneously activate all tu-

ples in the set {〈Pi1 , Ij1〉, 〈Pi2 , Ij2〉, . . . , 〈PiM , IjM 〉} under
a schedule τ . In order to activate 〈Pi, Ij〉, we need to en-
force the constraint that τ(Xs

Pi
) ∈ Ij . That is, we need

limε→0 inf{Ij}+ |ε| ≤ τ(Xs
Pi
) ≤ sup{Ij}, or equivalently,

limε→0 �(j−1)+ |ε| ≤ τ(Xs
Pi
)−τ(X0) ≤ �j . In the distance
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X0

Xs
P2
[λ〈P2,I2〉]

Xs
P1

[λ〈P1,I1〉]

Xs
P3[λ〈P3,I3〉]

Xs
P4

[λ〈P4,I4〉]

�1

�2−(�2 + |ε|)

−(�3 + |ε|)

D(S)

Figure 4: Illustrates the arguments used in the proofs of The-
orem 6 and Lemmas 7 and 8. The red curves indicate the
distance graph, D(S); the blue curves indicate the activation
edges; and the black curves indicate shortest paths in D(S).

graph representation, this requires us to add the outgoing
edge 〈X0, X

s
Pi
〉 annotated with �j and the incoming edge

〈Xs
Pi
, X0〉 annotated with −(�(j−1) + |ε|).2 Therefore, to

activate all tuples 〈Pi1 , Ij1〉, 〈Pi2 , Ij2〉, . . . , 〈PiM , IjM 〉, we
need to add the following edges to the distance graph D(S)
without creating a negative cost cycle: edges 〈X0, X

s
Pir

〉
annotated with �jr and edges 〈Xs

Pir
, X0〉 annotated with

−(�(jr−1) + |ε|) for all 1 ≤ r ≤ M . Let’s refer to these
edges as “activation” edges. From Theorem 1, we know that
for a consistent STN S, there are no negative cost cycles in
D(S). If a conflict occurs in activating the M tuples, then
a negative cost cycle is newly created with the addition of
the activation edges. This means that any such newly created
negative cost cycle must involve at least one of the activa-
tion edges. However, since every activation edge involves
X0 as one of its end points, the negative cost cycle can in-
volve at most two such activation edges. This is because any
fundamental cycle in a graph can involve any node at most
once. This proves the theorem; and Figure 4 illustrates this
argument.

From Theorem 6, we know that every minimal conflict is of
size either 1 or 2. We correspondingly refer to them as unary
and binary minimal conflicts. In lines 10-12, we construct a
POSET Λ = {λ〈Pi,Ij〉}, where λ〈Pi,Ij〉 represents the activa-
tion of process Pi in the interval Ij and λ〈Pu,Ia〉 
 λ〈Pv,Ib〉
represents a binary minimal conflict between 〈Pu, Ia〉 and
〈Pv, Ib〉.
Lemma 7. λ〈Pi,Ij〉 represents a unary minimal conflict if and
only if d(X0, X

s
Pi
)− �(j−1) ≤ 0 or �j + d(Xs

Pi
, X0) < 0.

Proof. We know that λ〈Pi,Ij〉 represents the addition of two
edges: 〈X0, X

s
Pi
〉 annotated with �j (edge 1) and 〈Xs

Pi
, X0〉

annotated with −(�(j−1) + |ε|) (edge 2). A unary conflict is
created in one of the following two cases: (a) edge 1 is the
only activation edge in a newly created negative cost cycle
that happens when �j + d(Xs

Pi
, X0) < 0; or (b) edge 2 is

the only activation edge in a newly created negative cost
cycle that happens when d(X0, X

s
Pi
)− �(j−1) ≤ 0 (because

ε → 0). Figure 4 illustrates these two cases.

2Here, “outgoing” and “incoming” are with respect to X0.

Lemma 8. λ〈Pu,Ia〉 and λ〈Pv,Ib〉 together represent an asym-
metric binary minimal conflict, denoted by λ〈Pu,Ia〉 

λ〈Pv,Ib〉 without loss of generality, if and only if �b +
d(Xs

Pv
, Xs

Pu
)− �(a−1) ≤ 0.

Proof. We know that λ〈Pu,Ia〉 represents the addition of two
edges: 〈X0, X

s
Pu

〉 annotated with �a (edge 1) and 〈Xs
Pu

, X0〉
annotated with −(�(a−1) + |ε|) (edge 2). Similarly, λ〈Pv,Ib〉
represents the addition of two edges: 〈X0, X

s
Pv
〉 annotated

with �b (edge 3) and 〈Xs
Pv
, X0〉 annotated with −(�(b−1) +

|ε|) (edge 4). A binary minimal conflict involves exactly one
incoming activation edge and one outgoing activation edge
(with respect to X0) in a newly created negative cost cycle.
Without loss of generality, let edge 2 be the incoming edge
and edge 3 be the outgoing edge. They together participate
in a negative cost cycle if and only if �b + d(Xs

Pv
, Xs

Pu
) −

�(a−1) ≤ 0 (because ε → 0). Figure 4 illustrates a binary
minimal conflict.

By convention and without loss of generality, λ〈Pu,Ia〉 

λ〈Pv,Ib〉 is used to denote a binary minimal conflict when the
lefthand side contributes the incoming edge and the righthand
side contributes the outgoing edge (with respect to X0).

While the number of conflicts might be exponential in
the number of processes, K, and the number of landmarks,
L, and therefore unwieldy to enumerate explicitly, we can
exploit the upper bound on the size of any minimal conflict
to efficiently enumerate all of the minimal conflicts instead
(lines 10-12 of Algorithm 1).

Theorem 9. The number of minimal conflicts is only
quadratic in the number of processes, K, and the number of
landmarks, L.

Proof. The number of λ〈Pi,Ij〉’s is equal to K ·(L+1). From
Theorem 6, we know that all minimal conflicts are at most
binary. Therefore, the maximum number of minimal conflicts
is O(K2L2).

We now prove some special properties of the 
 relation,
culminating in its induction of a valid POSET.

Lemma 10. For any process Pi and any 1 ≤ k < j ≤
(L+ 1), λ〈Pi,Ij〉 
 λ〈Pi,Ik〉.

Proof. We know that λ〈Pi,Ij〉 requires the addition of two
edges: 〈X0, X

s
Pi
〉 annotated with �j (edge 1) and 〈Xs

Pi
, X0〉

annotated with −(�(j−1) + |ε|) (edge 2). Similarly, λ〈Pi,Ik〉
requires the addition of two edges: 〈X0, X

s
Pi
〉 annotated with

�k (edge 3) and 〈Xs
Pi
, X0〉 annotated with −(�(k−1) + |ε|)

(edge 4). If j > k, we know that �(j−1)+ |ε| > �k. Therefore,
edge 2 and edge 3 create a negative cost cycle leading to the
conflict λ〈Pi,Ij〉 
 λ〈Pi,Ik〉.

Lemma 11. The binary relation 
 is transitive.

Proof. Suppose we have λ〈Pu,Ia〉 
 λ〈Pv,Ib〉 and λ〈Pv,Ib〉 

λ〈Pw,Ic〉. We show that λ〈Pu,Ia〉 
 λ〈Pw,Ic〉. From Lemma 8,
we know that �b + d(Xs

Pv
, Xs

Pu
) − �(a−1) ≤ 0, and �c +

d(Xs
Pw

, Xs
Pv
) − �(b−1) ≤ 0. Adding these two inequalities,

we get [�b − �(b−1)] + [d(Xs
Pv
, Xs

Pu
) + d(Xs

Pw
, Xs

Pv
)] +
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�c − �(a−1) ≤ 0. We also know that �b ≥ �(b−1), and
d(Xs

Pw
, Xs

Pv
) + d(Xs

Pv
, Xs

Pu
) ≥ d(Xs

Pw
, Xs

Pu
), by trian-

gle inequality on shortest path distances. Therefore, �c +
d(Xs

Pw
, Xs

Pu
) − �(a−1) ≤ 0. From Lemma 8, this means

λ〈Pu,Ia〉 
 λ〈Pw,Ic〉.

Lemma 12. The binary relation 
 is acyclic.

Proof. Suppose we have a cycle λ〈Pi1
,Ij1 〉 
 λ〈Pi2

,Ij2 〉 

. . . λ〈PiM

,IjM 〉 
 λ〈Pi1
,Ij1 〉. From Lemma 11, we know that

λ〈Pi1
,Ij1 〉 
 λ〈Pi1

,Ij1 〉. From Lemma 8, this means that �j1 +
d(Xs

Pi1
, Xs

Pi1
)−�(j1−1) ≤ 0, or equivalently, �(j1−1)−�j1 ≥

d(Xs
Pi1

, Xs
Pi1

). This is a contradiction because �j1 > �(j1−1)

and d(Xs
Pi1

, Xs
Pi1

) = 0. Therefore, 
 is acyclic.

Theorem 13. The binary relation 
 defined as follows forms
a POSET: λ〈Pu,Ia〉 
 λ〈Pv,Ib〉 if and only if λ〈Pu,Ia〉 

λ〈Pv,Ib〉 or (u, a) = (v, b).

Proof. By definition, 
 is reflexive. By Lemma 11, it is
transitive, and by Lemma 12, it is anti-symmetric. Therefore,

 forms a POSET on the elements of Λ.

We note that although Λ is a POSET under the relation

, the real benefit of recognizing its properties is to repre-
sent the elements of Λ under the relation 
 using a directed
acyclic graph GΛ. Lines 13-15 of Algorithm 1 construct GΛ,
using which it is easy to generalize the characterization of
a consistent solution to the characterization of an optimal
solution of minimum cost.

Lemma 14. The STN S with the set of processes P(S) =
{P1, P2, . . . , PK} is consistent if and only if the size of the
maximum independent set in GΛ is K.

Proof. From Theorem 6, we know that all minimal conflicts
are either unary or binary. Line 14 of Algorithm 1 constructs
a set of nodes Y = {y〈Pi,Ij〉} for GΛ that are in one-to-one
correspondence with only those elements of Λ that do not
constitute a unary minimal conflict (Lemma 7). Line 15 rep-
resents all the binary minimal conflicts using directed edges
between the nodes in Y . An independent set of GΛ therefore
represents a collection of 〈Pi, Ij〉 tuples that can be activated
simultaneously. Furthermore, from Lemma 10, any process
Pi can be activated in at most one interval. Since every pro-
cess Pi needs to be activated in some interval, exactly one
interval is activated for each process in a consistent STN.
Equivalently, this means that the size of the maximum inde-
pendent set of GΛ is K, where each node of the maximum
independent set corresponds to a different process.

Theorem 15. Suppose the weight on node y〈Pi,Ij〉 is cij =
[
∑

i′ maxj′ Wi′ · f(�j′)]−Wi · f(�j)+1, where 1 ≤ i ≤ K
and 1 ≤ j ≤ (L + 1). Then, a solution with minimum
cost corresponds to the activation of a maximum weighted
independent set QGΛ of GΛ.

Proof. We first prove that the activation of QGΛ
corre-

sponds to a consistent solution. By virtue of Lemma 14,
it suffices to prove that QGΛ

is of cardinality K. From
Lemma 10, the cardinality of QGΛ

is ≤ K. Suppose the

〈Pc, I1〉
(1.844)〈Pc, I2〉
(1.81)〈Pc, I3〉

〈Pc, I4〉
〈Pc, I5〉

(1.731)〈Ph, I1〉
(1.536)〈Ph, I2〉

〈Ph, I3〉
(1.315)

〈Ph, I4〉
〈Ph, I5〉

〈Pd, I1〉
〈Pd, I2〉
〈Pd, I3〉(1.675)
〈Pd, I4〉(1.76)
〈Pd, I5〉(1.835)

Figure 5: Shows the construction of the graph GΛ for the
running example from Figure 2 and the pricing from Figure 1.
Here, the subscripts c, h, and d correspond to the cooker,
the heater, and the dishwasher, respectively. The red nodes
indicate unary minimal conflicts and the red edges indicate
binary minimal conflicts. Each 〈P, I〉 annotation is shorthand
for y〈P,I〉, represented using a blue node in GΛ. Each blue
node is also annotated with its weight calculated in line 16.
For example, the weight on 〈Pc, I2〉 is set to 1.844, because
“[
∑

i′ maxj′ Wi′ · f(�j′)]−Wi · f(�j)+ 1” is equal to (0.2 ·
0.45 + 1.3 · 0.45 + 0.5 · 0.45) − 0.2 · 0.28 + 1 = 1.844.
The maximum weighted independent set is the choice of
〈Pc, I2〉, 〈Ph, I1〉, and 〈Pd, I3〉. Activating these tuples yields
a consistent solution of minimum cost.

cardinality of QGΛ
is < K. Then the total weight of QGΛ

is ≤ (K − 1)[
∑

i′ maxj′ Wi′ · f(�j′)] + (K − 1). From
Lemma 14, for a consistent STN S, there exists an inde-
pendent set of cardinality K. Let this independent set be
TGΛ

= {y〈P1,Ir1 〉, y〈P2,Ir2 〉, . . . , y〈PK ,IrK 〉}, since, from
Lemma 10, exactly one interval should be activated for each
process. The total weight of TGΛ = K[

∑
i′ maxj′ Wi′ ·

f(�j′)]−
∑

i[Wi · f(�ri)] +K ≥ (K − 1)[
∑

i′ maxj′ Wi′ ·
f(�j′)] +K. This contradicts that QGΛ

, whose total weight
is ≤ (K − 1)[

∑
i′ maxj′ Wi′ · f(�j′)] + (K − 1), is the

maximum weighted independent set, hence proving that the
cardinality of QGΛ

is exactly K. We now prove that the
activation of QGΛ

also corresponds to a solution with min-
imum cost. Consider any independent set of cardinality K,
TGΛ

= {y〈P1,Ir1 〉, y〈P2,Ir2 〉, . . . , y〈PK ,IrK 〉}. The quality of
any solution for the STN induced by activating TGΛ

is equal
to its total weight, given by {[K∑

i′ maxj′ Wi′ · f(�j′)] +
K}−∑

i[Wi ·f(�ri)]. Since [K
∑

i′ maxj′ Wi′ ·f(�j′)]+K
is constant for all solutions, the maximization of the to-
tal weight is equivalent to the minimization of the cost∑

i[Wi · f(�ri)].

We note that the weights on the nodes of GΛ are ≥ 0. After
they are set according to the requirement of Theorem 15
(line 16), the maximum weighted independent set in GΛ is
computed (lines 17-21) using a polynomial-time maxflow
procedure on a staged bipartite graph (Goldberg and Tarjan
1988). Although the maximum weighted independent set
problem is NP-hard in general, it is tractable for directed
acyclic graphs that exhibit the transitive property (Golumbic
2004). Lines 22-26 activate QGΛ

by adding new activation
edges to the distance graph. Using this modified distance
graph, lines 27-32 return a schedule τ∗ with minimum cost.
Figure 5 illustrates the mathematical transformations used in
the correctness arguments of the algorithm for the running
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Algorithm 2: Shows a quasi binary search algorithm
for trading off makespan minimization against cost
minimization within a suboptimality factor.

1 Function SOLVE-STN-LOAD-MAKESPAN
Input: A load scheduling problem on an STN with

input parameters S = 〈X , E〉,
PS = {P1, P2, . . . , PK} and f(t);

Input: A suboptimality factor γ ≥ 1 for cost
minimization in the trade-off against makespan
minimization;

Output: A consistent schedule τ∗ that is of minimum
makespan among all consistent schedules of
cost less than or equal to γ times the minimum
cost;

2 • Initialize:
3 τ = SOLVE-STN-LOAD-SCHEDULING

(S,PS , f(t));
4 Let c∗ be the cost of τ and let μ be the makespan of

τ ;
5 Set the lower bound for makespan lbms to 0 and

the upper bound for makespan ubms to μ;

6 • Conduct quasi binary search:
7 while (ubms− lbms) is not sufficiently small do
8 m = (lbms+ ubms)/2;
9 for each process Pi ∈ {P1, P2, . . . , PK} do

10 Add the simple temporal constraint
〈X0, X

e
Pi
〉 annotated with [0,m] to S;

11 if S is consistent then
12 τ = SOLVE-STN-LOAD-SCHEDULING

(S,PS , f(t));
13 Let c be the cost of τ and ν be the

makespan of τ ;
14 if c ≤ γ · c∗ then
15 ubms = ν;
16 else
17 lbms = m;

18 else
19 lbms = m;

20 • Return the final solution:
21 return τ∗ = τ ;

example from Figure 2.
The time complexity of Algorithm 1 is dominated by lines

6 and 20. Line 6 is of complexity O(K2N |E|), and line 20 is
of complexity O(K2.5) (Goldberg and Tarjan 1988). Since
N > K, the overall time complexity is O(K2N |E|).

Algorithm for Makespan vs Cost Minimization

While Algorithm 1 minimizes the cost for a given load
scheduling problem, it is oblivious to makespan minimiza-
tion. In many real-world applications, however, makespan
minimization constitutes an important secondary objective.
In this subsection, we provide a polynomial-time quasi binary
search algorithm, Algorithm 2, for trading off makespan min-
imization against cost minimization within a user-specified
suboptimality factor γ.

Algorithm 2 is based on the critical observation that en-

f(t)

t
FXs

P
(t)

t

P
�1 �2

δ1 δ2 δ3 δ4

Figure 6: Shows the derivation of FXs
P
(t) for process P under

a piecewise constant f(t). FXs
P
(t) represents the cost of

scheduling P to start at time t. The result is a piecewise linear
function, where discretization is required only within the
intervals (δ1, δ2] and (δ3, δ4] (instead of the entire timeline).

forcing a makespan of m in a load scheduling problem can
be done using additional simple temporal constraints of the
form 〈X0, X

e
Pi
〉 annotated with [0,m] for all Pi (line 10).

Binary search is carried out in lines 6-19 to find the minimum
value of makespan that yields a solution of cost within the
user-specified suboptimality bound. The binary search is op-
timized (line 15) under the following note. When a makespan
constraint of m = (lbms+ ubms)/2 is imposed, if a consis-
tent schedule τ can be successfully found within the subop-
timality bound, ubms can be tightened to the makespan of
τ for the next iteration (instead of to m as in regular binary
search). We refer to this optimized version as quasi binary
search.

The running time of Algorithm 2 is O(log2 μ ·K2N |E|).
Here, K2N |E| represents the running time of Algorithm 1,
and log2 μ represents the number of times Algorithm 1 is
called in the binary search. Although μ depends on the nu-
merical values in the problem instance, log2 μ is only lin-
ear in the size of the bit representation of these numbers.
Therefore, in polynomial time, we can find a solution of mini-
mum makespan that is within the user-specified suboptimality
bound γ with respect to cost.

Discussion

In this section, we elaborate on some possible extensions to
the load scheduling problem studied so far. We first discuss
its variant for model A. Specifically, we comment on the
applicability of our techniques with discretization of time, but
only in certain intervals. We then consider the load scheduling
problem under the cost function f(t, u(t)), where the unit
cost of energy depends on time t as well as the total demand
u(t) at that time.

Figure 6 shows the cost of scheduling the starting time
point Xs

P of process P at time t using model A. Here, the
process P is of duration q and consumes energy at the rate
of w watts. The cost curve FXs

P
(t) is then the “convolution”

of f(t) with the duration of the process q. It is therefore
different for different processes and is piecewise linear.

Ignoring the second issue, i.e., assuming piecewise con-
stant cost functions, the first issue can be easily addressed
using the following simple modification to line 16 of Algo-
rithm 1: cij = [

∑
i′ maxj′ FXs

P
i′
(�j′)] − FXs

Pi
(�j) + 1. In

fact, it is relatively easy to prove generalized versions of our
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Figure 7: Illustrates a general cost function f(t, u(t)). Here,
the cost function is piecewise constant with respect to time,
and is concave with respect to the total demand at any fixed
time. This case is conjectured to be tractable.

lemmas and theorems, as alluded to in (Kumar 2004).
The second issue can be handled by discretization of time

to make the cost curves piecewise constant. Based on the rea-
sonable assumption that process durations are much shorter
than the spacing between the landmarks of f(t), we note here
that discretization is necessary only in narrow intervals of
time near the landmarks of f(t), where the cost curves are
otherwise piecewise linear. This yields huge savings in com-
parison to a discretization of the entire time line that is used
in many other works, such as in (Goudarzi, Hatami, and Pe-
dram 2011) under the name of a slotted time model. Figure 6
illustrates this and demonstrates that the granularity of dis-
cretization depends on q as well as the difference in values at
discontinuities of f(t). Since this difference is usually small,
discretization is not very expensive in our framework. In addi-
tion, we conjecture that piecewise linear cost curves are also
amenable to polynomial-time maxflow-based algorithms; and
settling this conjecture is part of our future work.

We also consider a generalized cost function f(t, u(t)) as
shown in Figure 7. In this model, the energy provider could
either encourage or penalize “buying in bulk” based on the
balance of supply and demand.

Theorem 16. If f(t, u(t)) has a convex dependency on u(t),
the load scheduling problem is NP-hard.

Proof. In the decision version of the bin packing problem,
given n items of sizes a1, a2, . . . , an and B bins each of ca-
pacity V , it is NP-hard to determine whether all the items
can be incorporated into the B bins without exceeding the
capacity constraints. It suffices to show that this problem is
reducible to a special case of the load scheduling problem
where the cost function f(t, u(t)) has a convex dependency
on u(t). Let the cost function be independent of t and de-
pend only on the total demand u, such that f(u) = 0 if
u ≤ H; and f(u) = +∞ otherwise. We create n processes
P1, P2, . . . , Pn where the power requirement of process Pi is
equal to ai. Each process is of unit duration, and is allowed to
execute in the time window [0, B]. The threshold H is set to
the capacity V . Consider the B bins to be represented in the
B intervals [0, 1], [1, 2], . . . , [B − 1, B]. Under this construc-
tion, a satisfying solution for the bin packing problem exists
if and only if a satisfying solution for the load scheduling
problem exists.

If f(t, u(t)) has a linear dependency on u(t), it can be de-
composed to

∑
Pi

f(t, uPi(t)). Here, uPi(t) is the demand
of process Pi at time t, and is equal to wi in model A, which
we conjectured above to be tractable based on the algorithm
presented in this paper. We now make a stronger conjecture
that when the dependency of f(t, u(t)) on u(t) is concave,
i.e., when “buying in bulk” is encouraged, the load scheduling
problem remains tractable based on arguments of submodu-
larity (Lovász 1983); and settling this stronger conjecture is
also part of our future work.

Related Work
Load scheduling problems have been extensively studied in
the smart home and smart grid domains. Typically, the goal
is to minimize the cost of energy consumption when prices
fluctuate with time. In (Agnetis et al. 2013), a Mixed Inte-
ger Program (MIP) is used for trading off household energy
cost against loss of comfort. In (Antonopoulos, Kapsalis,
and Hadellis 2012), exhaustive search is used for optimal
scheduling. (Pipattanasomporn, Kuzlu, and Rahman 2012)
proposes an algorithm for keeping power consumption below
certain levels based on preset priorities of processes. (Zhao
et al. 2013) provides another power scheduling method using
a genetic algorithm. (Wang et al. 2013) presents a traversal-
and-pruning algorithm for load scheduling in household ap-
plications. In real-time pricing environments, (Mohsenian-
Rad and Leon-Garcia 2010) interleaves price prediction and
load control. Similar problems in smart homes and smart
grids with user preferences and dynamic pricing are solved
using reformulations to variants of the knapsack problem
in (Rasheed et al. 2016) and (Sianaki, Hussain, and Tabesh
2010). (Qayyum et al. 2015) provides a survey of related
problems and techniques including MIP and constraint pro-
gramming methods such as branch-and-bound. (Tabakhi et
al. 2017) studies smart home device scheduling using the
framework of distributed constraint optimization problems.

When the load scheduling problem faces the hard con-
straint of the total power consumption having to be below a
cap at all times, the problem is NP-hard. Such variants of
the load scheduling problem arise in job shop scheduling as
well as in the HPC domain. In job shop scheduling, processes
that compete for the same resource cannot have overlapping
executions (Smith and Cheng 1993). This can be enforced
by associating a unit cost with each process and a global cap
of unit cost as well. In the HPC domain, the cap represents
computational and cooling resources. The Least Slack First
(LSF) algorithm is used in (Barker et al. 2012) to flatten the
peak electrical power demand in smart homes.

Many other heuristics have been developed for several
other NP-hard variants of the load scheduling problem with
a cap. For example, (Goudarzi, Hatami, and Pedram 2011)
presents a rank-based heuristic and a force directed-based
heuristic. (Wallace et al. 2016) presents a data-driven schedul-
ing approach for power management on HPC systems. (Meng
et al. 2015) presents strategies for jointly reducing commu-
nication and cooling costs. (Sarood 2014) tries to optimize
performance under thermal and power constraints; and (Bo-
das et al. 2014) provides a power-aware scheduler to limit
power consumption within a budget.
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Resource-constrained scheduling has also been studied
in (Sidor et al. 2016) with a smart home application un-
der the name of Time Resource Networks. Here, MIP and
constraint programming techniques are proposed as the so-
lution methods. Robust resource allocation problems with
uncertainty and makespan minimization is studied in (Wiese-
mann, Kuhn, and Rustem 2011). Resource envelope prob-
lems that provide upper and lower bounds on the resource
utilization of consistent schedules of STNs are presented
in (Kumar 2003). (Oddi et al. 2010) applies Iterative Flatten-
ing Search, a meta-heuristic strategy, to resource-constrained
scheduling problems. STNs with preferences on individual
variables have been studied in (Kumar 2004) and (Kumar,
Cirillo, and Koenig 2013). General temporal reasoning prob-
lems with uncertainty and/or preferences have been studied
in (Yorke-Smith, Venable, and Rossi 2003; Morris et al. 2004;
Terenziani, Andolina, and Piovesan 2017).

Conclusions and Future Work

In this paper, we studied load scheduling problems on STNs—
that represent various processes and constraints between their
execution times—under dynamic pricing of resources (en-
ergy). We provided a polynomial-time algorithm that finds a
solution of minimum cost for the load scheduling problem on
STNs when the unit price of energy is a piecewise constant
function of time. Our polynomial-time algorithm was based
on the idea of reducing this problem to the problem of com-
puting the maximum weighed independent set in a POSET,
which in turn was solved using a maxflow procedure. We then
used the polynomial-time algorithm in a quasi binary search
procedure to trade off makespan minimization against cost
minimization. Our algorithms have important applications
in many real-world domains including efficient appliance
scheduling in the smart home and energy minimization in the
smart grid domains, where currently inefficient or suboptimal
algorithms are being applied. We then studied the dependency
of the unit price of energy on time as well as the total energy
demand at that time. This led to a further characterization of
tractable, NP-hard, and conjectured tractable cases of load
scheduling problems.

There are many avenues for future work. One is to identify
richer tractable cases, especially for model A and/or when the
unit price of energy is a function that is piecewise constant in
time and is concave in the total energy demand at any given
time. We are also interested in finding resource-envelope-
based heuristics for the NP-hard cases (Kumar 2003). In
addition, we would also like to apply our algorithms to real-
world domains in collaboration with researchers in electrical
and civil engineering.
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